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Background: Epigenetic regulation and immunotherapy of tumor 

microenvironment (TME) is a hot topic in recent years. However, the potential 

value of tryptophan metabolism genes in regulating TME and immunotherapy 

is still unclear.

Materials and methods: A comprehensive study of glioma patients was 

carried out based on 40 tryptophan metabolic genes. Subsequently, these 

prognostic tryptophan metabolic genes are systematically associated with 

immunological characteristics and immunotherapy. A risk score model was 

constructed and verified in the Cancer Genome Atlas (TCGA) and the Chinese 

Glioma Genome Atlas (CGGA) cohorts to provide guidance for prognosis 

prediction and immunotherapy of glioma patients.

Results: We described the changes of tryptophan metabolism genes in 966 

glioma samples from genetic and transcriptional fields and evaluated their 

expression patterns from two independent data sets. We  identified two 

different molecular subtypes and found that two subtypes were associated 

with clinicopathological features, prognosis, TME cell infiltration, and immune 

checkpoint blockers (ICBs). Then, four genes (IL4I1, CYP1A1, OGDHL, and ASMT) 

were screened out by univariate and multivariate cox regression analysis of 

tryptophan metabolism genes, and a risk score model for predicting the overall 

survival (OS) of glioma patients was constructed. And its predictive ability is 

verified using the CGGA database. At the same time, we verified the expression 

of IL4I1, CYP1A1, OGDHL, and ASMT four genes in glioma specimens and cell 

lines in GES4260 and GES15824. Therefore, we constructed a nomogram to 

improve the clinical applicability of the risk assessment model. The high risk 

score group, characterized by increased TMB and immune cell infiltration, was 

also sensitive to temozolomide immunotherapy. Our comprehensive analysis 
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of tryptophan metabolic genes in gliomas shows that they play a potential role 

in tumor immune stromal microenvironment, clinicopathological features, 

and prognosis.

Conclusion: Tryptophan metabolism genes play an indispensable role in 

the complexity, diversity, and prognosis of TME. This risk score model based 

on tryptophan metabolism gene is a new predictor of clinical prognosis 

and immunotherapy response of glioma, and guides a more appropriate 

immunotherapy strategy for glioma patients.

KEYWORDS

tryptophan metabolic gene, tumor microenvironment, genomic variation, 
immunotherapy, temozolomide

Introduction

Glioma is the most common primary intracranial tumor of 
the central nervous system, of which glioblastoma is the most 
malignant and lethal subtype (Weller et al., 2015; Zhang et al., 
2019; Jiang et al., 2021). Despite significant progress in standard 
treatments, including surgical resection, targeted radiotherapy, 
and chemotherapy (Aldape et al., 2019), the median survival time 
for people with glioblastoma, regardless of treatment, is 
14–15 months (Ostrom et al., 2020). The field of immunotherapy 
and tumor electric field therapy (TTFields; Stupp et al., 2017; Mun 
et al., 2018; Sampson et al., 2020) has developed rapidly in recent 
years, but no substantial breakthroughs have been made. An 
increasing number of studies have analyzed tumor cell 
metabolomics to explore malignant phenotypes of gliomas and 
identify novel therapeutic targets (Ahmed and Chinnaiyan, 2014; 
Bi et al., 2020).

The metabolism of tryptophan, an essential amino acid, is 
considered an important endogenous metabolic feedback loop, 
helping to regulate the extent, duration, and cellular composition 
of immune responses. Tryptophan metabolism in cancer cells 
and/or cancer-associated stromal cells contributes to the inhibition 
of the anti-tumor immune response (Platten et  al., 2021). 
Tryptophan metabolites can regulate not only cancer cells, but also 
the whole tumor microenvironment, and can promote 
immunosuppression and drug resistance (Fallarino et al., 2003; 

Greene et al., 2019; Li and Zhao, 2021). In addition, tryptophan 
metabolism, as a new immune checkpoint, can affect the 
immunotherapeutic outcome (Li et al., 2019). These observations 
led to the development of novel therapeutic agents with the aim of 
regulating or inhibiting tryptophan metabolism. The first 
molecular target for small molecular inhibitors was indoleamine-
2,3-dioxygenase-1 (IDO1), which catalyzes the rate-limited 
conversion of tryptophan to canine uric acid. Indoleamine-2,3-
dioxygenase-2 (IDO2) can also be  therapeutically targeted to 
catalyze the conversion of tryptophan to canine urine; this target 
is upregulated in gliomas and other types of cancer (Mondanelli 
et al., 2021). However, these molecular therapeutic agents are still 
in clinical development, and other novel drug targets should still 
be explored.

The tumor microenvironment (TME) is known to influence 
the occurrence and development of tumors (Hinshaw and Shevde, 
2019). In addition to tumor cells, the TME also includes 
fibroblasts, endothelial cells, immune cells, inflammatory cells, 
extracellular matrix elements, and diffusible cytokines and 
chemokines, which are secreted from tumor and stromal cells. 
Crosstalk between cancer cells and proximal immune cells 
produces the TME, which affects the development and progression 
of cancer (Pottier et al., 2015). Malignant cells interact with the 
surrounding cells via the circulatory and lymphatic systems to 
promote tumor angiogenesis and induce immune tolerance by 
releasing cellular signal molecules. The TME can also affect tumor 
progression, and tumor-infiltrating immune cells (TIIC) in the 
TME can be used to predict the prognosis of cancer (Lee and 
Cheah, 2019). Moreover, previous studies have found that TME 
plays a key regulatory role in glioma progression (Quail and Joyce, 
2017). Highly complex tryptophan metabolic pathways exist not 
only in tumor cells, but also in the TME, and cancer cells are able 
to use the resultant metabolites to regulate tumor immune cell 
infiltration, resulting in immune resistance and immune escape 
(Vitale et al., 2019). Until now, most studies have only evaluated 
the influence of one or two tryptophan metabolic genes on 
gliomas; however, tumor-promoting effects likely result from the 
interaction of many genes in a highly coordinated manner. 

Abbreviations: TME, Tumor microenvironment; ICBs, Immune checkpoint 

blockers; OS, Overall survival; TTFields, Tumor electric field therapy; TMZ, 

Temozolomide; IDO1, Indoleamine-2,3-dioxygenase-1; IDO2, Indoleamine-

2,3-dioxygenase-2; TIIC, Tumor-infiltrating immune cells; GTEx, Genotype–

Tissue Expression; CGGA, Chinese Glioma Genome Atlas; TCGA, The Cancer 

Genome Atlas; TPM, Transcripts per kilobase million; CDF, Cumulative 

distribution function; TMB, Tumor mutational burden; CNV, Copy number 

variation; PCA, Principal component analysis; ROC, Receiver operating 

characteristic; GDSC, Genomics of Drug Sensitivity in Cancer; HCC, 

Hepatocellular carcinoma.
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Therefore, a comprehensive understanding of how TME cell 
infiltration characteristics are mediated by multiple tryptophan 
metabolic genes will enable a more in-depth understanding of 
glioma biological mechanisms and better prediction of the efficacy 
of immunotherapy.

This study therefore aimed to comprehensively evaluate the 
expression profile of tryptophan metabolic genes in relation to the 
composition of the immune cell population in the TME and 
overall survival in people with glioma.

Materials and methods

Acquisition and preprocessing of 
datasets from patients with glioma

We downloaded RNA expression data for normal brain tissue 
from the Genotype–Tissue Expression (GTEx) dataset using the 
UCSC Xena online browser tool.1 RNA transcriptome, somatic 
mutation, and copy number data for glioma samples with matched 
clinical data from people with glioma were downloaded from the 
Cancer Genome Atlas (TCGA; https://portal.gdc.cancer.gov/), the 
Chinese Glioma Genome Atlas (CGGA; http://www.cgga.org.cn/), 
and Gene Expression Omnibus of NCBI (GEO; http://www.ncbi.
nlm.hih.gov/gds). After excluding individuals with incomplete 
clinical data, 966 glioma specimens (TCGA, n = 662; CGGA, 
n = 304) were included in further analyses. The GSE4290 dataset 
containing 23 normal samples and 157 glioma samples was used 
to verify marker gene expression. The GSE15824 dataset contains 
NHA, LN018, LN215, LN229, LN319, and BS149 cell lines for 
validation of marker gene expression. Transcripts per kilobase 
million (TPM) values and RNA sequencing data (RSEM) values 
were converted and log2-normalized in order to compare gene 
expression profiles from different platforms. The limma package 
in R was used to analyze mRNA expression for tryptophan 
metabolic genes in glioma and normal brain tissue samples.

Clinical information for all 966 patients with glioma included 
in this study is shown in Supplementary Table S1. Clinical 
variables included age, gender, grade, follow-up time, and survival 
status. In addition, somatic mutation data and genetic frequency 
were analyzed using the maftools package in R (in the mutation 
annotation format).

Consensus cluster analysis of tryptophan 
metabolic genes

Forty tryptophan metabolic genes 
(TRYPTOPHANMETABOLISM_PYROPTOSIS)2 were queried 
using the MSigDB website. The ConensusClusterPlus package in 

1 https://xenabrowser.net/datapages/

2 http://www.broad.mit.edu/gsea/msigdb/

R was used for consistent unsupervised cluster analysis, in which 
patients were divided into different molecular subtypes according 
to expression levels of tryptophan metabolic genes. Clustering was 
based on the following criteria: a gradual and smooth increase was 
observed in the cumulative distribution function (CDF) curve; no 
groups had small sample sizes; intra-group correlation increased 
and inter-group correlation decreased after clustering.

Relationship between subtypes and 
clinical features and prognosis of brain 
gliomas

To test the clinical value of the two subtypes determined by 
consensus clustering, we  compared the relationships among 
molecular subtypes, clinicopathological features, and prognosis. 
The characteristics of the patients included age, gender, and tumor 
grade. Kaplan–Meier curves were generated using the survival and 
survminer packages in R to assess differences in overall survival 
(OS) among patients with different subtypes.

Correlation between subtypes of gliomas 
and TME, immune cells, and immune 
checkpoint blockers

According to the expression profiles of glioma patients, 
the ESTIMATE algorithm was used to evaluate the abundance 
of immune cells and stromal cells (Yoshihara et al., 2013). 
The ESTIMATE algorithm produced three types of scores: 
positive reflection of stromal cell abundance (stromal score), 
positive reflection of immune cell abundance (immune 
score), and positive reflection of non-tumor components 
(ESTIMATE score). In addition, the CIBERSORT algorithm 
was used to calculate the proportion of 22 human immune 
cell subsets in each glioma sample (Newman et al., 2015). 
Samples with p < 0.05 were selected for further analysis, and 
the difference in abundance of immune cells among different 
subtypes was compared using a Wilcoxon rank sum test. 
We also analyzed the correlation between the two subtypes 
of different ICBs (PDCD1, CD274, PDCDLG2, CTLA4, 
CD80, and CD86).

Construction and verification of gene 
prediction model for tryptophan 
metabolism

Nine hundred and sixty-six patients with glioma were divided 
into a training set (TCGA, n = 662) and verification set (CGGA, 
n = 304). In the training set, we used the survival package in R to 
screen these tryptophan metabolism genes by univariate Cox 
analysis to identify those related to glioma prognosis. Then, the 
genes that were most related to glioma prognosis were screened 
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using multivariate Cox analysis of prognosis-related genes and 
survival rates. We then constructed a tryptophan metabolic gene 
prediction model that included prognosis-related genes, weighted 
with multivariate Cox regression coefficients according to 
the equation

 
Riskscore £ Expi Coefi= ( )*

where Coefi and Expi represent the risk coefficient and 
expression of each gene, respectively. According to the median 
risk score, 662 patients in the training group were stratified 
into low risk (risk score < median) and high risk (risk 
score > median) groups for Kaplan–Meier survival analysis. 
Then, principal component analysis (PCA) was carried out 
using the ggplot2 package in R. The verification set was 
stratified in the same way. In each cohort, Kaplan–Meier 
analysis was used to evaluate the importance of prediction 
between high and low risk groups, and 1, 3, and 5-year receiver 
operating characteristic (ROC) curves were drawn further test 
the efficiency of prediction. Values for the area under the ROC 
curve (AUC) were calculated using the survival, survminer, 
and survivalROC packages in R.

Evaluation of immune status, tumor 
mutation burden, and ICBs between high 
and low risk groups

CIBERSORT was used to quantify the abundance of 22 TIICs 
in heterogeneous samples from low and high risk groups. We also 
investigated the relationship between TIIC composition and risk 
score. We used box diagrams to examine differential expression 
levels between low and high risk groups and the different immune 
checkpoint genes (PDCD1, CD274, PDCDLG2, CTLA4, CD80, 
and CD86). In addition, we also analyzed the relationship between 
risk level and TMB.

Response to temozolomide

Temozolomide (TMZ) is a first-line chemotherapeutic drug 
for patients with glioma. We  predicted the chemotherapeutic 
response for each sample from the TCGA dataset based on the 
largest publicly available pharmacogenomics database [Genomics 
of Drug Sensitivity in Cancer (GDSC), https://www.cancerrxgene.
org/]. The prediction process was implemented in R using the 
pRRophetic package, where the half maximum inhibitory 
concentration (IC50) of the sample was estimated using ridge 
regression, all parameters were set at default values, the combat 
correction for batch effect was used, and the tissue type was set to 
“all,” and repeated gene expression was summarized as the 
average value.

Establishment and verification of a 
nomogram scoring system

Based on the results of our independent prognostic analysis, 
a predictive nomogram was developed using the RMS package in 
R according to the clinical features and risk score. In the 
nomogram scoring system, each variable has a score, and the sum 
of all scores for all variables in each sample are added to calculate 
a total score. The nomogram was evaluated using 1, 3, and 5-year 
survival times. The calibration chart for the nomogram was used 
to describe the difference between predicted 5-year survival events 
and virtual observations.

Statistical analysis

All statistical analyses were performed in R version 4.1.2. 
Values with associated p < 0.05 were considered statistically  
significant.

Results

Tryptophan metabolic gene expression 
and its alteration in glioma

First, we  analyzed the differential expression of 40 
tryptophan metabolic genes using the TCGA and GTEx 
databases (Figure 1A). There was a significant difference in gene 
expression pattern between the glioma and normal groups. The 
expression of MAOB, IL4I1, ALDH3A2, WARS2, HAAO, 
AANAT, IDO1, OGDH, EHHADH, AOC1, INMT, HADHA, 
ALDH9A1, ALDH2, ECHS1, AADAT, ALDH1B1, CAT, HADH, 
GCDH, MAOA, IDO2, TPH1, and CYP1B1 was higher in glioma 
than normal brain tissue samples. Conversely, the expression of 
KYNU, AOX1, KMO, TDO2, ACAT1, DDC, CYPIAI, OGDHL, 
WASRS1, AFMID, CYP1A2, ASMT, and TPH2 was lower in 
glioma than normal brain tissue samples. In addition, copy 
number variations (CNVs) were common in all 40 tryptophan 
metabolic genes. Among them, AANAT, AOC1, EHHADH, and 
AFMID had an increased copy number, while ECHS1, IL4I1, 
and AADAT showed a deletion of copy number (Figure 1B). 
Figure 1C shows the location of the CNV changes in the genes 
on their respective chromosomes. In addition, somatic mutation 
rates for all 40 genes were summarized and analyzed; the 
somatic mutation rates of tryptophan metabolism genes in the 
TCGA-GBM and GBM cohorts were 9.23% and 4.94%, 
respectively (Supplementary Figure S1).

The results of our analysis show that there are significant 
differences in the expression level and copy number of tryptophan 
metabolic genes between glioma and normal brain tissue samples, 
indicating that these genes potentially play a role in the occurrence 
of glioma.
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Identification of tryptophan metabolic 
gene subtypes in gliomas

We used a consensus clustering algorithm to classify patients 
with gliomas according to the expression profiles of the 40 
tryptophan metabolic genes included in our study 
(Supplementary Figure S2). Our results show that k = 2 seemed to 
be the best choice, stratifying the entire cohort into subtype A 
(n = 447, 46.3%) and subtype B (n = 519, 53.7%; Figure 2A). PCA 
showed that there were significant differences in tryptophan 
metabolic gene transcription profiles between the two clusters 
(Figure 2B). The Kaplan–Meier curve showed that subtype B had 
a significant advantage in OS over subtype A (Figure  2C). In 
addition, in a comparison of the clinicopathological features of 
different glioma subtypes, we  found significant differences in 
tryptophan metabolic gene expression and clinicopathology 

between the two glioma clusters (Figure 2D). The proportion of 
individuals who died were significantly higher in subtype A (69%) 
than subtype B (30%); compared with subtype B, patients in 
subtype A were also significantly older at diagnosis (68 vs. 36% 
aged 45 or older), with a higher tumor grade (85 vs. 46%; 
Figure 2E).

Immunological characteristics of 
subtypes A and B

We used the CIBERSORT algorithm to evaluate the 
correlation between subtype and immune cell composition in each 
glioma sample. There was a significant difference in the proportion 
of most immune cell types between the two subtypes (Figure 3A). 
The infiltration levels of plasma cells, CD8+ T cells, activated CD4+ 
memory T cells, resting CD4+ memory T cells, follicular helper T 

A

B C

FIGURE 1

Genetic and transcriptional alterations in tryptophan metabolic genes in glioma. (A) Expression distributions of 40 tryptophan metabolic genes in 
normal vs. glioma tissues. (B) Frequencies of copy number variations (CNVs) including gain and loss, and non-CNV genetic variants among 
tryptophan metabolic genes. (C) Locations of CNVs in tryptophan metabolic genes across the 23 human chromosomes. *p < 0.05, **p < 0.01, 
***p < 0.001.
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A

C

D E

B

FIGURE 2

Two distinct tryptophan metabolic gene expression subtypes and the clinicopathological and biological characteristics of these subtypes, stratified 
by consistent clustering. (A) Consensus matrix heatmap defining two clusters (k = 2) and areas of correlation. (B) Principal component analysis 
showing a notable difference in transcriptomes between the two subtypes. (C) Univariate analysis showing genetic subtypes related to overall 
survival (OS). (D) Differences in clinicopathologic features and tryptophan metabolic gene expression levels between the two subtypes. 
(E) Comparisons of OS status, gender, WHO tumor stage, and age between two genetic subtypes. Significance: **p < 0.01.
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A

B

C

FIGURE 3

Correlations between tumor immune cell microenvironments and two glioma subtypes, defined by differential expression of tryptophan metabolic 
genes. (A) Abundance of 22 infiltrating immune cell types between the two glioma subtypes. (B) Correlations between the two glioma subtypes 
and tumor microenvironment score (immune score, stromal score, and ESTIMATE score). (C) Expression levels of PD-1, PD-L1, PDL2, CTLA4, 
CD80, and CD86 between the two glioma subtypes.
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cells, regulatory T cells, γ δ T cells, M0 and M1 macrophages, and 
resting mast cells were significantly higher in subtype A than 
subtype B. Conversely, the infiltration levels of immature CD4+ T 
cells, activated natural killer (NK) cells, monocytes, M2 
macrophages, activated mast cells, and neutrophils were 
significantly higher in subtype B than subtype A. We  also 
evaluated TME scores for the two subtypes (interstitial score, 
immune score, and ESTIMATE score) using the ESTIMATE R 
package. Briefly, a higher interstitial score or immune score 
represents a higher relative content of stromal or immune cells in 
the TME, while the ESTIMATE score is an aggregation of the 
TME intermediate and immune scores. The TME score for 
individuals in subtype A was higher than those in subtype B 
(Figure  3B). These results together suggest that subtype A is 
associated with a higher level of TIIC infiltration, which may 
be useful for immunotherapy. In addition, the expression of PD1 
and CTLA and their ligands (PD-L1, PD-L2, CD80, and CD86, all 
p < 0.001) in subtype A was significantly higher than that in 
subtype B (Figure 3C). These results showed that patients with 
gliomas in subtype A were more likely to have immune resistance, 
resulting in a worse prognosis.

Identification and verification of a 
prognostic model based on tryptophan 
metabolic gene expression

To fully understand the association between tryptophan 
metabolic gene expression patterns and tumorigenesis, 966 
patients were collected from two eligible glioma cohorts (TCGA-
LGG/GBM and CGGA) for further analysis. The details of 966 
patients with gliomas are shown in Supplementary Table S1. 
Differentially expressed tryptophan metabolic genes between 
tumor and normal tissues were screened using |log fold change 
(FC)| ≥ 1 and p < 0.05. In total, nine differentially expressed genes 
were identified (Supplementary Table S2). We then performed 
univariate Cox regression and multivariate Cox regression 
analyses, in which four prognostic genes (IL4I1, CYP1A1, 
OGDHL, and ASMT) were found to be independent predictors 
(Table 1). Kaplan–Meier analysis showed that higher expression 
levels of IL4I1 were associated with worse OS, while higher 
expression levels of CYP1A1, OGDHL, and ASMT were associated 
with better OS (Figure 4B). In addition, the expression levels of 

IL4I1 in those with a World Health Organization tumor stage of 
3–4 were significantly higher than that in those with a tumor stage 
of 1–2, while the expression levels of CYP1A1, OGDHL, and 
ASMT in those with a tumor stage of 3–4 were significantly lower 
than those with a tumor stage of 1–2 (Figure 4C). Combined with 
the results of our univariate Cox analysis (Figure 4A), we can 
conclude that IL4I1 plays a tumor-promoting role and CYP1A1, 
OGDHL, and ASMT all play protective roles in gliomas.

The four tryptophan metabolic genes that were most strongly 
related to prognosis (IL4I1, CYP1A1, OGDHL, and ASMT) were 
used to construct a risk prediction model. The risk score was 
calculated as follows: risk score = 0.030653968 × (expression  
of IL4I1) + (−0.216700471) × (expression of CYP1A1) +  
0.00663866 × (expression of OGDHL) + (−0.196764275) ×  
(expression of ASMT). According to the median risk score, glioma 
patients were divided into low and high risk subtypes in both the 
TCGA and CGGA cohorts. We then explored the difference in 
tryptophan metabolic genes between the high and low risk score 
groups; the results showed that the expression of MAOB, IL4I1, 
ALDH3A2, WARS2, HAAO, HYNU, AOX1, ICD1, OGDH, KMO, 
AOC1, INMT, TDO2, ACMSD, and CYP1B1 was significantly 
higher in the high than the low risk insurance group. The 
expression of HADHA, ALDH9A1, ALDH2, ACAT2, ALAT1, 
DDC, CYP1A1, ECHS1, AADAT, CAT, GCDH, OGDHL, MAOA, 
AFMID, ASMT, ALDH7A1, and TPH2 was significantly lower in 
the high than the low risk group (Figure 4D).

Figure 5A illustrates the distribution of glioma patients across 
the two subtypes (A vs. B), risk score groups (high vs. low), and 
patient survival outcome groups (dead vs. alive). We also analyzed 
the distribution of the two subtype groups in the risk score; the 
risk score for subtype A was significantly higher than subtype 
B. PCA analysis showed discernible differences between low risk 
and high risk groups (Figure 5C). The Kaplan–Meier survival 
curve confirmed that the OS of patients in the low risk group was 
significantly higher than in the high risk group in the TCGA 
cohort (Figure 5D, p < 0.001). In addition, the risk score model 
predicted 1, 3, and 5-year survival AUC values of 0.831, 0.826, and 
0.794, respectively, in this cohort (Figure 5F). In the validation 
(CGGA) cohort, the OS of individuals in the low risk group was 
also significantly higher than that in the high risk group 
(Figure 5E, p < 0.001). In addition, the risk score model predicted 
1, 3, and 5-year survival AUC values of 0.687, 0.722, and 0.741, 
respectively, in this cohort (Figure 5G).

Analysis of prognostic risk score 
correlation with clinicopathological 
features

We then explored the relationship between risk score and 
clinicopathological features (Figure 6A). Risk scores were higher 
among those who died than those who survived; among those 
aged 45 years or older than those aged younger than 45 years; and 
among those with a tumor stage of 3–4 than those with a tumor 

TABLE 1 Multivariate Cox regression analysis of four tryptophan 
metabolic prognostic genes associated with overall survival in glioma 
patients.

Gene Coef HR p value

IL4I1 0.030653968 1.031128639 <0.001

CYP1A1 −0.216700471 0.805171105 <0.001

OGDHL 0.00663866 1.006660745 <0.001

ASMT −0.196764275 0.821384231 0.02569

Coef, coefficient and HR, hazard ratio.
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FIGURE 4

A prognostic model for predicting patients with glioma based on tryptophan metabolic gene expression. (A) Univariate Cox regression analysis 
demonstrated eight tryptophan metabolic genes were related to the prognosis of glioma. (B) Multivariate Cox regression analysis demonstrated 
four tryptophan metabolism genes were most relevant to the prognosis of glioma; a Kaplan–Meier curve for the overall survival of these genes 
(IL4I1, CYPIA1, OGDHL, and ASMT) is shown. (C) The relationship between IL4I1, CYPIA1, OGDHL, and ASMT and tumor stage. (D) The expression 
of 40 tryptophan metabolism genes in high and low risk groups. *p < 0.05, **p < 0.01, ***p < 0.001.
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stage of 1–2. However, there was no significant difference between 
genders in the TCGA cohort of the training set (Figure  6B). 
Similar results were observed in the CGGA validation set 

(Figure 6C). In addition, we analyzed OS among individuals with 
high and low risk scores and different tumor stages. The Kaplan–
Meier survival curve showed that in the TCGA cohort, the OS of 

A B

D E

F G

C

FIGURE 5

Prognostic value of the risk score model in glioma. (A) Alluvial diagram of subtype distributions in groups with different risk scores and survival 
outcomes. (B) Differences in risk score between genetic subtypes based on tryptophan metabolic gene expression. (C) Principal component 
analysis based on prognostic signature. High and low risk individuals are represented by red and blue dots, respectively. (D,E) Kaplan–Meier 
analysis of overall survival between the two groups in the TCGA and CGGA cohorts. (F,G) Receiver operating characteristic curves to predict the 
sensitivity and specificity of 1, 3, and 5-year survival according to risk score in TCGA and CGGA cohorts.
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FIGURE 6

Correlation between risk score and clinical characteristics. (A) Relationship between clinicopathologic features and risk score. (B,C) Comparisons 
of overall survival (OS), WHO tumor stage, age, and gender between the two risk score groups in TCGA and CGGA cohorts. (D,E) Kaplan–Meier 
analysis of OS between the high and low risk groups in the TCGA and CGGA cohorts according to tumor stage. ***p < 0.001.
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individuals in the high risk group was worse than those in the low 
risk score group, in those with a tumor stage of WHOI-WHOII or 
WHOIII-WHOIV (Figure  6D). In the CGGA cohort, among 
those with a tumor stage of WHOIII-WHOIV, the OS of patients 
in the high risk score group was worse than that of the low risk 
score group, but there was no difference in those with a tumor 
stage of WHOI-WHOII. However, overall, the prognosis of 
patients in the high risk score group was worse than that in the 
low risk score group (Figure 6E).

Evaluation of TME, TMZ, and ICBs in high 
and low risk groups

We used the CIBERSORT algorithm to evaluate the 
association between risk score and immune cell abundance. As 
shown in Figure  7A, the levels of infiltrating CD8+ T cells, 
activated CD4+ memory T cells, resting CD4+ memory T cells, 
regulatory T cells, γ δ T cells, M0 and M1 macrophages, and 
neutrophils were significantly higher in the high than the low risk 
group. The levels of infiltrating activated CD4+ T cells CD4, 
activated NK cells, monocytes, M2 macrophages, and activated 
mast cells were significantly higher in the low than the high risk 
group. Risk score was positively correlated with CD8+ T cells, 
activated CD4+ memory T cells, resting CD4+ memory T cells, 
follicular helper T cells, regulatory T cells, γ δ T cells, M0 and M1 
macrophages, and neutrophils, and negatively correlated with 
activated CD4+ T cells, activated NK cells, monocytes, M2 
macrophages, and activated mast cells (Figure 7D). The stromal, 
immune, and ESTIMATE scores were higher in the high than the 
low risk score group (Figure  7B). We  also examined the 
relationship between immune checkpoint gene expression and 
risk score. The expression of the ICBs PD1 and CTLA and their 
ligands (PD-L1, PD-L2, CD80, and CD86, all p < 0.001) were 
positively correlated with risk score (Figure 7E).

Considering that chemotherapy with temozolomide is a first-
line treatment for gliomas, we  investigated the response to 
temozolomide in people in the high and low risk groups based on 
data from the GDSC database. The log IC50 of temozolomide in 
those with the low risk subtype was significantly higher than that 
in patients with the high risk subtype. Therefore, the sensitivity to 
temozolomide in the high risk score group was higher than in the 
low risk score group (Figure 7C).

The relationship between risk score and 
TMB

Our analysis of TMB data from the TCGA-LGG/GBM 
queue shows that the TMB of the high risk score group is higher 
than that of the low risk score group (Figure 8A). Spearman’s 
correlation analysis showed that risk score was positively 
correlated with TMB (Figure  8B). We  then analyzed the 
relationship between TMB and the overall survival rate among 

people with glioma, and the optimal cutoff, Kaplan–Meier 
survival curve showed that the OS of those in the high-TMB 
group was worse than that of those in the low-TMB group 
(Figure 8C). We then analyzed the relationship between risk, 
TMB, and OS among people with glioma. The Kaplan–Meier 
survival curve showed that the OS of patients in the 
H-TMB + H-risk score group was the worst, while that of 
L-TMB + L-risk score group was the best (Figure 8D).

We also analyzed the differences in somatic mutation 
distribution between high and low risk score groups in the TCGA 
cohort. The top 20 most mutated genes in the high and low risk 
score group were IDH1, TP53, ATRX, PTEN, TTN, EGFR, CIC, 
MUC16, PIK3CA, NF1, FLG, PIK3R1, PCLO, HMCN1, LRP2, 
FUBP1, SPTA1, SYNE1, RB1, and NOTCH1 (Figures 8E,F). The 
frequencies of IDH, TP53, ATRX, and CIC mutations in patients 
with low risk scores were significantly higher than those with high 
risk scores. The opposite pattern was observed in the mutation 
levels of PTEN, EGFR, TTN, and MUC16 (Figures 8E,F). The rates 
of PTEN (18%), TTN (19%), EGFR (21%), and EGFR (17%) 
mutations in patients with high risk scores were significantly 
different from those in patients with low risk scores (all p < 0.001). 
There was no significant difference in the frequency of TP53 and 
ATRX mutations between the two groups (Figure 8G).

The development of a nomograph for 
predicting OS

Considering the level of inconvenience associated with the 
clinical application of the risk score model in predicting OS in 
glioma patients, we established a nomogram incorporating risk 
score and clinicopathological parameters to predict OS survival 
rate at 1, 3, and 5 years among glioma patients (Figures 9A,C). 
Predictors included risk score, age, gender, and tumor stage. The 
calibration curve over 5 years shows that the proposed nomogram 
had a similar performance on both the training set and the test set 
compared with the ideal model (Figures 9B,D).

Expression of the marker gene in the 
validation set

Finally, we also verified the expression of marker genes in the 
GSE4290 dataset. We discovered that the expression trends of 
IL4I1, CYP1A1, OGDHL, and ASMT were consistent with the 
TCGA dataset. Among them, the expression of IL4I1 in glioma 
patients was greater than of normal samples, while the CYP1A1, 
OGDHL, and ASMT were lower in glioma samples 
(Supplementary Figure S3A). In addition, we also verified the 
expression of marker genes in the GSE15824 dataset. We found 
that IL4I1 was highly expressed in glioma cell lines (LN018, 
LN215, LN229, and LN319), CYP1A1 was low expressed in 
glioma cell lines (LN215, LN229, LN319, and BS149), OGDHL 
was low expressed in LN018, and ASMT was lowly expressed in 
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FIGURE 7

Different tumor microenvironment (TME) characteristics and response to temozolomide therapy between the two risk groups in TCGA cohort. 
(A) Abundance of tumor-infiltrating immune cells (TIICs) between high and low risk groups. (B) Comparisons of immune score, stromal score, and 
ESTIMATE score between high and low risk groups. (C) Half maximum inhibitory concentrations (IC50) for temozolomide between the two risk 
groups using data from the GDSC database. (D) Correlation between risk score and immune cell type abundance. (E) Correlation between risk 
score and immune checkpoint blockers (PDCD1, CD274, PDCDLG2, CTLA4, CD80, and CD86).
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FIGURE 8

Comprehensive analysis of risk score in glioma. (A) Tumor mutational burden (TMB) in high and low risk score groups. (B) Kaplan–Meier analysis of 
overall survival (OS) between the high- and low-TMB groups. (C) Spearman’s correlation analysis of risk score and TMB. (D) Survival analysis 
among four groups stratified by risk score and TMB. (E,F) Waterfall plot of somatic mutation features associated with high and low risk scores. 
Each column represents one person. The upper bar plot shows TMB and the number on the right of the figure indicates mutation frequency for 
each gene. The right bar plot shows the proportion of each variant. (G) Comparisons of IDH, TP53, EGFR, PTEN, TTN, and ATRX mutations 
between high and low risk score groups.
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glioma cell lines (LN018, LN215, LN229, LN319, and BS149; 
Supplementary Figure S3B).

Discussion

Many studies have shown that tryptophan metabolism plays 
an important role in regulating immunity and tumorigenesis 
(Kwiatkowska et al., 2021; Tanaka et al., 2021). However, most 
studies have focused on a single tryptophan metabolism gene or 
a single type of TME cell. Therefore, the combined effect of 
multiple tryptophan metabolic genes and their association with 
TME permeation characteristics have not been fully elucidated. 
The results of this study revealed genetic and transcriptional 

heterogeneity in tryptophan metabolic genes in gliomas. 
We  identified two different molecular subtypes based on the 
expression of 40 tryptophan metabolic genes. Compared with 
patients with subtype B, patients with subtype A had worse 
clinicopathological features and OS. There were also significant 
differences in TME characteristics between the two subtypes in 
terms of cellular composition. In addition, the expression of 
different immune checkpoints in subtype A was higher than that 
in subtype B. Therefore, our results show that tryptophan 
metabolic genotyping could be  used as a predictive index to 
evaluate the clinical outcome and immunotherapeutic response of 
gliomas. Therefore, we built a robust and effective prediction risk 
scoring model and verified its predictive ability. The construction 
of our predictive model was based on the expression levels of four 
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FIGURE 9

Construction and validation of a nomogram to predict overall survival (OS). (A,C) Nomogram for predicting 1, 3, and 5-year OS for people with 
glioma in the TCGA and CGGA cohorts. (B,D) Calibration curves for the nomogram to predict 5-year OS in TCGA and CGGA cohorts.
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genes (IL4I1, CYP1A1, OGDHL, and ASMT) in glioma tissues. 
The tryptophan metabolic subtypes characterized by immune 
activation and immunosuppression showed high risk score group 
and low risk score group, respectively. There were significant 
differences in clinicopathological features, prognosis, genetic 
mutation, TME, and immune checkpoints between the high and 
low risk score groups. Finally, a quantitative nomogram was 
established, in which risk score and clinicopathological features 
were incorporated, which further improved predictive 
performance and facilitated the use of the risk score prediction 
model. The prognostic model could be  used to predict the 
prognosis of individuals with glioma and will provide novel ideas 
for targeted therapy.

The activation of the aromatic receptor AHR by tryptophan 
catabolites can enhance malignancy of a tumor and inhibit anti-
tumor immunity (Perez-Castro et al., 2021). IL4I1 (part of our 
risk model) is able to activate AHR through the production of 
indole metabolites and canine, and is associated with decreased 
survival rate, promotion of cancer cell movement, and 
inhibition of adaptive immunity in people with glioma. 
However, IL4I1 could thus represent a new target for the 
treatment of glioma (Sadik et al., 2020). This is consistent with 
our study, which showed that IL4I1 plays a tumor-promoting 
role in gliomas. The human cytochrome P450 (CYP) 1A1 gene 
encodes a monooxygenase that can metabolize a variety of 
exogenous and endogenous substrates. CYP1A1 expression is 
mainly controlled via aromatic hydrocarbon receptors (AHR; 
Ma, 2001). Previous studies have shown that CYP1A1 is a 
promising target molecule in the prevention and treatment of 
human malignant tumors (Mescher and Haarmann-Stemmann, 
2018). Dai and colleagues previously showed that low expression 
of the OGDHL enzyme is significantly associated with poor 
survival in patients with HCC. OGDHL is also a promising 
prognostic biomarker and a potential therapeutic target for 
OGDHL-negative liver cancer (Dai et al., 2020). However, it has 
not been studied in the context of glioma. In addition, previous 
studies have found that ASMT can regulate the invasiveness of 
breast cancer cells, and may be a potential drug target in breast 
cancer (Xie et  al., 2020). However, there are few published 
studies on prognostic indicators and therapeutic targets in 
glioma, so our results reveal a novel role for four genes (IL4I1, 
CYP1A1, OGDHL, and ASMT) in this context, and that a 
predictive model that incorporates these genes is able to predict 
the prognosis of individuals with glioma. At the same time, it 
also provides novel potential therapeutic targets for the 
treatment of glioma.

In addition, in our study, the infiltration of CD8+ T cells, 
activated CD4+ memory T cells, resting CD4+ memory T cells, 
regulatory T cells, γ δ T cells, M0 and M1 macrophages, and 
neutrophils was upregulated in patients with high risk scores, 
while the infiltration of activated CD4+ T cells, activated NK 
cells, monocytes, M2 macrophages, and activate mast cells was 
downregulated in these individuals. Immunosuppression and 
low immune function are two important functional features of 

T regulatory cells (Wolf et al., 2015). Increased activity of rate-
limiting enzymes such as IDO leads to the continuous 
consumption of tryptophan in the microenvironment. This 
leads to the stagnation of the cell cycle in surrounding T cells 
and promotes the production of T regulatory cells (Fallarino 
et al., 2006). Some studies have also shown that KYN activates 
AHR on CD4+ T cells via classical response genes such as 
CYP1A1 and CYP1B1, thus inducing CD4+ T cell to 
differentiation into T regulatory cells (Mezrich et  al., 2010). 
Therefore, T regulatory cells inhibit the function of effector T 
cells and regulate immune function by secreting inhibitory 
cytokines or interacting with antigen-presenting cells. In 
addition, AHR inhibits the function of CD8+ T cells by 
regulating the function of tumor-associated macrophages, 
resulting in anti-tumor immune responses (Takenaka et  al., 
2019). Our results also showed that NK cell infiltration is low in 
high risk individuals; it is reported that increased tryptophan 
catabolism can induce apoptosis of NK cells and lead to tumor 
immune escape, which may represent a possible reason for this 
observation (Grohmann and Bronte, 2010). Therefore, tumor 
immune evasion may be more likely in people with glioma who 
have high risk scores, thus negatively affecting the success of 
immunotherapy in these individuals.

In recent years, ICBs have been widely used in tumor 
immunotherapy; this includes PD-1 and PD-L1, which are 
used as immunotherapeutic agents in many tumor types, 
including lung cancer, bladder cancer, renal cell carcinoma, 
melanoma, lymphoma, and leukemia (Mayor et  al., 2016; 
Krishnamurthy and Jimeno, 2017; Kaplon and Reichert, 2018). 
However, in a phase 3 clinical trial of glioblastoma, the effect 
of immunotherapy was found to be  unsatisfactory (Weller 
et al., 2017; Reardon et al., 2020). Previous studies have found 
that PD-1 and PD-L1 can inhibit T cell proliferation in glioma 
(Litak et al., 2019), and studies in GBM mice have confirmed 
the safety and effectiveness of monoclonal antibodies against 
PD-1 and PD-L1, indicating that they have a high anticancer 
potential (Huang et al., 2015). Our results showed that there 
was a positive correlation between risk score and the 
expression of PDCD1, CD274, PDCDLG2, CTLA4, CD80, and 
CD86. In addition, we found that risk score was significantly 
associated with TMB, including several common somatic 
mutations (TP53, PTEN, and EGFR) in glioma (Segura-Collar 
et al., 2020). Risk score therefore plays an important role in the 
formation of the TME immune landscape, suggesting that the 
risk score model may affect the therapeutic effect of ICBs. 
Therefore, we concluded that the risk score model may be used 
to predict prognosis and immunotherapeutic response in 
patients with glioma.

This study has several limitations. First, all the analyses are 
based on the data from public databases, and all samples used in 
our study were therefore acquired retrospectively. Thus, an 
inherent bias in case selection may have affected the results. 
Large-scale prospective studies and further in vivo and in vitro 
studies are needed to confirm our findings. In addition, data on 
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some important clinical variables, such as surgery, neoadjuvant 
chemotherapy, and radiotherapy, could not be analyzed in most 
data sets, which may affect immune responses and tryptophan  
metabolism.

Conclusion

Our comprehensive analysis of tryptophan metabolic genes 
reveals a wide range of regulatory mechanisms by which the TME, 
clinicopathological features, and prognosis of glioma may 
be  affected. Our results also indicate an association between 
tryptophan metabolic genes, immune checkpoints, and 
immunotherapy. These findings highlight the clinical significance 
of tryptophan metabolic genes and provide novel avenues for 
personalized immunotherapeutic strategies for people with glioma.
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SUPPLEMENTARY FIGURE S1

Mutational frequencies of 40 tryptophan metabolic genes in 390 and 506 
patients with (A) GBM and (B) LGG, from the TCGA cohort.

SUPPLEMENTARY FIGURE S2

Classification of patients according to tryptophan metabolic gene 
expression profile. (A,B) Consensus clustering cumulative distribution 
function (CDF) for k=2 to k=9. Relative change in the area under the CDF 
curve for k=2 to k=9.

SUPPLEMENTARY FIGURE S3

Expression of the marker gene (IL4I1,CYP1A1,OGDHL and ASMT) in the 
validation set. (A) The expression of marker genes in the GSE4290 
dataset. (B) The expression of marker genes in the GSE15824 dataset.
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