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Alcohol use disorder (AUD) is highly prevalent and one of the leading causes

of disability in the US and around the world. There are some molecular

biomarkers of heavy alcohol use and liver damage which can suggest AUD,

but these are lacking in sensitivity and specificity. AUD treatment involves

psychosocial interventions and medications for managing alcohol withdrawal,

assisting in abstinence and reduced drinking (naltrexone, acamprosate,

disulfiram, and some off-label medications), and treating comorbid psychiatric

conditions (e.g., depression and anxiety). It has been suggested that various

patient groups within the heterogeneous AUD population would respond

more favorably to specific treatment approaches. For example, there is some

evidence that so-called reward-drinkers respond better to naltrexone than

acamprosate. However, there are currently no objective molecular markers to

separate patients into optimal treatment groups or any markers of treatment

response. Objective molecular biomarkers could aid in AUD diagnosis

and patient stratification, which could personalize treatment and improve

outcomes through more targeted interventions. Biomarkers of treatment

response could also improve AUD management and treatment development.

Systems biology considers complex diseases and emergent behaviors as

the outcome of interactions and crosstalk between biomolecular networks.

A systems approach that uses transcriptomic (or other -omic data, e.g.,

methylome, proteome, metabolome) can capture genetic and environmental

factors associated with AUD and potentially provide sensitive, specific, and

objective biomarkers to guide patient stratification, prognosis of treatment

response or relapse, and predict optimal treatments. This Review describes

and highlights state-of-the-art research on employing transcriptomic data

and artificial intelligence (AI) methods to serve as molecular biomarkers with

the goal of improving the clinical management of AUD. Considerations about

future directions are also discussed.
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Introduction

Alcohol use disorder (AUD) is highly prevalent and one
of the leading causes of disability in the United States, second
only to ischemic heart disease (World Health Organization
[WHO], 2020). AUD is classified in the Fifth Edition of the
Diagnostic and Statistical Manual of Mental Disorders as a
syndrome of two or more of eleven behavioral symptoms with
severity based on the number of symptoms present (American
Psychiatric Association [APA], 2013): (1) Missing work or
school, (2) Drinking in hazardous situations, (3) Drinking
despite social or personal problems, (4) Craving for alcohol,
(5) Buildup of tolerance, (6) Withdrawals when trying to
quit, (7) Drinking more than intended, (8) Trying to quit
without success, (9) Increased alcohol-seeking behavior, (10)
Interference with important activities, (11) Continued use
despite health problems. While there are some molecular
biomarkers of heavy alcohol use and alcohol-related liver
damage that can suggest AUD, e.g., γ-Glutamyl transferase
(GGT), aspartate amino-transferase (AST), alanine amino-
transferase (ALT), mean corpuscular volume (MCV), and
carbohydrate-deficient transferrin (CDT) (Jastrzebska et al.,
2016), these are lacking in diagnostic accuracy (Gough et al.,
2015). Therefore, improved diagnostic biomarkers are needed.
Currently, AUD treatment involves psychosocial interventions
and medications for managing alcohol withdrawal, treating
comorbid psychiatric conditions (e.g., depression and anxiety),
and reducing drinking (naltrexone, acamprosate, disulfiram,
and some off-label medications) (Winslow et al., 2016;
Kranzler and Soyka, 2018; Ray et al., 2019; Witkiewitz
et al., 2019; Mason and Heyser, 2021). It has been suggested
that various patient groups within the heterogeneous AUD
population could respond more favorably to specific treatment
approaches (Mann et al., 2018). There have been attempts to
behaviorally identify reward drinkers and relief drinkers for
this purpose (Mann et al., 2018). However, there are currently
no biomarkers to stratify patients into optimal treatment
groups or to monitor and predict treatment response (refer to
Table 1 for biomarker definitions). Additionally, the available
pharmaceutical treatments for AUD are only moderately
effective, and not effective for all patients (Winslow et al.,
2016). To facilitate the drug development process, the ability to
objectively monitor clinically relevant changes non-invasively
are needed.

Biomarker development and personalized medicine
approaches have been identified as top priorities to expedite
translational research in AUD (Litten et al., 2015; Heilig et al.,
2016; Ray et al., 2021). To standardize the definitions and
concepts governing the use of biomarkers in research and
clinical practice, the FDA-NIH Biomarker Working Group
(2016) created the Biomarkers, EndpointS, and other Tools
(BEST) glossary which defines a biomarker as a defined
characteristic that is measured as an indicator of normal

biological processes, pathogenic processes, or responses to an
exposure or intervention, including therapeutic interventions.
There are seven categories of biomarkers (Table 1). Biomarkers
can be derived from molecular, histologic, imaging (CT,
PET, MRI, MEG), or physiologic characteristics (e.g.,
EEG). Molecular markers can include nucleic acids-based
biomarkers such as gene mutations or polymorphisms,
methylation status, and quantitative gene expression analysis
(RNA), peptides, proteins, lipids, metabolites, and other small
molecules.

Alcohol use disorder is a complex disorder with both genetic
and environmental factors that contribute in roughly equal
proportions (e.g., Verhulst et al., 2015). Research efforts to
identify the genetic variations associated with AUD, including
many large genome-wide association studies (GWAS), have
revealed that: (1) AUD is highly polygenic (with hundreds of
variants across the genome), (2) the effect sizes of individual
genetic variants are small, (3) many of the AUD-related variants
are in non-coding areas of the genome, and (4) there is a
large gap in understanding how genetic variation shapes AUD
phenotypes (Clarke et al., 2017; Walters et al., 2018; Deak et al.,
2019; Kranzler et al., 2019; Barr et al., 2020; Gupta et al.,
2020; Sanchez-Roige et al., 2020; Zhou et al., 2020; Biernacka
et al., 2021). For these reasons, it is increasingly recognized that
intermediate phenotypes (e.g., transcriptomics, epigenomics,
proteomics, and metabolomics) are important to bridge this
gap as they can incorporate both genetic and environmental
information (Figure 1; Mayfield and Harris, 2009; Liu et al.,
2014; Lin et al., 2016; Zhang and Gelernter, 2017).

Technological advancements in next generation RNA
sequencing and other omics technologies have positioned these
intermediary molecules to be especially useful biomarkers for
complex diseases like AUD. In addition to incorporating both
genetic and environmental information, the detection methods
are accurate, relatively easy to carry out and interpret, and
inexpensive (compared to other modalities, e.g., functional
magnetic resonance imaging). Furthermore, these technologies
involve the measurement of many molecules simultaneously
permitting systems-level molecular approaches and facilitating
the selection of biomarker panels. While analyzing single
targets is appealing for simplicity, expecting a single molecule
to capture the state of a complex disorder like AUD is
unrealistic. Instead, systems approaches are required for
analysis of complex disease states resulting from network
perturbations (Cho et al., 2012), and biomarker panels have been
shown to outperform single biomarkers for diagnosing brain
diseases, e.g., depression (Cuomo-Haymour et al., 2022b) and
multiple sclerosis (Cuomo-Haymour et al., 2022a), and cancer
(Muinao et al., 2019). There are several commercially available
transcriptomic-based assays for cancer, such as Oncotype
DX (Genomic Health), Mammaprint (Agendia), and Prosigna
(Veracyte), that use panels of mRNAs to assess the prognosis
and possible requirement of chemotherapy treatment in breast
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TABLE 1 Types of biomarkers.

1. Susceptibility/risk biomarker Indicates the potential for developing a disease or medical condition in an individual who does not currently have clinically apparent
disease or the medical condition.

2. Diagnostic biomarker Detect or confirm presence of a disease or condition of interest or to identify individuals with a subtype of the disease.

3. Monitoring biomarker Measured repeatedly for assessing status of a disease or medical condition or for evidence of exposure to (or effect of) a medical
product or an environmental agent.

4. Prognostic biomarker Identify likelihood of a clinical event, disease recurrence or progression in patients who have the disease or medical condition of
interest.

5. Predictive biomarker Identify individuals who are more likely than similar individuals without the biomarker to experience a favorable or unfavorable
effect from exposure to a medical product or an environmental agent.

6. Response biomarker Used to show that a biological response, potentially beneficial or harmful, has occurred in an individual who has been exposed to a
medical product or an environmental agent (includes pharmacodynamic biomarkers and surrogate endpoint biomarkers).

7. Safety biomarker Measured before or after an exposure to a medical product or an environmental agent to indicate the likelihood, presence, or extent
of toxicity as an adverse effect.

FIGURE 1

Dysregulated gene expression could lead to improper cellular
function, circuit function, and eventually contribute to abnormal
behavior observed in alcohol use disorder (AUD). Created with
BioRender.com.

cancer patients (Duffy et al., 2016; Narrandes and Xu, 2018).
One important lesson learned from these transcriptomics-
based assays for cancer is that it usually requires a panel

of biomarkers, a biomarker signature, to accurately predict
prospective outcomes and achieve clinically actionable results
(Cardoso et al., 2016; Schaafsma et al., 2021).

While systems approaches that employ transcriptomics are
in clinical use for precision medicine in cancer (Narrandes and
Xu, 2018), success has lagged for psychiatric and behavioral
disorders given funding limitations and poor access to brain
tissue, which is the primary dysfunctional organ in AUD
and other mental illnesses (Kranzler et al., 2017). However,
blood and saliva are easily obtained, routinely sampled in
clinical practice through minimally invasive means, posing little
harm to the patient. Importantly, blood- and saliva-derived
biomarkers show promise for guiding the diagnosis, prognosis,
or treatment for behavioral disorders and psychiatric illnesses
(e.g., Munkholm et al., 2015; Hicks et al., 2018; Hess et al., 2020;
Le-Niculescu et al., 2021; Wagh et al., 2021; see Supplementary
Table 1 for more references). These examples demonstrate that
molecular data in peripheral tissues can be clinically useful as
biomarkers for psychiatric and behavioral disorders.

As -omics-based technologies have emerged, more studies
have employed them to explore alcohol’s effects in peripheral
tissues. The goal of this Review is to synthesize the literature
on transcriptome-based biomarkers for AUD from accessible
tissues. Challenges and future directions for RNA biomarkers
are also discussed. The discussion of other omics-based
intermediary phenotypes in peripheral tissues for use in AUD
management is outside the scope of this Review, but interested
readers are referred to articles regarding DNA methylation
markers (Zhang H. et al., 2013; Zhang R. et al., 2013; Hagerty
et al., 2016; Clark et al., 2018, 2022; Liu et al., 2018; Philibert
et al., 2018; Wilson et al., 2019; Xu et al., 2019; Dugue et al.,
2021; Liang et al., 2021; Miller et al., 2021), proteomic markers
(Freeman et al., 2010, 2011; Waszkiewicz et al., 2014; Lai et al.,
2015; Liangpunsakul et al., 2015; Batista et al., 2019; Niu et al.,
2022) or metabolomic markers (Mittal and Dabur, 2015; Hinton
et al., 2017; Mostafa et al., 2017; Karkkainen et al., 2020; Liu et al.,
2022; Nahar et al., 2022).
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Methods

For this Review, the PubMed database was searched
for relevant literature using a Boolean search strategy
(inception through 2 July 2022): (microarray OR RNA seq
OR transcriptome) AND (plasma OR blood OR serum OR
saliva OR urine) AND (alcohol dependence OR alcohol abuse
OR alcohol use disorder) NOT cancer NOT liver.

The articles were evaluated for the following inclusion
characteristics: related to alcohol use disorder (studies on
liver disease and carcinoma were excluded), genome-wide
study (i.e., multiple biomarkers evaluated in a hypothesis-free
fashion), some metric of biomarker performance (e.g., accuracy
or area under the receiver operating characteristic curve),
English language, full text availability. The references from the
articles were also considered for inclusion in the Review. The
included manuscripts were reviewed by the author to provide
an overview of the current knowledge regarding transcriptome-
based biomarkers in AUD.

Results

Before detailing the results of the literature search, it is
necessary to provide some definitions and background on the
transcriptome and how biomarker performance is evaluated.

Evaluating biomarker performance

Some background is provided here to give the reader a basic
understanding of classifiers [a type of machine learning (ML)]
and the evaluation of classifier performance. A classification
problem can be approached using supervised and unsupervised
methods. In contrast to unsupervised clustering, supervised
classifiers learn a function from training data that consist of
pairs of input objects (e.g., gene expression signatures of one or
more genes) and desired outputs (e.g., AUD or non-AUD). The
function learned will depend on the specific ML model the user
selects. Some examples are Random Forest, Neural Network,
Logistic Regression, Naïve Bayes, Support Vector Machines
(SVMs), and others. Each has its own set of assumptions and
tradeoffs in terms of model complexity, how interpretable the
model is, and computational costs for training the model. An
overview of the available classification techniques is beyond the
scope of this Review but interested readers can refer to Libbrecht
and Noble (2015), Kuhn (2018), and Starmer (2022).

Although a description of the available ML methods is
outside the scope of this Review, we will briefly describe three
popular classification methods that are used in two of the RNA
biomarker studies discussed below (Rosato et al., 2019; Ferguson
et al., 2022): Random Forest (RF), Logistic Regression (LR),
and Partial Least Squares Discriminant Analysis (PLSDA). RF

models combine the output of multiple decision trees to reach a
single result. LR is like linear regression except that it fits a curve
instead of a line to the data and predicts a discrete variable (class
membership, e.g., AUD or non-AUD) instead of a continuous
variable (e.g., lifetime ethanol consumption). As with linear
regression, the coefficients are a measure of feature importance
in LR. PLSDA is a “supervised” version of Principal Component
Analysis (PCA) in that it reduces the dimensionality of the
dataset with respect to class labels. The goal is to maximize the
covariance between a linear combination of the genes and the
class label. Each of these three techniques provide a measure of
feature importance, so they can be used as classifiers with built-
in feature selection. They can also be used as feature selectors
to select the most important features to be fed into different
classification algorithms [as done in a study discussed in Section
“Artificial intelligence” below (Hahn et al., 2022)].

These classification techniques are a good starting
place with transcriptomic datasets because they produce
relatively interpretable models and include measures of feature
importance which could offer biological insights into AUD
based on the most differentiating features between the classes
being distinguished. However, these are only three of many
techniques, and it is difficult to determine what techniques will
produce the highest performing models for a given dataset,
a priori. It is advisable to try as many different methods as
possible beginning with the simplest. This is because complex
models do not necessarily outperform simpler models (for
example, neural networks will not necessarily distinguish
classes better than a RF), and there is a tradeoff between model
complexity and interpretability/computational expense. The
simpler the model the less computational load required to train
the model and the more interpretable the final model will be.

There are several different metrics used to estimate the
performance of a biomarker or panel of biomarkers in
classifying samples as one class or another (e.g., AUD versus
non-AUD, likely to benefit from a treatment versus not likely
to benefit). Some of the most common are accuracy, sensitivity,
specificity, and area under receiver operating characteristic
curve (AUC). Once a classification model is constructed, its
performance can be evaluated on an unseen data set (it is
important that the data used to test the model’s performance
was not involved in building the model). Given a test set
and a classifier, each decision will be one of the following:
(1) true positive (a positive example classified as positive), (2)
false negative (a positive example misclassified as negative),
(3) true negative (a negative example classified as negative),
(4) false positive (a negative example misclassified as positive).
A contingency table can be constructed from this information
as a 2 × 2 matrix where the columns are the known true
classes and the rows are the predicted classes. Several common
metrics can be calculated from this table: Accuracy (the fraction
of predictions the model assigned correctly): TP+TN

TP+TN+FP+FN ,
sensitivity or True Positive Rate (the proportion of positives
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FIGURE 2

(Top) PubMed was searched (inception through 2 July 2022) for relevant literature using a Boolean search strategy. The articles were evaluated
for the following inclusion characteristics: English language, full text availability, related to alcohol use disorder (the search results contained
many studies related to liver diseases and carcinomas which were excluded), non-targeted study with multiple biomarkers evaluated, some
metric of biomarker utility (e.g., accuracy, area under the receiver operating characteristic curve). References from articles in the search were
also considered for inclusion in the Review. The resulting information from these searches was reviewed to provide an overview of the current
knowledge regarding RNA based biomarkers in alcohol use disorder (AUD). (Bottom) Overview of the RNA biomarker studies identified in the
literature search. The seventeen studies identified were classified by the following attributes: performance metric, RNA type, tissue sampled, and
species.

correctly identified): TP
TP+FN , specificity or True Negative Rate

(the proportion of negatives correctly identified): TN
TN+FP , and

the False Positive Rate: 1− TN
TN+FP . A ROC curve plots the True

Positive Rate on the Y axis and the False Positive Rate on the X
axis so that it provides a two-dimensional depiction of classifier
performance as it depicts relative tradeoffs between the benefits
(true positives) and costs (false positives) of a classifier under
different classification thresholds (Linden, 2006). To summarize
the two-dimensional graph into a single metric, the area under
the curve (AUC) can be calculated. The higher the AUC, the
better the classifier performed. AUC of 0.5 is random, 1.0 is
perfect, and 0.7–0.8 is generally considered high performance
(Crow et al., 2019).

Transcriptome background

The transcriptome is the complete set of RNA transcripts
produced by a genome which includes both protein-coding
messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs).
The mRNA transcripts reflect which genes are actively
expressed. mRNA levels can be compared between two
conditions to identify differentially expressed genes (DEGs)

pertaining to a biological state of interest (e.g., AUD versus
non-AUD controls). The non-coding RNAs include both
housekeeping RNAs (snRNA, tRNA, rRNA, snoRNA) and
regulatory RNAs [microRNA (miRNA), small interfering
RNA (siRNA), Piwi interacting RNAs (piRNA), long non-
coding RNA (lncRNA), and circular RNA (circRNA)]. The
transcriptome is affected by both genetic variation and
environmental conditions (Figure 1). Microarray and next
generation RNA sequencing (RNA seq) technologies have made
it possible to measure the levels of all RNA molecules genome-
wide and simultaneously, providing an exceptional opportunity
for systems-level approaches.

Transcriptome studies in the alcohol research field have
revealed that alcohol use affects the expression patterns of
hundreds of mRNAs and ncRNAs in the brain tissue of humans
and animal models, e.g., see reviews and primary research
articles (Contet, 2012; Nunez and Mayfield, 2012; Mayfield,
2017; Warden and Mayfield, 2017; Ferguson et al., 2019; Brenner
et al., 2020; Drake et al., 2020). In addition to brain tissue,
some studies have explored alcohol’s effects in peripheral tissues
including blood and saliva (Beech et al., 2012, 2014; Hicks et al.,
2012; Kupfer et al., 2013; McClintick et al., 2014, 2019; Ignacio
et al., 2015; Barr et al., 2016; Sureshchandra et al., 2016, 2019;
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Ten Berg et al., 2018; Rosato et al., 2019; Lewis et al., 2021;
Liu et al., 2021; Mead et al., 2021; Ferguson et al., 2022; Gong
et al., 2022). These studies will be detailed in the following
sections.

Literature search results overview

The search resulted in 17 manuscripts that have employed
transcriptome-based methods to identify biomarkers for AUD
or alcohol exposure (Figure 2). All 17 studies were designed
to identify diagnostic biomarkers as the populations compared
were AUD versus non-AUD, ethanol drinkers versus non-
drinkers, or similar. It was evident that many of the studies
assessed the effects of alcohol on the transcriptome in peripheral
tissue without providing a metric of biomarker performance.
Of the seventeen studies, only five included a measure of
biomarker performance (Table 2). Of these five studies, four
were in humans and one in mouse. Two used serum (one of
these used serum exosomes), two used saliva, and one used
whole blood. Three measured microRNAs, one circRNAs, and
one mRNA. Overall, the ability of the peripheral transcriptional
signatures to distinguish between AUD and non-AUD (or a
similar alcohol-related phenotype, depending on the study) was
good (AUC > 0.7) (Table 2).

Twelve studies did not measure biomarker performance.
Although these studies did not meet the inclusion criteria,
they provide a basis for RNA biomarkers for AUD and so
are tabulated separately (Table 3). Five were in humans, two
included human and rat subjects, one was in mice, and four were
in monkeys. Five studies assayed whole blood, two B cell-derived
lymphoblastoid cell lines (LCLs), three PBMCs, one serum,
and one plasma extracellular vesicles. Two studies measured
microRNAs, three measured both microRNAs and mRNAs, one
circRNA, and six measured mRNAs.

mRNA

Ten studies measured mRNA levels in peripheral tissues
(Beech et al., 2012, 2014; Hicks et al., 2012; Kupfer et al., 2013;
McClintick et al., 2014, 2019; Barr et al., 2016; Sureshchandra
et al., 2016, 2019; Ferguson et al., 2022). Only one of these studies
included a measure of biomarker performance (Ferguson et al.,
2022). In that study, the authors conducted a multi-tissue
analysis of brain (hypothalamus, prefrontal cortex, and
amygdala) and blood gene expression after chronic intermittent
ethanol exposure (CIE) in C57BL/6J mice (Ferguson et al.,
2022). The ability of blood expression patterns to predict the
treatment status of the mice (ethanol exposed or air exposed
control) was assessed using three different ML classification
techniques (LR with elastic net regularization, RF, and PLSDA).
These were highly accurate (maximum AUC: 90.1%), suggesting

that gene expression profiles from peripheral blood samples
contain a biological signature of chronic ethanol exposure that
can discriminate between CIE and Air subjects. Additionally,
the within-subjects design enabled the comparison of blood
and brain transcript levels in total and in responses to CIE.
Regardless of treatment status (air or ethanol), there was a
high degree of preservation between blood and brain transcript
levels [rho range: (0.50, 0.67)]. There was small overlap
between DEGs after CIE, and considerable overlap of gene
networks perturbed after CIE related to cell-cell signaling (e.g.,
GABA and glutamate receptor signaling, Endocannabinoid
signaling), immune responses (e.g., Role of JAK1, JAK2, and
TYK2 in Interferon Signaling, B Cell Receptor Signaling,
NFKB Signaling), and protein processing/mitochondrial
functioning (e.g., Protein Ubiquitination Pathway, Oxidative
Phosphorylation, EIF2 Signaling). This direct blood and brain
comparison suggests that some ethanol-responses in the
transcriptome are shared between blood and brain.

Another study linked peripheral blood mRNA levels with
alcohol’s effects in brain (Hicks et al., 2012). This study took a
targeted approach by analyzing genes related to p53 signaling,
cell proliferation, apoptosis, and DNA repair in blood samples
from a binge drinking rat model and human AUD and control
subjects (Hicks et al., 2012). These specific genes were selected
based on the group’s prior microarray study demonstrating that
alcohol alters genes in these pathways when applied to cultured
mouse NS-5 neural stem cells (NSCs) (Hicks et al., 2010; Hicks
and Miller, 2011). Because blood leukocytes and NSCs are
both highly proliferative cell populations, they hypothesized
that similar expression changes would be observed following
ethanol exposure. Blood gene expression for genes in these
pathways were assessed after chronic ethanol in rats and in
AUD subjects (Hicks et al., 2012). The rat binge drinking
model showed significant expression changes in 190 out of
the 350 genes assayed, and 40 of these were also differentially
expressed in the mouse NSC study following ethanol exposure.
The authors evaluated 34 of these genes in human AUD and
control subjects and found that 7 of these genes (HUS1, TP35,
MYC, MUTYH, CDK4, ERCC1, MCM5) were decreased in
expression in human AUD blood compared with control. Blood
expression levels of two genes (ERCC1 and MCM5) showed a
highly significant correlation with AUD-induced decreases in
the volume of the left parietal supramarginal gyrus and various
neuropsychological measures. This study is not hypothesis-
free and does not include an evaluation of the biomarker
utility (ability to discriminate between AUD and non-AUD
individuals). However, it demonstrated an ethanol-related gene
expression signature in human AUD blood and correlated blood
gene expression levels with alcohol effects in the CNS.

Immune response is a prominent theme in peripheral
mRNA transcriptomes after alcohol exposure, which is
consistent with what is seen in brain (Mayfield et al., 2013;
Crews et al., 2017; Erickson et al., 2019). In addition to
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TABLE 2 Alcohol transcriptome biomarker studies.

References Species Sample RNA type Population Biomarker type Biomarker performance Repository
accession

Liu et al., 2021 Human Serum exosomes Circular RNA • 6 AUD subjects.
• 6 Healthy Controls.
• 5 males, 1 female per group.

Diagnostic AUC = 0.874
For
circ_0004771.
No model for
circRNA
combinations

NA

Ten Berg et al., 2018 Human Serum microRNA • 16 healthy participants (5 F, 11 M)
before and after recreational ethanol
consumption at a social event.

Diagnostic AUC > 0.8:
miR-375,
miR-6879-
3p and miR-4739
0.7 < AUC < 0.8:
148 other
microRNAs
species
No model for
miRNA
combinations

NA

Rosato et al., 2019 Human Saliva microRNA • 60 AUD patients (28 AA: 16 F,
12 M, 32 EA: 16 F, 16 M).

• 60 Control Subjects (28 AA: 16 F,
12 M, 32 EA: 16 F, 16 M).

Diagnostic RF
80/20 train/test split

AA EA NA

Top 10 miRNAs 73% 75.4%

Top 5 miRNAs 79% 72.2%

Top 3 miRNAs 76.4% 64.6%

Mead et al., 2021 Human Saliva microRNA • 22 Alcohol abusers.
• 15 non-abusing controls.

Diagnostic AUC = 0.767
38 microRNA
panel

NA

Ferguson et al., 2022 Mouse (C57BL/6J) Whole blood mRNA • 20 Chronic intermittent ethanol
+ 2BC voluntary EtOH test.

• 20 Air-exposed + 2BC voluntary
EtOH test.

• 10 males and 10 females per group.

Diagnostic F M GEO:
GSE176122

LR 0.901 (84.2%) 0.759 (66.7%)

RF 0.792 (77.8%) 0.582 (61.1%)

PLSDA 0.808 (78.9%) 0.805 (77.8%)

Values are AUC
(accuracy)

F, females; M, males; LR, logistic regression; PLSDA, partial least squares discriminant analysis; RF, random forest.
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TABLE 3 Alcohol transcriptome studies in peripheral tissues (without biomarker performance evaluation).

References Species Sample RNA type Population Repository
accession

Gong et al., 2022 Mouse (C57BL/6J) Whole blood circRNA • 3 Chronic intermittent ethanol + 2BC voluntary EtOH test.
• 3 Air-exposed + 2BC voluntary EtOH test.
• All adult males.

SRA: PRJNA666616

Kupfer et al., 2013 Human Whole blood mRNA • 6 male subjects. Time course following OJ/vodka drink: baseline = BAC1, 0.04% = BAC2,
0.08% = BAC3, 0.04% = BAC4, and 0.02% = BAC5.

• 5 male subjects. Time course following OJ (controls): T1 prior to drinking OJ, T2 at 90 min;
T3 at 2 h, 49 min; T4 at 5 h, 8 min; and T5 at 7 h, 8 min.

GEO: GSE20489

Beech et al., 2012 Human Whole blood mRNA • 10 Abstinent alcohol dependent subjects (60% male, 50% Caucasian).
• 13 heavy drinkers (77% male, 85% Caucasian).
• 17 moderate drinkers (76% male, 82% Caucasian).

NA

Beech et al., 2014 Human Whole blood mRNA • 11 heavy drinkers (73% male, 91% Caucasian).
• 11 moderate drinkers (73% male, 73% Caucasian).
• Non-smoking, social drinking subjects.
• Time course following exposure to three types of personalized imagery: neutral, stressful

(but not alcohol-related), and alcohol-related cues (baseline, immediately after, and 1 h after
stimulus presentation).

GEO: GSE59206

Hicks et al., 2012 Human; Rat (Long
Evans)

Whole blood mRNA Human
• 50 AUD subjects (18 F, 32 M).
• 15 non-drinking control subjects (9 F, 6 M).
Rat
• 10 rats (5 M, 5F) on liquid ethanol diet for three consecutive days each week, followed by 4 days

of ad lib solid rat chow pellets.
• 10 pair-fed control rats (5M, 5F).

NA

McClintick et al., 2014 Human LCLs mRNA • 21 AUD (8 F, 12 M).
• 21 drinking controls (9 F, 11 M).
• Subjects from the Collaborative Study on the Genetics of Alcoholism (COGA).
• 48 h exposure to 75 mM ethanol.

GEO: GSE52553

McClintick et al., 2019 Human LCLs mRNA • Same as McClintick et al. (2014) except 20 per group (two samples removed for technical reasons). GEO: GSE126329

Barr et al., 2016 Rhesus macaque PBMCs mRNA and
microRNA

• 4 male heavy drinkers.
• 4 male moderate drinkers.
• 4 male controls.
• 12 months of open access (22 h/day) to 4% EtOH in water solution.
• Day 7 following vaccination with MVA.

mRNA: SRA:
SRP064253
microRNA: SRA:
SRP064540

Sureshchandra et al., 2016 Rhesus macaque PBMCs mRNA and
microRNA

• 5 female heavy drinkers.
• 3 female controls.
• 12 months of open access (22 h/day) to 4% EtOH in water solution.

SRA: SRP064925

(Continued)
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TABLE 3 (Continued)

References Species Sample RNA type Population Repository
accession

Sureshchandra et al., 2019 Rhesus macaque PBMCs mRNA and
microRNA

• 4 male heavy drinkers.
• 8 male moderate drinkers.
• 3 male controls.
• 12 months of open access (22 h/day) to 4% EtOH in water solution.
• Also applied LPS to PBMCs (ex vivo).

SRA: PRJNA523863

Lewis et al., 2022 Rhesus macaque Plasma extracellular
vesicles

microRNA • 25 heavy drinkers.
• 33 moderate drinkers.
• 22 controls.
• 12 months of open access (22 h/day) to 4% EtOH in water solution.
• 17 females and 71 males across eight cohorts.

SRA: PRJNA769716

Ignacio et al., 2015 Human; Rat (Long
Evans)

Serum microRNA Human
• 20 AUD (10 F, 10 M).
• 10 non-drinking controls (5 F, 5 M).
Rat
Daily drinking
• 11 rats (6 male, 5 female) on liquid ethanol diet for 3 weeks.
• 11 (6 male, 5 female) pair-fed (PF) controls.
Intermittent access
• 8 rats (4 male, 4 female) on intermittent liquid ethanol diet for 3 days each week, followed by 4 days

of solid rat chow.
• 8 (4 male, 4 female) PF controls.

GEO: GSE71579
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the immune-related gene networks that were found to be
similarly perturbed in the blood and brain of mice after chronic
ethanol exposure as noted above (Ferguson et al., 2022),
other peripheral transcriptome datasets highlight a similar
finding in human blood. Beech et al. (2012) compared whole
blood gene expression in abstinent alcohol dependent subjects
(AUD), heavy drinkers, and moderate drinkers. 436 genes were
differentially expressed among the three groups of subjects
(FDR < 5%). 291 genes differed between AUD and moderate
drinkers, 240 differed between AUD and heavy drinkers, but
only 6 differed between heavy and moderate drinkers. Pathway
analysis identified a common set of changes involving genes
related to regulation of immune response by cytokines, T-cell
receptors, and the JAK-STAT signaling pathway. These results
suggest the transition from heavy alcohol use to dependence is
accompanied by changes in the expression of genes involved in
regulation of the immune response in whole blood.

To determine the relevance of these changes to stress and
alcohol seeking behavior, Beech et al. (2014) performed a time
course analysis of whole blood gene expression patterns in
moderate and heavy drinkers after the presentation of neutral,
stressful (but not alcohol-related), and alcohol-related cues.
Gene expression was measured at three time points: baseline,
immediately after, and 1 h after stimulus presentation. An
“alcohol taste test” followed stimulus presentation in each
condition. Subjects were allowed to drink up to 750 cc
of beer and the amount of beer consumed was recorded.
A repeated measures ANOVA revealed that 79 genes were
changed by >1.3-fold in the heavy drinking group 1 h following
exposure to the stress stimulus (FDR < 5%). No genes were
identified as changed in either group immediately after cue
presentation or following exposure to neutral or alcohol-
related imagery. Pathway analysis suggested that many of these
genes were related to translation and cell cycle regulation, and
three of these genes (RPL9, RPS3A, and RPS17) form part
of the transactivation responsive (TAR)-RNA-binding protein
(TRBP)-associated complex and are positively regulated by miR-
10a and miR-21. Expression of both miR-10a and miR-21 was
measured by qPCR and found to be upregulated following the
stress cue in heavy drinking (but not the moderate drinking)
subjects. Expression levels of both microRNAs were correlated
with amount of beer consumed in heavy drinking (but not
moderate drinking) subjects (miR-10a, R2 = 0.59, miR-21,
R2 = 0.57). Together these data that gene expression changes
can be detected in response to psychological stress within an
hour after cue presentation. Furthermore, expression of miR-
10a, miR-21, and several of their target genes is regulated by
psychological stress in heavy drinking subjects and correlated
with stress-induced drinking in a laboratory setting.

Immune-related genes were also affected in blood after
acute ethanol exposure. Kupfer et al. (2013) performed a time
course analysis of acute ethanol on blood gene expression in
healthy subjects as part of the civil aviation safety program

to define the adverse effects of ethanol on flying performance.
Subjects drank an orange juice and vodka mixture calculated to
achieve a blood alcohol concentration of 0.08% wt/vol. Blood
gene expression was profiled using microarrays at five time
points: baseline, BAC = 0.04%, BAC = 0.08%, BAC = 0.04%
during recovery, and BAC = 0.02%. Between 63 and 452 genes
were differentially expressed between at least two time points
depending on which method was used to identify DEGs. To
cluster probe sets by temporal expression pattern, K-means
clustering was performed on the 203 genes of interest (chosen
based on arbitrary significance cutoff limits). All but four of the
203 genes fell into one of seven clusters. The genes in each cluster
were enriched with genes related to similar biological processes,
including hematological and immune functions (especially
innate immunity), central metabolism, protein synthesis and
modification, NF-κB signaling, inflammation, p38, MAPK, and
small molecule metabolism. In addition to supporting immune
effects of alcohol in the periphery, this study established that
gene expression changes related to imbibed ethanol could be
detected in blood within 90 min after ethanol intake.

McClintick and colleagues studied the effects of 24-
h (McClintick et al., 2014) or 48-h (McClintick et al.,
2019) exposure to 75 mM ethanol in LCLs from AUD and
control subjects who were carefully diagnosed as part of the
Collaborative Study on the Genetics of Alcoholism (COGA)
Begleiter et al. (1995). LCLs are human cell lines derived from
B-cells infected in vitro with the Epstein–Barr virus (EBV),
a process that makes them immortalized. The group posited
that LCLs are a useful model to study the effects of ethanol
under controlled conditions and evaluate preexisting differences
between those with and without AUD because (1) neuroimmune
genes and pathways have been associated with AUD/ethanol
in the brain, (2) many of the genes expressed in brain are
also expressed in LCLs, and (3) LCLs are accessible. These
studies showed that many genes were affected by ethanol
exposure in LCLs. This included an immune response seen
strongly after 24 h of exposure, that decreased in intensity
after 48 h of exposure, potentially due to a reversal of
interferon signaling. The genes that were increased in LCLs
after ethanol exposure were enriched with genes related to pro-
inflammatory pathways (e.g., IL6, dendritic cell maturation,
TNF, and NFκB). The genes that were decreased in LCLs after
ethanol exposure were enriched with genes related to the anti-
inflammatory IL10 pathway. There was limited power to detect
differences between untreated LCLs from AUD and controls.
Combining the data between the two studies on unexposed
cells identified 465 genes (nominal p < 0.05) with differences
≥1.2-fold. Three of these were identified as either genome-
wide or nominally significant by GWAS and were affected
by ethanol with a direction opposite those for AUD versus
controls: MREG (melanoregulin), CASZ1 (castor zinc finger 1),
and ST3GAL1 (ST3 beta-galactoside alpha-2,3-sialyltransferase
1). Sixty-seven pathways were enriched in the genes that
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differed at baseline between AUD and control LCLs. One
of the most significantly enriched pathways was cholesterol
biosynthesis (lower expression of CYP51A1, HMGCR, and IDI1
in AUD LCLs relative to controls). Ingenuity Pathway Analysis
software was used to predict what transcriptional regulators
(e.g., transcription factors, microRNAs, kinases) are likely to
produce the observed gene expression differences between AUD
and control LCLs. This “upstream analysis” predicted higher
activity of TLRs, LPS, TNF, interleukins, interferons, and TP53
[consistent with Hicks et al. (2012)].

Three studies have performed a transcriptome analysis
using peripheral blood mononuclear cells (PBMCs) from rhesus
macaque monkeys after chronic voluntary ethanol intake (Barr
et al., 2016; Sureshchandra et al., 2016, 2019). Although these
studies did not test the ability of these transcriptional changes
to serve as distinguishing biomarkers (likely because of the
low sample sizes), PCA clearly distinguished the transcriptional
profiles of ethanol naïve and ethanol-consuming animals, with
less separation between moderate and heavy ethanol consumers
than between ethanol consumers and controls (Sureshchandra
et al., 2016, 2019). This suggests that ethanol consumption is
a main driver of PBMC gene expression variability and that
the PBMC transcriptome would be useful in distinguishing
ethanol-consuming and ethanol-naïve monkeys.

Consistent with the PCA results, there is a significant
overlap between gene expression changes induced by moderate
and heavy chronic alcohol drinking in macaques which is what
was observed for human moderate and heavy drinkers as well
(Beech et al., 2012). Transcriptional changes with heavy alcohol
consumption were enriched with genes involved in cell-cell
signaling, wound healing, coagulation, and immune system
processes (Barr et al., 2016; Sureshchandra et al., 2019). Blood
coagulation, immune signaling and wound healing pathways
were exclusively detected with chronic heavy drinking (and
not with moderate alcohol) (Sureshchandra et al., 2019). Barr
et al. (2016), found that chronic heavy alcohol consumption
increased the expression of genes associated with cancer and
reduced the expression of immune genes involved in response
to infection and wound healing, while chronic moderate alcohol
consumption had the opposite effect (reduced the expression
of genes involved in cancer and increased the expression of
genes involved in immune response). This mirrors observations
that AUD increases susceptibility to some viral and bacterial
infections, whereas moderate alcohol consumption decreases
the incidence of colds and improves immune responses to some
pathogens (Messaoudi et al., 2013). Collectively, these findings
indicate that the effects of ethanol on peripheral immune
transcriptional signaling could be dose dependent, although
there is strong overlap between the transcriptional signatures
of moderate and heavy alcohol consumption in both monkeys
(Barr et al., 2016; Sureshchandra et al., 2019) and humans (Beech
et al., 2012).

Alcohol’s effects on immune signaling in blood is consistent
with the fact that most mRNA in whole blood is from PBMCs,
and PBMCs are responsible for initiating immune responses.
One question is whether the differences in expression of
immune signaling genes is caused by differences in immune cell
numbers, differences in immune cell activity, or a combination
of the two. Effects of alcohol on circulating immune cell
counts have been inconsistent. The relative abundance of
neutrophils was found to increase significantly in the blood
of mice following CIE (Frank et al., 2020), but no changes in
frequencies of circulating white blood cells were found between
the ethanol consuming and control monkeys with chronic
ethanol intake despite robust changes in gene expression,
suggesting that alcohol is regulating the gene expression
within immune cells in non-human primates (Sureshchandra
et al., 2016, 2019). Another drug of abuse, amphetamine,
decreased lymphocytes and increased monocytes in Sprague–
Dawley rats, but it is unlikely that the change in cell
frequencies explain the much greater fold changes observed
in the mRNAs (e.g., almost a 6-fold increase for Cd14)
(Bowyer et al., 2015).

In addition to immune signaling pathways, alcohol affected
genes belonging to other major biological categories in
peripheral tissues consistently across studies. Other broad
categories include cell growth and death, translation,
mitochondrial dysfunction/stress responses, and cell-cell
signaling (among others). The cell signaling category contained
pathways that are most well-studied in the central nervous
system (CNS), e.g., GABA and glutamate signaling. Blood cells
express ∼80% of genes that are expressed in brain including
receptors and enzymes that are required for processing
the main excitatory and inhibitory neurotransmitters of
the CNS (glutamate and GABA, respectively), and other
neurotransmitter and neuropeptide systems (Gladkevich
et al., 2004; Liew et al., 2006; Sedaghati et al., 2010; Tylee
et al., 2013; Bhandage et al., 2015; Luykx et al., 2016; Shao
et al., 2021). In fact, cell-cell signaling was one of the most
highly affected biological categories by alcohol in some
studies (Kupfer et al., 2013; Sureshchandra et al., 2016;
Ferguson et al., 2022). Genes in the cell-cell signaling category
included various glutamatergic signaling genes (e.g., Grm5,
Homer1), GABA signaling genes (e.g., Gabbr1, Gabra2,
Gabrb1, Slc6a1), potassium channels (e.g., Kcnq2, Kcnn4),
calcium channels (Cacna1a, Cacna1b), amongst others. Further
study is required to determine whether alcohol affects these
neurotransmitter systems in the periphery in the same way
as in the CNS and whether the peripheral state of these
“neurotransmitter systems” is reflective of their state in brain
tissues. The studies discussed in this Review demonstrate
that components of these neurotransmitter systems are
detected in peripheral blood and are responsive to ethanol
consumption. These findings support the use of systems
level approaches that incorporate information derived from
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peripheral tissues into AUD research and in neuroscience more
broadly.

Non-coding RNAs

Increasing evidence suggests that non-coding RNAs
(ncRNAs) play a role in psychiatric disorders including AUD
(Mayfield, 2017). The effects of alcohol on ncRNAs have been
explored in both brain (Bohnsack et al., 2019; Drake et al., 2020)
and peripheral tissues (Ignacio et al., 2015; Momen-Heravi
et al., 2015; Barr et al., 2016; Sureshchandra et al., 2016, 2019;
Ten Berg et al., 2018; Rosato et al., 2019; Liu et al., 2021; Mead
et al., 2021; Gong et al., 2022; Lewis et al., 2022). The studies
identified in the literature search analyzed two types of ncRNAs
in peripheral tissues: microRNAs and circRNAs. There is a
paucity of information on other regulatory ncRNAs such as
lncRNAs and piRNAs in peripheral tissues, so these represent
unexplored areas of research for future study.

microRNAs
Eight studies measured microRNA levels in peripheral

tissues (Ignacio et al., 2015; Barr et al., 2016; Sureshchandra
et al., 2016, 2019; Ten Berg et al., 2018; Rosato et al., 2019;
Mead et al., 2021; Lewis et al., 2022; Tables 2, 3). MicroRNAs
are short RNAs (about 20–24 nucleotides long) that regulate
mRNA expression at the post-transcriptional level by repressing
the translation or cleaving the transcript (Lagos-Quintana
et al., 2001; Bartel, 2004). MicroRNAs are attractive AUD
biomarker candidates for several reasons: (1) they can be
actively or passively excreted into fluids including saliva, tears,
CSF, and blood (usually circulating in extracellular vesicles
such as exosomes), (2) they can retain organ specificity (for
certain microRNA species), (3) miRNAs in exosomes have
been shown to cross the BBB and facilitate peripheral-central
crosstalk, (4) they are relatively stable in blood, saliva, and urine
(reviewed in Mitchell et al., 2008; Cortez et al., 2011; Hayes
et al., 2014; Schwarzenbach et al., 2014; Glinge et al., 2017;
van den Berg et al., 2020).

Three studies assessed the diagnostic discrimination of
peripheral microRNA profiles for recreational alcohol drinking
(Ten Berg et al., 2018), AUD (Rosato et al., 2019), and alcohol
abuse (Mead et al., 2021; Table 2). The first study demonstrated
that circulating microRNAs are dynamic and highly predictive
of drinking even a modest amount of alcohol (Ten Berg et al.,
2018). This study determined the effect of attending a social
event and consuming alcohol on circulating microRNAs in 16
healthy adults by applying small RNA sequencing to serum
samples collected up to 48 h before and 3–5 h after recreational
exposure to alcohol. The median ethanol concentration was
89 mg/dL, which is only slightly above the alcohol limit for
driving (80 mg/dL). Around a fifth of the microRNAs detected
in human serum (265/1370 microRNAs) increased by more

than 2-fold after attending a social event with recreational
alcohol ingestion. There was only 1 microRNA (miR-185-5p)
that was decreased following alcohol exposure (FDR < 5%,
fold decrease 2 or more). By contrast, conventional hematology
and biochemistry parameters (ALT, GGT, full blood count,
creatinine, bilirubin, urea and electrolytes, alkaline phosphatase)
were unaffected. Three microRNA species separated post-
alcohol exposure from pre-exposure with AUC values > 0.8
(miR-375, miR-6879-3p, and miR-4739), and 148 microRNA
species had AUC values between 0.7 and 0.8. The study did not
evaluate the combination of multiple microRNAs on predictive
performance.

Rosato et al. (2019) profiled miRNA transcriptomes in the
saliva of 120 AUD and healthy control subjects (56 African–
American AAs and 64 European–American EAs). The group
analyzed expression differences in 399 microRNAs that were
very highly expressed (>100 CPM) in at least half the samples
(although 2,588 miRNAs were detected in the saliva). Seven
microRNAs were differentially expressed in African–Americans
(miR-451a, miR-10a-5p, miR-100-5p, miR-3613-5p, miR-7704,
miR-1290, and miR-4488) and five in European–Americans
(miR-126-3p, miR-10a-5p, miR-1290, miR-4488, and miR-
1273h-5p) (p < 0.05 and fold-change > 2). Three miRNAs
(miR-4488, miR-1290, and miR-10a-5p) showed similar fold
changes and the same direction of expression changes in both
AA and EA AUD subjects. miR-10a-5p is especially noteworthy
as it has also been independently validated as being upregulated
in the saliva of an alcohol abusing population (Mead et al.,
2021) and in the blood of heavy drinkers (but not moderate
drinkers) after acute psychological stress and is correlated with
stress-induced drinking in a laboratory setting as described in
the Section “mRNA” above (Beech et al., 2014). Enrichment
analysis was conducted on the mRNAs potentially targeted
by these three differentially expressed miRNAs. The targets
of miR-10a-5p were related to DNA binding, miR-1290 with
alternative splicing, and miR-4488 with calcium-dependent cell–
cell adhesion. The RF ML algorithm was used to determine
whether the 399 highly expressed miRNAs could predict AUD
status. When the top five miRNAs (ranked by Gini index of
their importance to AUD prediction) were included in the RF
model, the AUD prediction accuracy was 79.1 and 72.2% in
AAs and EAs, respectively (Table 2). Inclusion of the top ten
miRNAs (ranked by Gini index or their importance to AUD
prediction) in the RF prediction analyses decreased the AUD
prediction accuracy to 73.6% in AAs but slightly increased it
to 75.4% in EAs. If the top three miRNAs (ranked by Gini
index or their importance to AUD prediction) were included
in RF prediction analyses, the AUD prediction accuracy was
decreased in AAs (76.4%) and to a greater extent in EAs
(64.6%). If the differentially expressed miRNAs (p < 0.05
and logFC > 1) were included in the prediction analysis, the
prediction accuracy was the lowest (63.6% in AAs and 56.2% in
EAs), suggesting that feature selection using ML could be more
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powerful in identifying discriminative biomarkers for predicting
AUD status than using differential expression, although the top
miRNAs according to the Gini importance measure were also
differentially expressed in AUD subjects (e.g., miR-4488).

In addition to AUD, there is also evidence that microRNA
profiles from saliva might be useful in distinguishing heavy
alcohol drinkers from sporadic alcohol users (Mead et al.,
2021). In this study, saliva was collected from 37 patients at
least 48 h after being admitted to a primary healthcare center
for an underlying medical condition requiring hospitalization
(e.g., pneumonia, acute kidney injury, chronic kidney disease
secondary to hypertension, secondary diabetes mellitus, chest
pain, ischemic heart disease, congestive heart failure, or cardiac
arrhythmia). MicroRNA was profiled from saliva samples using
microRNA microarrays (v3.0, Applied Biosystems, Foster City,
CA, United States). Comparison of microRNA expression levels
between alcohol abusers and controls revealed 38 significantly
(p < 0.05) changed microRNAs: 15 downregulated microRNAs
(miR-132-3p, miR-136-5p, miR-146a-5p, miR-146b-3p, miR-
194-5p, miR-20b-5p, miR-26a-5p, miR-26b-5p, miR-422a, miR-
487a, miR-590-5p, miR-618-3p, miR-628-5p, miR-652-3p, and
miR-9-5p), 10 upregulated microRNAs (miR-184, miR-20a-5p,
miR-223-5p, miR-27a-3p, miR-30b-5p, miR-34a-5p, miR-449a,
miR-483-5p, miR-500-3p, and miR-744-5p), and 13 de novo
microRNAs (let-7e-5p, miR-1, miR-10a-5p, miR-10-3p, miR-
1249, miR-182-5p, miR-183-5p, miR-18b-5p, miR-196b-5p,
miR-221-5p, miR-490-3p, miR-548-5p, and miR-450b-5p). The
top pathways enriched in the potential targets of the microRNAs
differentially expressed in patients chronically abusing alcohol
were: Adherens junction [consistent with what was seen in
Rosato et al. (2019)], Endocytosis, Wnt signaling pathway,
MAPK signaling pathway, and ErbB signaling pathway. A plot of
the first three principal components showed that most of alcohol
abusing patients and controls separated into different clusters
with minimal overlap based on saliva miRNA expression
profiles. Consistently, the panel of 38 differentially expressed
microRNAs was able to distinguish between the alcohol abusing
patients and controls very well with an AUC of 0.7668. However,
there was not enough information provided in the manuscript
to determine whether this result suffers from data leakage,
a common pitfall in predictive modeling (Luo et al., 2016).
This occurs when information used to select features (i.e.,
microRNAs) for the classifier is also used to test the classifier.
In other words, if the top differentially expressed microRNAs
were selected using the entire dataset, and then the entire dataset
was used to test how well the DEGs can distinguish between
the groups, the prediction accuracy will be inflated (likely much
higher than it would perform in an independent dataset or if
cross validation was used). Another important finding from this
study was that the two main cell types in saliva are squamous
epithelial buccal mucosa cells and leukocytes as indicated by
morphological and flow cytometry data. The fact that leukocytes
can infiltrate the oral cavity may be especially pertinent to AUD

in which peripheral and central immune processes are greatly
affected as already noted.

Five additional studies measured ethanol’s effects on
microRNA expression in accessible tissues but did not include
any metric of biomarker utility (Ignacio et al., 2015; Barr
et al., 2016; Sureshchandra et al., 2016, 2019; Lewis et al.,
2022). However, one of these studies demonstrated a correlation
between serum miRNAs and alcohol-related structural and
functional CNS damage in human subjects (Ignacio et al., 2015).
This study identified 13 upregulated microRNAs (mir-96, mir-
320b-1, mir-1976, mir-24-1, mir-30a, miR-96-5p, mir-127, mir-
136, mir-320b-2, mir-421, mir-671, mir-3615, mir-3676) and 3
downregulated microRNAs (mir-92b, miR-301a-3p, miR-660-
5p) in AUD serum samples compared with control. All but
four of these differentially expressed microRNAs were correlated
with either GGT levels, drinking amounts, or neuroimaging
variables that were significantly different in AUD subjects.
The finding that most of the microRNAs were upregulated
is consistent with alcohol’s effects on microRNAs reported
in serum (Ten Berg et al., 2018) and also in post-mortem
prefrontal cortex samples from AUD subjects (Lewohl et al.,
2011), but not saliva where there were similar numbers of
up- and downregulated microRNAs (Rosato et al., 2019; Mead
et al., 2021) or monkey PBMCs where there were either more
downregulated microRNAs (Sureshchandra et al., 2016, 2019;
Lewis et al., 2022) or roughly equal numbers of up- and
downregulated microRNAs (Barr et al., 2016; Lewis et al., 2022).
This study also analyzed serum miRNA levels in a rat drinking
model and found that 3 of the top 5 molecular functions
represented in the altered miRNAs overlapped across species:
(1) cellular development, (2) cell growth and proliferation, and
(3) cell death and survival. These results provide evidence that
alcohol induces global miRNA expression changes in serum that
can reflect CNS alcohol-related changes.

The macaque studies discussed in the Section “mRNA”
above also analyzed microRNA profiles in the same PBMC
samples (Barr et al., 2016; Sureshchandra et al., 2016, 2019).
Barr et al. (2016) compared the miRNA expression profiles of
the PBMCs isolated from male controls, moderate, and heavy
drinkers on day 7 after a Modified Vaccinia Ankara vaccination.
The largest differences in miRNA expression were observed
between controls and heavy drinkers, and only a few miRNAs
were differentially expressed between controls and moderate
drinkers, which mirrored the mRNA (Barr et al., 2016). Of
the 79 differentially expressed miRNAs between controls and
heavy drinkers, 37 were upregulated and 42 were downregulated
(at a fold change ≥ 2 and a FDR < 5%) (Barr et al., 2016).
MicroRNAs usually repress transcription levels of their target
mRNAs, so if a microRNA is downregulated then the expression
of its target mRNAs would be expected to increase, and if
a microRNA is upregulated then the expression of its target
mRNAs would be expected to decrease. The analysis of PBMC
mRNA levels from the same subjects revealed that ∼40% of the
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differentially expressed microRNAs had mRNA targets changed
in the opposite direction (Barr et al., 2016).

Another study profiled microRNAs in PBMCs from male
heavy drinking, moderate drinking, and control monkeys
(without any vaccination in contrast to the Barr et al.
study). Chronic heavy alcohol drinking resulted in the
downregulation of nine microRNAs (miR-23a, miR-204, miR-
211, miR-668, miR-1226, miR-154, miR-9-1, miR-9-2, miR-
9-3) and upregulation of 2 microRNAs (miR-27b, miR-203)
(Sureshchandra et al., 2019). About 10% of the mRNAs
that were differentially expressed with heavy alcohol drinking
were validated targets of these miRNAs. These mRNAs play
roles in regulation of body fluids, coagulation, and wound
healing (Sureshchandra et al., 2019). Moderate drinking in
male monkeys was associated with 24 differentially expressed
miRNAs, which again were also mostly downregulated with
drinking (19 of 24). Five were also downregulated with heavy
drinking (miR-9-1, miR-9-2, miR-9-3, miR-668, miR-154) and
14 were only downregulated with moderate drinking (miR-
150, miR-31, miR-221, miR-92b, miR-377, miR-181-a1, miR-
181-a2, miR-380, miR-339, miR-484, miR-494, miR-542, miR-
184, miR-497). Approximately 20% of the mRNAs affected
by moderate drinking are validated gene targets of these
microRNAs. Moderate drinking upregulated 3 microRNAs
which were all different than those upregulated with heavy
drinking (miR-196, miR-143, and miR-627). The fact that more
microRNAs were altered with moderate drinking than heavy
drinking is in contrast to other studies at both the mRNA and
microRNA levels which found that heavy drinking had a greater
effect on peripheral transcriptomes than moderate drinking.
In female macaques, chronic heavy drinking resulted in a
downregulation of 4 microRNAs in PBMCs: miR-23a (which
was also downregulated in male PBMCs after heavy drinking),
miR-27a, miR-24, miR-663 (Sureshchandra et al., 2016). Three
of miR-27a target mRNAs were upregulated (PAQR9, NR2F6,
and GATA2), two of miR-24 target mRNAs were upregulated
(NEFM, BNIP3L), and two of miR-23a target mRNAs were
upregulated (CA2, PTP4A2). This study did not use a small
RNA library preparation so there was limited ability to detect
microRNAs.

The final macaque microRNA study to be discussed was
the largest cohort size (N = 80; 17 females and 71 males
across eight cohorts) and analyzed plasma extracellular vesicles
instead of PBMCs (Lewis et al., 2022). These samples were
from the same animals used for two PBMC studies discussed
in the previous paragraph (Sureshchandra et al., 2016, 2019). In
female heavy drinking monkeys, differential expression analysis
identified 8 upregulated microRNAs (mir-544, mir-3064, mir-
208b, mir-371, mir-154, mir-124a, mir-4800, mir-889, mir-
141) and 21 downregulated microRNAs (mir-147b, mir-1224,
mir-650c, mir-650a, mir-548AN, mir-216a, mir-526A1, mir-
6125, mir-212, mir-371, mir-890, mir-548F1, mir-488, mir-625,

mir-523, mir-219, mir-517B, mir-1179, mir-521, mir-203, mir-
205). For males there were 9 upregulated microRNAs (mir-
544, mir-3064, mir-208b, mir-371, mir-154, mir-124a, mir-4800,
mir-889, mir-141) and 6 downregulated microRNAs (mir-577,
mir-580, mir-1224, mir-935, mir-6790, mir-1469). Only one
upregulated (miR-154) and one downregulated (miR-1224)
microRNAs were common between males and females. The
predicted mRNA targets of the upregulated microRNAs were
enriched with gene ontology terms associated with blood vessel
development (e.g., miR-124a, 130b, 141 and 34c), response
to reactive oxygen species (e.g., miR-124a, 433, 493, and
34c), myeloid leukocyte activation (e.g., miR-124a, 130b, 154,
208b, 544). The predicted mRNA targets of the downregulated
microRNAs were enriched with gene ontology terms associated
with signaling (e.g., “regulation of protein kinase activity”),
cell cycle (e.g., “mitotic DNA damage checkpoint”), and
tissue/epithelial homeostasis (e.g., “tissue homeostasis” and
“response to hypoxia”). These data show that chronic ethanol
consumption alters the expression of several extracellular vesicle
miRNAs that can potentially serve as biomarkers of chronic
ethanol consumption.

Circular RNAs
Circular RNAs (circRNAs) are a class of RNA species that

lack 5′ N7-methylguanosine (m7G) caps and 3′ polyadenylated
tails, and instead are single-stranded RNAs covalently closed in
a circular formation. CircRNAs are usually produced through
a process called pre-mRNA “back-splicing” of exons, introns,
and intergenic regions (Liu and Chen, 2022). circRNAs play
roles in multiple biological processes, such as modulation
of transcription and translation (Liu and Chen, 2022), brain
development and function (Veno et al., 2015; Piwecka et al.,
2017), cell cycle control (Zheng et al., 2016), cancer onset and
progression (Guarnerio et al., 2016), ribosome biogenesis (Holdt
et al., 2016), and endothelial and vascular function (Shan et al.,
2017). Like microRNAs, circRNAs are relatively stable with half-
lives ranging from 18.8 to 23.7 h (compared with 4.0–7.4 h for
their cognate linear RNAs) (Enuka et al., 2016) and are found
both inside their cells of origin as well as in extracellular fluids,
including blood and plasma, extracellular vesicles, saliva, and
urine, which supports their use as biomarkers (reviewed in Liu
and Chen, 2022).

Circular RNAs were sequenced in AUD and control
samples from circulating serum exosomes (Liu et al., 2021).
Differential expression analysis identified 254 differentially
expressed circRNAs. Of these, 149 were upregulated and 105
were downregulated (P < 0.05). CircRNAs can act as microRNA
sponges (Hansen et al., 2013). To determine potential effects
on microRNAs, the authors analyzed the predicted target
miRNAs of the differentially expressed circRNAs. The analysis
showed that miR-4739, miR-1248-5p, miR-3685, and miR-6751-
5p were regulated by a greater number of circRNAs than other
miRNAs. miR-4739 was predicted to be targeted by 15 of
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the 254 differentially expressed circRNAs. This microRNA was
also highly upregulated (3.47-fold) after recreational alcohol
consumption in healthy young people (Ten Berg et al., 2018).
In fact, it was one of the three miRNAs that could predict
alcohol exposure with an AUC > 0.80. The expression of one
of the top differentially expressed circRNAs, circ_0004771, was
validated in an independent cohort of AUD patients’ serum
exosomes by qRT-PCR and confirmed to be upregulated in AUD
samples. Expression levels of exosomal hsa_circ_0004771 were
able to distinguish between AUD and non-AUD samples with
an AUC of 0.874. Moreover, the expression level of exosomal
hsa_circ_0004771 was found to be highly correlated with AUD
severity as measured by the Severity of Alcohol Dependence
Questionnaire (SADQ) SADQ and the Alcohol Dependence
Scale (ADS) (r = 0.8328 and 0.8411, respectively).

To explore whether circRNA could be a biomarker
for chronic ethanol exposure, Gong et al. (2022) assayed
circRNA in whole brain and blood samples from adult male
C57BL/6J mice that had been exposed to either chronic
intermittent ethanol (CIE) or air. A total of 399 circRNAs
were differentially expressed in CIE mice relative to controls.
Of these, 150 circRNAs were significantly upregulated and
249 were downregulated in brain tissue from the CIE groups
compared with the control brain tissue. The most enriched
KEGG pathways of the parental genes were GABAergic synapse,
retrograde endocannabinoid (eCB) signaling, and morphine
addiction. Among the DE circRNAs, qRT-PCR confirmed 14
upregulated and 13 downregulated circRNAs in brain. The
authors measured these 27 circRNAs in blood samples from the
same mice and found that 9 circRNAs were also upregulated
in blood, and 10 circRNAs were also downregulated in blood
samples. The fold changes were much higher in blood than
brain (2.5–14-fold upregulated in brain versus 10–150-fold
in blood). This study suggests that chronic ethanol exposure
can affect circRNA expression in whole blood in a similar
direction as brain, and that ethanol’s effects on these circRNAs
are even stronger (i.e., of a greater magnitude) in blood than
brain.

Considerations, limitations, and
future directions

Biomarker research is bound by
current nosology which is imperfect

The search for objective diagnostic molecular biomarkers
is based on identifying the molecular differences between
two groups. However, the groups are defined by “biased”
diagnostic criteria (e.g., DSM, ICD, AUDIT, other self-reported
assessments). This circular process is a major limitation
for this research area. Illustrating this point, an epigenome
wide association study revealed DNA methylation marks

were associated with PETH (an objective measurement of
alcohol consumption) but not to AUDIT-C scores (a self-
reported measurement of alcohol consumption), despite
there being a positive correlation between PETH and
AUDIT-C (Liang et al., 2021). Frameworks incorporating
dimensional approaches have been recommended to address
this limitation by reconceptualizing the nosology of AUD
on the basis of process and etiology, e.g., Addictions
Neuroclinical Assessment (ANA) and Alcohol Addiction
RDoC (AARDoC) (Litten et al., 2015; Kwako et al., 2016,
2018). This research field will progress in an iterative
process between biomarker development, trials of novel
interventions, mechanistic studies, and ongoing nosological
refinement (Ewen et al., 2021).

Biomarkers are not necessarily causal

Blood biomarkers may represent a combination of AUD-
specific factors (factors that are mechanistically related to
AUD) and non-specific factors (factors that are associated with
AUD, but not mechanistically relevant). First and foremost, the
biomarker must be sensitive and specific at its task whether
that be diagnosis, prognosis, treatment response, or treatment
prioritization. However, an ideal biomarker would not only be a
“marker” but would also reflect the underlying pathophysiology
(Heilig et al., 2016).

Two studies discussed in this review showed similar changes
in brain and blood for some RNA expression levels with alcohol
exposure (Ferguson et al., 2022; Gong et al., 2022). Other studies
linked peripheral RNA levels with alcohol-related structural and
functional CNS damage, various neuropsychological measures,
and AUD severity (Hicks et al., 2012; Ignacio et al., 2015; Liu
et al., 2021). This is consistent with other studies, for example,
that have found that 85-90% of the most predictive molecular
pathways identified in the brain are also top predictors in
the blood for neurodegeneration (Iturria-Medina et al., 2020).
Of course, blood and brain molecular measurements are not
always concordant. Altered plasma levels of some miRNAs
did not reflect the levels found in cerebellar tissue (Rossetto
et al., 2019) or prefrontal cortical tissue (Xin et al., 2018) with
ethanol exposure in rats, but these studies only looked at a small
number of microRNAs and did not conduct a global survey
of microRNA expression. It is possible that some microRNAs
would have reflected brain levels. Co-expression networks were
more conserved between brain and blood than individual
genes for chronic ethanol exposure in mice (Ferguson et al.,
2022). This is also supported by other studies that have shown
moderate correlation between expression profiles in blood and
brain for individual genes (Liew et al., 2006; Tylee et al., 2013),
but preservation of ∼90% of gene networks between blood and
prefrontal cortex tissue (Hess et al., 2016). This further supports
the use of gene signatures rather than individual genes.
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Confounding role of similar or
comorbid conditions and medications

The studies in this Review compare an alcohol dependent
population to healthy controls with exclusion criteria often
including other psychiatric illnesses or diseases. Some of
the pathways identified in these studies that are disrupted
in peripheral tissue with AUD have been linked with
numerous other diseases (e.g., inflammatory/immune
responses, extracellular matrix, cell cycle, mitochondrial
dysfunction) (Crow et al., 2019). Moreover, some genes
are likely to be differentially expressed in a wide range of
conditions (Crow et al., 2019). Combined with the high rates
of comorbidity and shared genetic mechanisms between
AUD and some of these other disorders (Evangelou et al.,
2019), identifying AUD-specific biomarkers represents a
significant challenge. One investigation found that using single
plasma analytes to identify individuals with Alzheimer’s
disease could lead to the misdiagnosis of individuals
with certain comorbidities (e.g., chronic kidney disease)
(Mielke et al., 2022). Using multiple RNA biomarkers (a
panel/signature) will be important for specificity, and high
performance will likely require incorporating additional
alcohol-related markers from other levels of analysis
(e.g., protein/metabolic, epigenetic, clinical/demographic)
with the RNA panel. Furthermore, future studies should
incorporate other groups to determine the biomarkers’
ability to discriminate between similar and comorbid
disorders.

Another confound for AUD biomarker research is the use
of medications. The transcriptome can respond to medications,
and if individuals with AUD are taking medications to treat
their AUD (or other conditions) this could confound the
RNA biomarker search. For example, some studies have found
very little disorder-related genes independent of treatment
for schizophrenia and bipolar disorder (Krebs et al., 2020;
Sershen et al., 2021). It is important to understand what factors
influence the levels of peripheral biomarkers for clinical use,
and to establish appropriate reference ranges. For example,
circulating miR-122 levels are increased about 2-fold with
modest alcohol consumption in healthy individuals (McCrae
et al., 2016; Ten Berg et al., 2018). Expression of miR122 is
used as a biomarker of liver injury, which has a median fold
increase around 100, so in this case alcohol consumption would
not be a confounding factor, but it illustrates the point that
reference ranges must be considered to have confidence that
environmental factors are not going to produce false positive or
negative results.

Other types of biomarkers besides
diagnostic biomarkers, and the need
for longitudinal studies

All the studies discussed in this Review used RNA profiles
from peripheral tissues as diagnostic biomarkers to detect
ethanol exposure or AUD status. However, in addition to
providing data-driven information to guide AUD diagnosis,
peripheral RNA profiles could also be utilized as other types
of biomarkers listed in Table 1. For example, RNA profiles
could be used to identify individuals at high risk for developing
AUD (risk biomarker), stratify the heterogeneous AUD patient
population into subtypes (this would also be considered a
diagnostic biomarker), select the optimal treatment (predictive
biomarker) and monitor treatment efficacy (monitoring
biomarker; response biomarker), or predict those most
likely to recover from AUD or track AUD status (prognostic
biomarker).

Some of these biomarkers are related to one another. For
example, stratifying patients into subgroups could facilitate
optimal treatment selection. There is some evidence that
naltrexone is more effective for reward drinkers (Mann
et al., 2018) and that acamprosate is more effective for relief
drinkers (Roos et al., 2017). There have been some efforts to
develop a questionnaire to identify reward, relief, and habit
drinkers but there was group heterogeneity and the relief and
habit groups were not as reliable upon retest as the reward
group (Grodin et al., 2019). Future studies that combine the
questionnaires with whole-genome unbiased molecular profiles
could begin to narrow down a panel of biomarkers that
might help to better distinguish these classes. If a molecular
signature could be defined for reward and relief drinkers,
this could help prioritize naltrexone or acamprosate for their
treatment.

Developing these RNA biomarkers will require longitudinal
studies, where samples are taken repeatedly before the
onset of AUD and throughout AUD progression. Inevitably
some participants in these studies would develop AUD
(and some not), and some of those who develop an AUD
will recover either with intervention or spontaneously (and
some not). Data from these studies will be critical in
developing other types of RNA biomarkers for AUD, which
could arguably represent a greater healthcare need than
diagnostic biomarkers because there are existing tools to
diagnose AUD (albeit with limitations), but there are currently
no ways to identify “at-risk” individuals, stratify the AUD
patient population, select optimal treatments, or monitor
treatment response.
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CMap approaches

Gene expression data can be used to identify
pharmacological treatments for AUD through a process
termed connectivity mapping (Lamb et al., 2006; Subramanian
et al., 2017; Ferguson et al., 2018). The idea behind this
approach is that pharmacological compounds that have
opposing effects on gene expression as observed with AUD
would be able to treat AUD. There has been some success
in animal models of AUD and for other brain diseases
using brain gene expression (Ferguson et al., 2017, 2018).
It remains to be seen whether blood signatures can be used
as an accessible transcriptome for connectivity mapping
approaches for AUD, and future work will need to carefully
evaluate this possibility. If this is the case, then connectivity
mapping approaches could be dynamically applied for AUD.
For example, it is plausible that treatment for AUD will change
throughout the course of the disorder; that the treatments
during acute withdrawal will be different than treatments
during protracted withdrawal, and that treatments will not be
necessary at all at some point. Blood and saliva can be sampled
repeatedly which affords the opportunity to monitor AUD
progress and treatment efficacy, and dynamically select optimal
treatments.

Single cell approaches

The studies in this Review used bulk sequencing
techniques which are low cost, scalable, and can identify
differential expression and co-expression between patients and
controls. However, a key source of unwanted variability
is cellular heterogeneity and unwanted variability can
decrease statistical power to detect meaningful differences
between groups of interest. Imagine a scenario in which
ethanol strongly upregulates an RNA in one cell type, and
strongly downregulates the same RNA in another cell type.
In bulk sequencing, the cells are lysed and the RNAs in
each cell are combined. This effectively averages ethanol’s
effects across cell types, and RNAs that are affected strongly
by ethanol (but in different directions depending on cell
type) would be overlooked. Single-cell techniques use next-
generation sequencing to analyze the genetic content of
individual cells, providing valuable insights into ethanol’s
effects on the functional characteristics of each cell type.
Two challenges with single cell data are that it is difficult
to generate cell type specific co-expression networks and
cost is high which diminishes the clinical utility of single
cell approaches. However, single cell data will be critical
in understanding the mechanistic relevance of peripheral
biomarkers to AUD which is a key part of the process in AUD
biomarker development.

Artificial intelligence

Artificial intelligence (AI) tools, like the ML classifiers
described in the Section “Evaluating biomarker performance,”
are increasingly being explored in medical and healthcare
research, and there are currently 79 AI/ML based, FDA
approved medical devices and algorithms1 (Benjamens et al.,
2020). The word tool is used deliberately here to emphasize
the point that AI cannot replace the judgment of a physician.
Rather AI tools can provide probabilities and likelihoods that
are part of a holistic picture that the physician can consider
when making a clinical decision about a patient. This has
been shown to be the case for ML tools developed to detect
prostate cancer from MRI scans, which did not persuade
physicians to change their diagnostic decision in the rare
instance that an incorrect probability was assigned by the
algorithm. But, overall the AI tool improved physicians’
diagnostic accuracy and reduced physicians’ variability
(Sun et al., 2022).

Two studies in this Review used ML classifiers to predict
AUD or chronic ethanol exposure from transcriptomic data
(Rosato et al., 2019; Ferguson et al., 2022). Other types of data
(e.g., EEG measures, SNPs, MRI data) have also been used to
train ML classifiers to predict alcohol-related phenotypes. One
study used structural MRI data collected from multiple sites as
input into LR models to predict AUD status and achieved an
AUC of 0.768 (Hahn et al., 2022). An important consideration in
ML that is illustrated by this study is that of group imbalances.
The data across separate sites were highly imbalanced (i.e., many
sites contained only participants with AUD or only controls),
so the ML classifiers appeared to distinguish participants with
AUD but were actually learning site-related effects like scanner
and demographic differences. These effects were mitigated, and
the models made more generalizable, by the feature selection
strategy the authors used (discussed below). Another study
used EEG measures and alcohol-related SNPs to train SVM ML
models to predict those at-risk for developing AUD (Kinreich
et al., 2021). The group first used regularized LR to select
features to use in the SVM models, and found that the combined
EEG and SNP features model outperformed models based on
only EEG features or only SNP features with an AUC of
0.84 for European American subjects and 0.90 for African
American subjects (Kinreich et al., 2021). Another study used
SVM models to predict alcohol exposure in rats based on MRI
data. The authors took a similar two-step approach and used
a RF algorithm to select the features with which to train the
SVM models and found that 1 month of ethanol exposure
was enough to imprint a highly specific signature of alcohol
consumption so that the models could distinguish between
ethanol-naïve and ethanol exposed samples with near perfect
accuracy (Cosa et al., 2017). The study also showed that the

1 https://medicalfuturist.com/fda-approved-ai-based-algorithms/
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models could predict which samples had been treated with
naltrexone using MRI features with greater than 84% accuracy.
LR models have also been used to predict acamprosate response
from metabolomic data (Hinton et al., 2017). The models
predicted acamprosate treatment response with a mean AUC
of 0.647. The mean sensitivity in the test was 0.83 and the
mean specificity in the test was 0.31, suggesting that the model
performed well at predicting responders but not non-responders
(i.e., many non-responders were predicted to respond) (Hinton
et al., 2017). Taken together, these studies demonstrate that the
AUD research field has begun to apply ML methods that can
guide diagnosis and treatment response, and additionally might
help in identifying biologically meaningful features of AUD.
However, in addition to class imbalances, there are several other
considerations when using ML approaches with transcriptomic
and other omics datasets.

One of the biggest challenges when using ML approaches
with gene expression data is known as the “curse of
dimensionality,” which means that the number of observations
is greater than the number of samples. Gene expression
data sets (and other -omics data sets) are high dimensional,
meaning that there are many observations (tens of thousands
of gene expression levels are measured). One way to solve
the curse of dimensionality is to increase the sample size.
There is scarcity of research in training set size determination
methodologies for ML, but it will depend on the complexity of
the algorithm and the specific use case. The studies discussed
in the above paragraph range in sample size from 20 to
2,034. When large sample sizes are not readily available,
another solution is to reduce the number of features (i.e.,
genes) using feature selection techniques. This is advisable as
many of the features in high dimensional datasets will be
either irrelevant or redundant which will reduce the power
of the ML algorithm to identify meaningful patterns (Plant
and Barton, 2021). Some ML models have “built-in” feature
selection, and we discussed these examples above. In regularized
LR models some of the coefficients will go to zero so these
features will be removed from the model. For the RF algorithm,
some of the features will be assigned importance scores of
zero and will not be included in the model. The cross-site
MRI study discussed above used a genetic algorithm (GA)
based feature selection search which repeatedly trained and
evaluated a regularized LR classifier on random subsets of
brain features (Hahn et al., 2022). In this way the features
selected were derived from thousands of models, providing
the chance for highly correlated features to achieve similar
importance scores. Care must be taken to not build the
models using features that were pre-selected from the complete
dataset (Plant and Barton, 2021). Otherwise, this could result
in “data leakage” and overestimate the accuracy of the model
[discussed for the study by Mead et al. (2021) in the Section
“microRNA” above].

In summary, ML models learn a function from training
data that consist of pairs of input objects (e.g., gene
expression signatures) and assigned labels (e.g., AUD or
non-AUD) and the model’s performance is then evaluated
on an independent testing dataset. The training data set
is important both in size and nature. The more examples
in a training set and the more representative it is of the
patient population, the better the model will be in terms
of accuracy and generalizability. To increase the ability of
ML algorithms to build meaningful (and useful) models,
feature selection should be performed in gene expression
datasets due to the redundancy and irrelevance of many of
the features in these high dimensional datasets. It is highly
important that the testing dataset be independent and not
involved in the feature selection or model training to get
accurate estimates of model performance. Following these
guidelines will enable researchers to build on the progress
made applying state-of-the-art ML methods to precision
medicine in AUD.

Summary

This Review tabulated and summarized the studies on
peripheral RNA biomarkers for AUD. Signatures of chronic
and acute alcohol use could be detected in the peripheral
transcriptome for both coding and non-coding RNAs, and
some of these gene expression responses were detected
within relatively short time periods after alcohol or stress
cue exposures (60–90 min). Most of the studies did not
include a measure of biomarker performance which limits
the ability to determine the usefulness of RNAs to serve
as biomarkers for AUD. Based on the studies that did
include a measure of biomarker performance, the ability of
RNA levels to serve as diagnostic biomarkers and predict
AUD or other alcohol-related phenotypes was generally good
(AUC > 0.70). To facilitate AUD biomarker research, future
studies should include a measure of biomarker performance.
There is a scarcity of studies investigating the ability of
RNAs to serve as other types of biomarkers. While there are
existing means for diagnosing AUD, there are no clinical tools
for predicting at-risk individuals, stratifying patient groups,
prioritizing optimal treatments, or monitoring treatment
response. Therefore, this is an unmet healthcare need and
future work should include longitudinal studies with repeated
sampling to evaluate this potential. It will also be important
to see if integrating data across -omics platforms results in an
improved biomarker performance using ML approaches. There
were no studies assessing alcohol’s effects on some categories
of regulatory non-coding RNAs (lncRNAs and piRNAs), so
these represent additional unexplored avenues of research
for future studies.
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Conclusion

These studies suggest that there is an AUD-related signature
in peripheral tissue that holds diagnostic utility. Based on these
findings, we are confident that -omics technologies and systems
biology approaches will identify clinically useful biomarkers
for AUD, however, establishing models that link mechanisms
and biomarkers is likely to be a challenge for the coming
decades of basic and clinical research. The identified RNAs in
these studies will require further evaluation and validation to
find markers with high specificity, low cost, and ease-of-use in
routine diagnostic laboratories. Laboratory analysis of RNA has
been facilitated by PCR methodologies now available in many
diagnostic centers because of the COVID-19 pandemic.
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