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Central nervous system (CNS) disease is a general term for a series of

complex and diverse diseases, including Alzheimer’s disease (AD), Parkinson’s

disease (PD), multiple sclerosis (MS), CNS tumors, stroke, epilepsy, and

amyotrophic lateral sclerosis (ALS). Interneuron and neuron-glia cells

communicate with each other through their homeostatic microenvironment.

Exosomes in the microenvironment have crucial impacts on interneuron

and neuron-glia cells by transferring their contents, such as proteins, lipids,

and ncRNAs, constituting a novel form of cell-to-cell interaction and

communication. Exosomal noncoding RNAs (ncRNAs), including microRNAs

(miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and

PIWI-interacting RNAs (piRNAs), regulate physiological functions and maintain

CNS homeostasis. Exosomes are regarded as extracellular messengers that

transfer ncRNAs between neurons and body fluids due to their ability to

cross the blood-brain barrier. This review aims to summarize the current

understanding of exosomal ncRNAs in CNS diseases, including prospective

diagnostic biomarkers, pathological regulators, therapeutic strategies and

clinical applications. We also provide an all-sided discussion of the

comparison with some similar CNS diseases and the main limitations and

challenges for exosomal ncRNAs in clinical applications.

KEYWORDS

exosome, noncoding RNA, central nervous system, biomarkers, pathophysiology,
therapy

Abbreviations: CSF, cerebrospinal fluid; VaD, Vascular dementia; YOAD, young-onset Alzheimer’s

disease; PDD, Parkinson’s disease with dementia; TMZ, temozolomide; SIS, subacute phase ischemic

stroke; RIS, recovery phase ischemic stroke; HIS, hyperacute phase ischemic stroke; EAS, epilepsy

after-seizure sample; EBS, epilepsy baseline sample; MND, motor neuron disease; TLR-HS, temporal

lobe epilepsy with hippocampal sclerosis.
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Introduction

Central nervous system (CNS) diseases are numerous
and all-encompassing. They not only involve common
neurodegeneration, such as Alzheimer’s disease (AD),
Parkinson’s disease (PD), multiple sclerosis (MS), and
amyotrophic lateral sclerosis (ALS) but also tumors, stroke
and epilepsy, which seriously endanger the quality of life and
safety of patients (Prince et al., 2013; Xia et al., 2019; Cheng et al.,
2020; Pregnolato et al., 2021). Irreversible damage, cognitive
impairment and treatment resistance, which occur in CNS
disease, together with the poor understanding of molecular
pathogenesis and the lack of timely diagnosis and sensitive
therapeutic monitoring tools have largely impeded the available
countermeasures and resulted in the terrible prognosis of CNS
disease patients (Rastogi et al., 2021). Therefore, it is imperative
to clarify the molecular mechanisms underlying CNS disease
development and progression and foster the ever-increasing
passion for the research of early diagnostics and new treatment
modalities for CNS diseases.

The occurrence of the CNS diseases mentioned above is
closely related to molecular changes in the microenvironment,
which determine the specificity, heterogeneity and hallmark
features of CNS diseases (Chivet et al., 2012). For instance,
nerve cells convert cell phenotype and accumulate toxic
substances by changes in the microenvironment, gradually
leading to neuron loss and neuron degeneration (Tian
et al., 2021). Moreover, emerging evidence has revealed that
exosomes in the microenvironment released from neurons
or glial cells have crucial impacts on both interneuron and
neuron-glial cells, which constitutes a novel form of cell-
to-cell interaction and communication (Tielking et al., 2019;
Wang G. et al., 2020). Illuminating the mystery of the
mechanism of intercellular communication in CNS cells with the
microenvironment is conducive to exposing multiple potential
therapeutic targets. Exosomes get through multiple stages, such
as EE (early endosome), ILE (intraluminal vesicle), and MVBs
(multivesicular bodies). Brain-derived exosomes have many
unique features that penetrate blood-brain barrier (BBB) easily
and can travel between neurons and various gliacytes via
the cerebrospinal fluid (CSF) and extracellular space, which
control CNS homeostasis or activate cytotoxic responses with
recipient cells (Saugstad et al., 2017). This also suggests that
the number, nature and composition of specific exosomes
can be used to diagnose CNS diseases in their early stages
(Shaimardanova et al., 2020). Furthermore, exosomes play a
promising role in intercellular communication by transferring
bioactive cargoes between spines of the same releasing neuron or
to afferent neurons (Rufino-Ramos et al., 2017). Proteins, DNA,
mRNA, lipids, and ncRNAs have been detected in exosomes
that can also modulate gene expression in target cells and
influence the hallmarks of neurons. ncRNAs are luxuriant
and stable in exosomes, while this uncovers the feasibility of

using exosomes as a new means of ncRNA carrier to the
CNS and might also provide new diagnosis and prediction
strategies to alleviate and reverse neurological disturbances of
CNS diseases (Lizarraga-Valderrama and Sheridan, 2021). This
review describes current research on the roles of exosomal
ncRNAs in CNS diseases as well as their modern approaches to
diagnosis and treatment.

Exosomes biogenesis and
characterization

Extracellular vesicles (EVs) were first identified 40 years
ago as reticulocytes and had been shown to exist in a
variety of biological fluids since then (Colombo et al., 2014).
Classically, there are three types of EVs: exosomes (40–100 nm
in diameter), microvesicles, and apoptotic bodies (50–2,000 nm
in diameter; Thompson et al., 2016; Mathieu et al., 2019; Xia
et al., 2019). The latter two can be shed directly from the
plasma membrane; however, exosomes need to be released
upon fusion of MVBs with the plasma membrane (Coleman
and Hill, 2015). More explicitly, exosomes originate from the
endosome system, which mainly experienced three stages,
including EE, MVBs, and intraluminal vesicles (ILVs; Lin
and Shi, 2019). EEs can be formed by almost all types of
cells, which represent the infant sorting compartment for
internalized nucleic acids (DNA, ncRNAs, mRNAs, etc.) and
other macromolecules in endocytic vesicles (Morelli et al.,
2004; Scott et al., 2014). Soon afterward, the EEs begin
inward budding starting from the periphery membrane to form
the endosome lumen, sequestering cytoplasmic molecules or
medicines and eventually converting to ILVs (Liu et al., 2019). In
a stepwise manner, the segregation of the lumen from the plasma
membrane leads to molecule accumulation within the ILVs,
which mature into late endosomes, also called MVBs (van Niel
et al., 2018). The fusion of MVBs with the plasma membrane
was first observed in rat reticulocytes in 1983 (Harding et al.,
1983); the same phenomenon was observed again in sheep
reticulocytes in the same year (Pan and Johnstone, 1983). Some
MVBs that have formed ILVs are directed to lysosomes, and
their contents are degraded. In others, MVBs are transported
to the plasma membrane and released to form exosomes.
Because this fusion process resembles reverse endocytosis, which
means releasing intracellular contents rather than internalizing
external molecules, thus Rose Johnstone named them exosomes
(Johnstone, 2005). In conclusion, exosomes are nanoscale
vesicles released by the fusion of MVBs originating in the
endocytic pathway with the plasma membrane (Figure 1).

Interest increased around these exosomes, as they appeared
to be involved in many neuronic processes, such as neuron
proliferation, differentiation, and apoptosis (Osier et al.,
2018). For example, exosomes convey functional genetic
information and proteins between cells, mediating intercellular
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FIGURE 1

The main process of exosome biogenesis, secretion, and ingestion. The biogenesis of exosomes starts with the formation of EEs (early
endosomes) through endocytosis at the plasma membrane. Then, the EE begins inward budding starting from the membrane to form the
endosome lumen, sequestering ncRNAs and other cytoplasmic molecules and eventually converting to intraluminal vesicles (ILVs). MVBs
(multivesicular bodies) are matured from the segregation of the lumen from the plasma membrane leading to molecule accumulation in the
ILVs, which are also called late endosomes. Generally, MVBs either fuse with the plasma membrane or fuse with the lysosome for degradation. In
extracellular space, exosomes are untaken by target cells, mediating by endocytosis, fusion or receptor interaction. As a result, exosome contents
are taken into recipient cells and exert biological functions.

communication between different cell types in the brain and
thus affecting normal and pathological conditions (Colombo
et al., 2014). Exosomes are also highly heterologous and can be
detected in various human secretions and tissues of the CNS (He
et al., 2018). As we mentioned above, exosomes participate in
CNS disease biogenesis, and their contents are altered during
disease, making them a particularly attractive target for novel
diagnostic and therapeutic approaches (Malm et al., 2016).

Exosome-derived noncoding RNAs
(ncRNAs)

Noncoding RNAs (ncRNAs) in exosomes mainly include
microRNAs (miRNAs), long noncoding RNAs (lncRNAs),

circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs),
and small interfering RNA (siRNAs), which play major roles in
gene regulation (Budnik et al., 2016). With the further discovery
and study of ncRNAs in exosomes, many innovative functions
and applications have emerged, ranging from novel methods
of cell-to-cell communication to promising disease biomarkers;
and exosomal ncRNAs have new therapeutic applications given
the indispensable functions of exosomes in the biogenesis of
CNS diseases (Chen J. J. et al., 2017). In this review, we mainly
focus on exosomal miRNAs, lncRNAs, circRNAs, and piRNAs
in CNS.

The selection of these exosomal ncRNAs is regulated
meticulously. Some of these exosomal ncRNAs are present
in exosomes regardless of cellular origin, suggesting potential
different mechanisms related to the sorting of ncRNA cargoes.
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For instance, miRNA to take shape ILVs relies on the endosomal
sorting complex required for transport (ESCRT) proteins, and
the neutral sphingomyelinase2 (nSMase2)-dependent pathway
(Juan and Furthauer, 2018). These different kinds of ILVs
containing ncRNAs are selectively packaged into different
vesicles to form exosomes. Furthermore, several RNA-binding
proteins (RBPs) motifs on some exosomal lncRNAs had been
verified (Ahadi et al., 2016). The two most common motifs were
associated with ELAVL1 and RBMX, resulting in a two-fold
increase for these sites in exosomal lncRNAs when compared
to cellular lncRNAs. This suggests that specific proteins could
promote lncRNA to sort into exosomes, and lncRNA-RBP
complexes might capture particular miRNAs and guide the
packaging of them into exosomes. The selective mechanism of
transporting ncRNAs to the exosome interior is a heterogenous
process, as evidenced by their varied content, even in different
types of CNS disease development. More detailed mechanisms
of ncRNA selection into exosome need further exploration.

miRNA

miRNAs are single-stranded non-coding RNAs of
19–25 nucleotides with regulatory functions found in eukaryotes
(Lu and Rothenberg, 2018). In the nucleus, the biogenesis of
miRNA begins with the transcription of miRNA genes into large
initial transcripts (pri-miRNA), which then produce a molecule
of approximately 70 nucleotides with a stem-loop structure (pre-
miRNA) under the shearing action of RNase III endonuclease
Drosha and the RNA-binding protein DGCR8 (Brate et al., 2018;
Dexheimer and Cochella, 2020). In the cytoplasm, pre-miRNAs
are cleaved into mature miRNAs by the RNase III enzyme
Dicer and then exported from the nucleus. With the help of
helicase, mature miRNAs can shape the RNA-induced silencing
complex (RISC), and complementary mRNA sites regulate gene
expression via base pairing (Higa et al., 2014). As the smallest
nucleic acid, exosome-derived miRNAs in the nervous system
constitute a complex network for carrying genetic information
and regulating gene expression, indicating that exosomal
miRNAs play a key role in the regulation of the occurrence,
development, and spread of many human CNS diseases (Lukiw
and Pogue, 2020).

lncRNA

Although miRNA transcripts are small, some ncRNAs can
surpass 200 nucleotides in length, and they are therefore
cataloged as lncRNAs (Derrien et al., 2012; Wu and Kuo,
2020). lncRNAs can exist in both the nucleus and cytoplasm
and play different functions according to their subcellular
localization (Statello et al., 2021). In the nucleus, lncRNAs
are involved in transcriptional regulation of gene expression
and mRNA splicing. In the cytoplasm, such as in exosomes,

they can affect the stability of mRNA and regulate the
biological functions of proteins (Zhu et al., 2013). In addition,
lncRNAs share some comparable features with mRNAs: they
undergo posttranscriptional modifications, such as 5′-capping,
polyadenylation, and alternative splicing (Ponting et al., 2009).
The other way around, particularities of numerous lncRNAs
are not found in mRNAs, such as cis-regulatory capacity,
lacking robustly translated open reading frames, special 3′-
terminal processing, templating of nucleic acid polymerization
or assembly, and other divergences (Quinn and Chang, 2016).
Concurrently, the growing ranks have motivated an increased
focus on understanding the roles of exosomal lncRNAs in
biology, steadily revealing that exosomal lncRNAs preside over
the occurrence of many neurodegenerative diseases and the
damage processes of the CNS (Szilagyi et al., 2020).

circRNA

circRNA is a naturally occurring class of ncRNA molecules
that have become a current research focus in the field of RNA
(Li et al., 2015). Unlike conventional linear RNA, circRNA
has a covalently closed continuous loop and is resistant to
RNA exonuclease, so its expression level is more stable, and
it is not easily degraded (Qu et al., 2015). In fact, hundreds
of circRNAs are enriched in human brain tissues and have
distinctive regulatory potency (Rybak-Wolf et al., 2015). Recent
research has discovered that exosomal circRNAs can function
as miRNA sponges, protein inhibition, and regulators of
splicing and transcription; and they also can bind RBP, as well
as translate into peptides and proteins, which contribute to
neurodegenerative diseases up to a point (Lukiw, 2013; Fanale
et al., 2018; Welden et al., 2018). These rising studies indicate that
such a circRNA-miRNA competing system is a non-negligible
epigenetic regulatory aspect that controls gene expression in
some CNS diseases.

Although research on exosomal circRNA is still at a premier
period, an emerging number of studies suggest that circRNAs by
virtue of exosomes institute their circulation and communicate
with the recipient cells. Thus, carrying out exosomal circRNA
abundant biological functions (Wang Y. et al., 2019).

piRNA

The piRNA that is 26–31 nucleotides in length is
small non-coding RNA with 2′-O-methylation at their 3′

ends (Pippadpally and Venkatesh, 2020). In contrast to
other ncRNAs, which are double-stranded derived RNAs
that are dicer-dependent and bind to Argonaute proteins,
piRNAs are transcribed from ssRNAs, dicer-independent and
bound to PIWI proteins (Aravin et al., 2006). In contrast
to miRNAs, piRNAs could silence genes, participate in
various aspects, including transposon silencing, transcriptional
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silencing or activation, posttranscriptional regulation, and other
modifications, further elucidating the uniqueness of piRNAs
compared with other ncRNAs (Rajasethupathy et al., 2012; Ozata
et al., 2019; Wang and Lin, 2021). piRNA biogenesis is unique
and complex and is marked by the noncanonical transcription
of precursor molecules and self-augmentation mechanisms.
Similar to miRNAs and lncRNAs, piRNAs have become a
contemporary research hotspot in the field of exosomal ncRNA
and could be widely involved in the processes of life.

Interestingly, exosome might be a double-edged sword
for ncRNAs (Wang Y. et al., 2019; Cheng et al., 2020).
One is that exosome is protected by double-layer membrane
wrapping that does help to secure the contents of exosomes
from external interference and facilitate diffusion between
neurons. Furthermore, in comparison with ncRNAs which exist
outside exosomes, exosomal ncRNAs are protected from enzyme
degradation and could be more easily delivered to produce
targeted biological effects (Liu et al., 2022). On the other hand,
exosome could reduce the accumulation of ncRNAs and help to
clear ncRNAs which means ncRNAs could be taken up by other
specific cells, such as macrophages.

The appearance of complicated diseases is the result of the
synergism of multiple interacting genes or RNAs (Zhang et al.,
2018). Hence, we should investigate disease mechanisms at the
level of cell biology and unearth effective information from a vast
network of interacting genes or RNAs.

The regulatory functions of
exosomal ncRNAs in the central
nervous system (CNS)

Exosomal ncRNAs in the microenvironment have crucial
impacts on both interneuron and neuron-glial cells, which
constitute a novel form of cell-to-cell interaction. Many
promising studies have verified that exosomal ncRNAs could be
vital regulatory factors in the pathogenesis of numerous CNS
diseases (Li et al., 2018; Liu et al., 2019; Xia et al., 2019; Wu
and Kuo, 2020). Here, we summarized recent findings related to
the functions of exosomal ncRNAs in the pathogenesis of CNS
diseases.

Alzheimer’s disease (AD)

AD refers to a particular onset, course of cognitive and
functional decline associated with particular neuropathology
and age (Soria Lopez et al., 2019). Currently, although the
primary causes of AD are still contentious, it is highly
acknowledged that the accumulation of amyloid beta (Aβ),
neurofibrillary tangles, synaptic loss, oxidative stress, and
autophagy might play vital roles in AD neuropathology

(Schneider and Mandelkow, 2008; Spires-Jones and Hyman,
2014; Lee et al., 2019). When amyloid precursor protein (APP)
is cleaved, amyloidogenic Aβ fragments are produced, and then
are mainly exported through exosomes. Then Aβ further clusters
into amyloid plaques, which are considered to be responsible for
the death of neurons (Weiner, 2013). Recent studies have shown
that exosomal ncRNAs were also closely related to the biogenesis
and progression of AD, suggesting that exosomal ncRNAs could
participate in the pathogenetic process of AD (Li et al., 2018;
Table 1).

The functions of exosomal miRNAs in AD

In 2017, Sarkar observed that the increased miR-34a
expression in a specific brain region was related to the severity
of AD pathology (Sarkar et al., 2016). They further found
that miR-34a targeted dozens of many genes that might result
in the dysfunction of synaptic plasticity, energy metabolism,
and resting state network activity. Their findings implied that
up-regulated miR-34a influenced neuron stability, which might
be a potential mechanism of AD biogenesis. Furthermore, a
research group demonstrated that miRNA-193b was a regulator
of APP derived from blood and CSF (Liu et al., 2014). In
samples from APP/PS1 double-transgenic mice, mild cognitive
impairment (MCI) and dementia of Alzheimer-type (DAT)
patients, this study found that miR-193b overexpression could
repress the mRNA and APP protein expression that would
influence Aβ generation in brain (Liu et al., 2014). Another
interesting study reported that in primary neuronal culture and
AD patients’ brain, the miR-29a/b-1 cluster was significantly
downregulated, and β-site amyloid precursor protein cleaving
the enzyme-1 (BACE1) expression was increased (Hébert et al.,
2008). Soon afterward, Seongju Lee found that both miR-29a
and miR-29b-1 could bind to the 3′ -UTR of BACE1, and the
BACE1 levels were negatively correlated with the expression
levels of these miRNAs (Lee et al., 2019). The integration of
the information above reveals that miR-125-5p, miR-193b, and
miR-29a/b1 could enter cells via exosomes, then influence Aβ

production and ultimately lead to the amyloid plaque deposition.
Above all, exosomal miRNAs are involved in many pathways
that contribute to the biogenesis of AD, such as neuroplasticity,
neuron network activity, accumulation of APP and Aβ, and
expression, phosphorylation, and aggregation of tau.

The functions of exosomal lncRNAs in AD

In addition to miRNAs, many exosomal lncRNAs are also
involved in the pathological process of AD. The expression of
lncRNA BACE1-AS (β-site amyloid precursor protein cleaving
the enzyme-1-antisense transcript) was significantly increased
compared with that in healthy controls (Wang D. et al., 2020).
BACE1-AS is the opposite strand to BACE1 and serves as a
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TABLE 1 The biological functions of exosomal ncRNAs in AD.

Diseases Classification of
ncRNA

ncRNAs Targets Biological function References

Alzheimer’s disease miRNA miR-193b APP Propelling Aβ accumulation Liu et al. (2014)

miR-29c APP Affecting Aβ generation Chen J. J. et al. (2019)

miR-29a/b-1 BCAE1 Propelling APP expression
and Aβ accumulation

Hébert et al. (2008)

miR-125b Tua, p44/42-MAPK Promoting tau
hyperphosphorylation

Banzhaf-Strathmann et al.
(2014)

miR-34a RSN genes, oxidative
phosphorylation
proteins and glycolysis
proteins

Dysfunction of synaptic
plasticity, energy metabolism,
and resting state network
activity

Sarkar et al. (2016)

lncRNA BACE1-AS BACE1 Propelling APP expression
and Aβ accumulation

Wang D. et al. (2020)

51A SORL1 Impairing APP cleavage
pathway and promoted
neurotoxic Aβ formation

Andersen et al. (2005) and
Cortini et al. (2019)

circRNA KIAA1586 miR-29b, miR-101,
miR-15a

Acting as a ceRNA to disrupt
the balance of three
miRNA-related networks
between miRNA and genes
and accelerates APP
accumulation

Zhang et al. (2019)

ciRS-7 miRNA-7 Acting as a ceRNA to absorb
miRNA-7 and decrease
UBE2A expression

Lukiw (2013)

piRNA DQ597973 et.al APOE Participating in the changes
of protein Tau and amyloid

Qiu et al. (2017) and Jain
et al. (2019)

suppressor of the production of BACE1 (Luo and Chen, 2016). It
is suggested that lncRNA BACE1-AS may affect the production
of Aβ and participate in the pathology of AD. Moreover,
multiple research groups demonstrated that the expression levels
of lncRNAs 17A, 51A, and BC200 in plasma exosomes were
elevated in certain brain regions in AD patients (Andersen et al.,
2005; Cortini et al., 2019; Wang D. et al., 2020). Separately,
51A was found located on the antisense strand of the first
intron of the sortilin-related receptor 1 (SORL1), impairing
the APP cleavage and promoting neurotoxic Aβ formation
(Weiner, 2013). Additionally, lncRNA17A might participate
in neuroinflammation, and the binding between BC200 and
eukaryotic initiation factor 4A (eIF4A; Ames et al., 2017; Guo
et al., 2019). The function of exosomal lncRNA17A results in
decoupling ATP hydrolysis from RNA duplex unwinding that
preserved long-term neuronal plasticity. All of these studies
indicated that BACE1-AS, 51A, 17A, and BC200 might serve as
direct or indirect roles in AD pathogenesis and novel therapeutic
strategies.

The functions of exosomal circRNAs in AD

In addition to miRNAs and lncRNAs discussed above,
circRNAs may also play a role in the balance of miRNA
networks; and the function of exosomal circRNA contributes

to Aβ fibrils, oxidative stress, and progressive cognitive
deficits, which is regarded as one potential mechanism of
AD. For example, circRNA for miRNA-7 (ciRS-7) competes
with anti-complementary miRNA complementary content and
adsorbs miRNA-7. Hence ciRS-7 quenches the normal function
of miRNA-7 and plays an important post-transcriptional
regulator of human brain gene expression (Lukiw, 2013). Zhang
et al. (2019) further found that circRNA KIAA1586 occurred
frequently in AD risk ncRNAs. As a competing endogenous
circRNA, its function was to competitively bind three known
AD-risk miRNAs (miR-29b, miR-15a, and miR-101) to silence
target genes and display the over-expression of Aβ peptide. As
mentioned above, exosomal circRNAs serve as the pathological
mediators of AD, which is a rapidly growing field of potential
biomarkers, though more detailed studies are needed.

The functions of exosomal piRNAs in AD

Except for the many mechanisms that ncRNAs participate
in, one vital pathological characteristic of AD is the stability of
genes, which affect the expression of key proteins. Some studies
had found that piRNAs take part in gene stability. The function
of piRNAs is to silence repetitive genomic regions to mediate
genomic stability; and some piRNAs were believed to play an
active role in gene expression control, which was related to
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long-term memory (Landry et al., 2013). In 2019, Jain et al.
(2019) first reported that piRNAs are differentially expressed
in human CSF exosomes of AD dementia patients. Moreover,
exosomal piRNAs might contribute to the pathogenesis of
neuropsychiatric illnesses. For AD, piRNAs might influence the
expression of APOE in the brain (a key protein-coding gene in
AD), suggesting that piRNAs might be involved in the etiological
processes of AD (Qiu et al., 2017). Jain demonstrated that
piRNAs were significantly correlated with Tau protein levels or
the Aβ42/40 ratio, indicating that these piRNAs could reflect
changes in Tau protein or amyloid pathology (Jain et al., 2019).

In short, these exosomal ncRNAs have the same distinctive
characteristics to participate in AD pathogenesis. Examples
include APP and Aβ generation in the nervous system,
consecutive hyperphosphorylation of tau, synaptic loss,
oxidative stress, and neuronal death (Lee et al., 2019). In
conclusion, these relevant studies reveal multiple functions
of exosomal ncRNAs in the pathological process of AD and
illustrate novel therapeutic targets for AD treatment.

Parkinson’s disease (PD)

PD is the second most common neurodegenerative disease
after AD and is considered a multifactorial disorder (Elbaz et al.,
2016). Additionally, PD affects 1–2 per 1,000 of the population

at various times and invades 1% of the population above the age
of 60 years, and PD prevalence is increasing at different rates
varying with age (Tysnes and Storstein, 2017). Furthermore,
the pathology of PD is characterized by the progressive loss
of dopaminergic neurons in the nigra pars compacta within
the midbrain, accumulation of alpha-synuclein (α-SYN) into
Lewy bodies and neurites and excessive neuroinflammation
(Leggio et al., 2017). To date, it is clear that exosomal ncRNAs
participate in neuron complex normal functions, differentiation,
and apoptosis, which are regarded as neoteric mechanisms in the
pathogenesis of PD (Table 2).

The functions of exosomal miRNAs in PD

Studies had shown that miRNAs in serum were encapsulated
within exosomes, which were secreted by pathological tissues
and quite stable (Andersen et al., 2014). More specifically,
it had been documented that exosomal miRNAs played a
significant role in the regulation of the list of PD-related
pathogenic proteins, such as α-SYN, leucine-rich repeat kinase,
Parkin, DJ-1/PARK7, and phosphatase (Gui et al., 2015). These
biological proteins regulated many key pathways, including
protein aggregation, autophagy, inflammation, and hypoxia
(Harischandra et al., 2018). In 2019, a research group found
that exosomal miR-137 was upregulated and played a vital
role in the induction of oxidative stress injury in neurons

TABLE 2 The biological functions of exosomal ncRNAs in Parkinson’s diseases.

Diseases Classification of
ncRNA

ncRNAs Targets Biological function References

Parkinson disease miRNA miR-153 α-syn Mediating oxidative stress to
influence α-synuclein levels

Gui et al. (2015)

miR-325 ARC Mediating inability to repress
autophagic program

Bo et al. (2014) and
Harischandra et al. (2018)

miR-34a-5p SYT-1, STX1A Regulating different aspects
of neurogenesis and
synaptogenesis

Grossi et al. (2021)

miR-137 OXR1 Induce oxidative stress
damage in dopaminergic
neurons

Jiang et al. (2019)

miR-15b-5p,
miR-30c-2-3p

KEGG Affecting the expression of
proteins encoded by target
genes in dopaminergic
synapse

Xie et al. (2020)

miR-19b PARK2, PARK8 Lossing of E3 ubiquitin-ligase
activity and gaining of kinase
activity

Heman-Ackah et al. (2013)
and Cao et al. (2017)

lncRNA AK127687 LRRK2 mRNA Inducing the stability of
LRRK2 mRNA up-regulated
and dopaminergic neuronal
apoptosis

Elkouris et al. (2019)

POU3F3 GCase, α-syn Inducing upregulated
exo/total α-syn ratio and
decreased GCase activity

Zou et al. (2020)

lnc-MKRN2-42:1 EIF4E, BTD, MKNK1,
METTL5

Dysregulating neuronal
apoptosis, synaptic
remodeling, immunity and
glutamate neurotransmitter
metabolism

Wang Q. et al. (2020)

Frontiers in Molecular Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnmol.2022.1004221
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience#articles
https://www.frontiersin.org


Wang et al. 10.3389/fnmol.2022.1004221

(Jiang et al., 2019). Jiang further elaborated that miR-137 was
found to directly target oxidation resistance 1 (OXR1) and
negatively regulate its expression, thus inducing oxidative stress
damage in dopaminergic neurons (Billia et al., 2013). The
DJ-1 protein is encoded by the PARK7 gene and represents
an important protein involved in autosomal recessive primary
PD. Chen found that upregulated expression of miR-4639-5p in
PD patients, which negatively regulated the post-transcription
level of the DJ-1 gene and eventually caused severe oxidative
stress and neuronal death (Chen et al., 2017a). The information
mentioned above implies that exosomal miR-137-mediated and
miR-4639-5p-induced oxidative stress may serve as a potential
mechanism in PD pathology. Moreover, miR-325 was shown to
be a complementary fragment with a caspase recruit domain to
suppress the apoptosis repressor (an anti-autophagic protein),
and thus could promote the autophagic cascade (Bo et al.,
2014). Coincidentally, a study discovered that Mn exposure
significantly increased miR-325 in exosomes, which suggested
that exosomal miR-325 participated in dopaminergic neuron
autophagy (Harischandra et al., 2018). Although these exosomal
miRNAs were found to be able to target genes involved in many
vital pathways for PD, some doubts and inexplicable puzzles
remain. For instance, Doxakis found that miR-153 directly
interacted with the specified regions of the α-SYN gene to
inhibit translation from the chimeric transcript, and their effect
was cumulative (Doxakis, 2010). Subsequently, a fascinating
study reported that the expression of miR-153 was significantly
up-regulated in exosomes from the CSF of PD patients compared
with healthy controls (Gui et al., 2015). These self-contradictory
reports demonstrated the complexity of PD and the immaturity
of current techniques. In a word, these exosomal miRNAs
can promote our understanding of the mechanisms of PD
etiopathology and development. Although, these researches may
facilitate the development of new strategies for the diagnosis and
therapy of PD, they remind us that more specific studies are
needed.

The functions of exosomal lncRNAs in PD

In addition to the classic exosomal miRNAs discussed
above, many lncRNAs derived from exosomes are also involved
in PD pathogenesis. In 2020, Zou et al. (2020) reported
that exosomal linc-POU3F3 activity might shed light on
the autophagic-lysosomal system in the pathogenesis of PD.
They further applied the lncRNA microarray to detect the
expression levels of various exosomal lncRNAs. Eventually,
the difference in exosomal lncRNA expression was confirmed,
and linc-POU3F3 presented the highest fold change value
and the most stable detection density and it was therefore
selected as the candidate lncRNA in the pathophysiological
process of PD. In the same year, exosomal lnc-MKRN2-
42:1 was verified to be related to the pathophysiology of PD by

Wang Q. et al. (2020). Through bioinformatics analyses, they
concluded that lnc-MKRN2-42:1 could regulate target genes
such as EIF4E, BTD, MKNK1, and METTL5 and participated in
functions, which correlated with apoptosis, synaptic remodeling,
long-term potential, immunity, and glutamate neurotransmitter
metabolism. Moreover, Elkouris showed that a mass of
lncRNA genes was near to PD-linked protein-coding genes,
and four of them were located in exosomes derived from
human CSF (Elkouris et al., 2019). They demonstrated that
exosomal lncRNAs participated in the direct differentiation of
human iPSCs to dopaminergic neurons. Collectively, their data
suggested that exosomal lncRNAs were associated with PD
pathogenesis.

On the one hand, exosomes may act as vectors to facilitate
ncRNA transmission between neurons. Hence, exosomal
ncRNA takes part in PD biogenesis and is an emerging
therapeutic target. However, further studies will be needed to
investigate whether the expression levels of these exosomal
ncRNAs would reflect their total brain levels and their
more detailed and specific functional associations with
PD pathology.

Central Nervous System (CNS) tumors

When considering tissue and cell type, there are various
kinds of CNS tumors, such as astrocytoma, oligodendroglioma,
ependymoma, and medulloblastoma. Regardless of the
types of tumors, they have common characteristics, such as
rapid proliferation, extensive invasion, treatment resistance,
angiogenesis, and immune escape. Burgeoning evidence
indicates that exosomes mediate CNS tumor origination and
progression by transporting specific biofunction molecules
between different cell populations (Rooj et al., 2016).
Accumulating studies have found that exosomes represented
a new means of intercellular communication by delivering
various bioactive molecules, such as ncRNAs and participate in
tumor initiation and progression (Cheng et al., 2020). Here, we
reviewed the present research on the roles of exosomal ncRNAs
in overall stages of CNS tumor progression (Figure 2).

Exosomal ncRNAs and immune escape

Guo and colleagues found that hypoxia-induced exosomal
miR-29a and miR-92a expression leads to the propagation of
MDSCs (myeloid-derived suppressor cells), which play vital
roles in mediating the formation of an immunosuppressive
environment and helping CNS tumors escape the host immune
response (Guo et al., 2019). Mechanistically, miR-29a and
miR-92a activate the proliferation and function of MDSCs by
targeting high-mobility group box transcription factor 1 (Hbp1)
and protein kinase cAMP-dependent type I regulatory subunit
alpha (Prkar1a), respectively. Altogether, the results of the Guo
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FIGURE 2

The underlying regulatory axes and molecular mechanisms of exosomal ncRNAs in CNS tumor. In the tumor microenvironment, intercellular
communication can be achieved by exosomes. Subsequently, exosomal ncRNAs exert important roles in modulating treatment resistance,
proliferation/invasion, angiogenesis, and immune escape.

study provided new insights into the role of glioma exosomal
miRNAs in mediating the formation of immunosuppressive
microenvironments in tumors and elucidated the underlying
exosomal miR-29a/miR-92a-based regulatory mechanism.

Exosomal ncRNAs contribute to angiogenesis

Tumorigenesis significantly intensifies the intratumor
microvessel density, and angiogenesis is critical for tumor
growth, migration and invasion (Ames et al., 2017). Exosomal
ncRNAs can have various effects on angiogenesis. First,
miR-9 could be secreted from glioma cells via exosomes and
was frequently upregulated in glioma specimens (Chen X.

et al., 2019). Exosomal miR-9 could significantly enhance the
proliferation, migration and invasion of glioma cells, promoting
tumorigenesis and an increase in angiogenesis by targeting
many malignant genes in glioma cells. Second, the levels of
lnc-POU3F3 were upregulated in glioma tissue and significantly
correlated with the advanced tumor stage (Lang et al., 2017).
That study explored the mechanism by which glioma-derived
exosomes affect angiogenesis in more detail. They both used
A172-Exos and shA172-Exos to assay the ability of HBMECs
human brain microvascular endothelial cells (HBMECs), while
HBMECs rapidly internalized A172-Exos and shA172-Exos,
and the expression level of linc-POU3F3 in A172-Exos was
significantly higher than that in shA172Exos. Furthermore, the
gene and protein expression levels of bFGF, bFGFR, VEGFA,
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and Angio in HBMECs treated with A172-Exos were much
higher than those in HBMECs treated with shA172-Exos. These
results indicated that gliomas could induce angiogenesis by
secreting exosomes enriched in lnc-POU3F3. Exosomal miR-9
and lncRNA-POU3F3 function as promoters of angiogenesis,
which is pivotal for glioma pathogenesis and a promising
therapeutic target in glioma.

Exosomal ncRNAs and cell proliferation,
invasion and metastasis in glioma

It has been documented that ectopic proliferation is the most
basic characteristic of tumors, while invasion and metastasis
are the most striking features of tumors (Cheng et al., 2020).
Multiple research groups manifested that the expression of
exosomal ncRNA is abnormal and that ncRNA has an important
impact on tumor proliferation, invasion, and metastasis. In
2015, Zhang found that primary tumor cells with normal
expression of PTEN (an important tumor suppressor) but
lost PTEN expression after dissemination to the brain (Zhang
et al., 2015). Interestingly, brain microenvironment-dependent,
reversible PTEN mRNA and protein down-regulation are
epigenetically regulated by exosomal miRNAs from astrocytes.
Mechanistically, astrocyte-derived exosomes mediated the
intercellular transfer of PTEN-targeting miRNAs, leading to
increased secretion of cytokine chemokine (C-C motif) ligand
2 (CCL2), which reciprocally enhanced the outgrowth of brain
metastatic tumor cells via promoting proliferation and reducing
apoptosis. Thus, it can be seen that exosomal miRNA induced
PTEN loss, which contributed to primary brain metastasis
outgrowth.

In addition to miRNAs, exosomal lncRNAs also unwilling
to lag behind that also play a role in the pathogenesis of CNS
tumors. In glioma tissues, lncRNA ROR1-AS1 was upregulated
and packaged into exosomes derived from tumor cells (Chai
et al., 2020). Functional analysis showed that it acted as a sponge
of miR-4686 and inhibited its expression to bring about the
promotion of glioma development. It is not hard to see exosomal
lncRNA ROR1-AS1 derived from tumor cells promoted glioma
progression via the miR-4686 axis, and the high expression
of ROR1AS1 indicated a poor prognosis in glioma patients.
Another type of exosomal ncRNA, circRNA, can also promote
glioma progression. Exosomal circRNA 0001445 was taken up
and upregulated in glioma cells treated with exosomes (Jitsukawa
et al., 2017). In addition, exosomal circRNA 0001445 acted as
a sponge for miRNA-127-5p to upregulate the expression of
sorting nexin 5 (SNX5), which is a critical regulator in cancers
(Han et al., 2021). Taking the information mentioned above,
these studies provide an original understanding of the molecular
biogenesis of CNS tumor progression, suggesting a participant
and therapeutic target role of exosomal ncRNA in CNS tumor
patients.

Exosomal ncRNA as a suppressor

Exosomal ncRNA not only has a beneficial influence on
tumor proliferation, invasion, and metastasis but also acts as an
inhibitor for drug resistance, tumor progression and invasion
(Zhou et al., 2022); from the latter aspect, making exosomal
ncRNA is a promising therapeutic tool for CNS tumors.
For example, Yao recently selected miR-15a and miR-92a as
candidates for further studies and confirmed that they were
underexpressed in M2 macrophage exosomes (Yao et al., 2021).
The results of target gene validation revealed that miR-15a and
miR-92a were bound to CCND1 and RAP1B, respectively. Thus,
interference with the expression of CCND1 or RAP1B reduced
the phosphorylation levels of AKT and mTOR, indicating that
both CCND1 and RAP1B could activate the PI3K/AKT/mTOR
signaling pathway. Another study found that mesenchymal
stem cell-derived exosomal miRNA-133b suppressed glioma
progression via the Wnt/β-catenin signaling pathway by
targeting EZH2 (Xu et al., 2019). More detailed particulars
are that MSC-derived exosomal miR-133b was found to target
and negatively regulate EZH2 expression, and EZH2 silencing
resulted in inhibited glioma cell proliferation, invasion, and
migration. Therefore, these existing results suggested that
exosomal miR-133b could attenuate glioma development by
disrupting the Wnt/β-catenin signaling pathway and inhibiting
EZH2. Similarly, Yue et al. (2019) showed that the Wnt/β-catenin
pathway was also triggered by exosomal miR-301a, which
resulted in the suppression of TCEAL7 (tumor suppressor);
thus, exosomal miR-301a contributed to glioblastoma resistance
to radiotherapy.

These studies unveiled that exosome is an important carrier
for tumor cell communication and that exosomal ncRNAs play
suppressor roles in CNS tumor and are potential biomarkers and
therapeutic targets in different types of cancer.

Before-mentioned studies summarized the exosomal
ncRNAs that have been implicated in the pathogenesis, immune
escape, angiogenesis, and treatment of CNS tumors. These
intriguing findings suggest that we must broaden our horizons
to identify molecular mechanisms and increase our knowledge
in the field of CNS tumor pathogenesis.

Multiple Sclerosis (MS)

Multiple Sclerosis (MS) is a chronic autoimmune disease
in the CNS. MS mostly affects people aged 20–50 years. Thus,
MS is the main cause of nontraumatic neurological disability
in young adults (Martinez and Peplow, 2020). Pathways of MS
pathogenesis, such as neurotrophin, focal adhesion, and T-cell
receptor signaling pathways, all participate in MS biogenesis on
different levels (Ebrahimkhani et al., 2017). The imbalance of
regulatory T cells (Treg), neuronal, and inflammatory T cells

Frontiers in Molecular Neuroscience 10 frontiersin.org

https://doi.org/10.3389/fnmol.2022.1004221
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience#articles
https://www.frontiersin.org


Wang et al. 10.3389/fnmol.2022.1004221

contribute to oligodendrocyte loss, demyelination, and failure to
remyelinate damaged brain areas (Pusic et al., 2014; Table 3).

The functions of exosomal miRNAs in MS

In 2018, Kimura found that the expression of transfection of
exosomal miRNA-let-7i was upregulated and let-7i could inhibit
the production of Treg cells, and the effect of MS exosomes was
disabled when T cells were incubated with let-7i inhibitor before
culture (Kimura et al., 2018). Further analysis revealed that
exosomal miRNA-let-7i decreased the expression of insulin-like
growth factor 1 receptor (IGF1R) and transformed growth factor
β receptor 1 (TGFBR1) on immature CD4+ T cells and then
inhibited their differentiation into Treg cells. Compared with
healthy controls, in relapsing-remitting MS (RRMS) patients,
significantly increased expression of miR-326 in exosomes was
observed (Azimi et al., 2019). Junker et al. showed that miR-326
targets CD47 in brain resident cells. In turn, the CD47 molecule

inhibits the phagocytic activity of macrophages, consequently
reducing its expression, which could increase the degradation of
myelin. Similarly, Du and colleagues expounded that miR-326,
by targeting Ets-1, a negative regulator of Th17 differentiation,
could induce the differentiation of mature T cells into Th17 cells,
thereby increasing the severity of MS (Du et al., 2009). Because
exosomal miR-326 contributes to the pathogenesis of MS, it is
possible that inhibition of miR-326 expression in T-cell-derived
exosomes or engineering them to carry selected miRNAs may be
considered a promising therapeutic approach for the treatment
of MS and may also be a potential clinical target in the course of
MS (Azimi et al., 2019). Moreover, gray matter demyelination
is increasingly recognized as an important component of MS
(Geurts et al., 2007). Subsequently, Pusic found that serum-
derived exosomes of young and environmentally enriched
patients had high levels of miR-219 (Pusic and Kraig, 2014).
They further confirmed that exosomal miR-219 was essential
and sufficient for myelinating oligodendrocyte production
by depressing the expression of inhibitory regulators of

TABLE 3 The biological functions of exosomal ncRNAs in MS, stroke, epilepsy, ASL, and depression.

Diseases Classification of
ncRNA

ncRNAs Targets Biological function Reference

Multiple sclerosis miRNA miR-326 Ets-1, CD47 Inducing
TH17 differentiation and
maturation in the
immunopathogenesis

Azimi et al. (2019)

Let-7i IGF1R, TGFBR1 Decreasing
IGF1R/TGFBR1 expression
on CD4+ T cells

Kimura et al. (2018)

miR-229 MBP Inducing myelination and
oxidative tolerance

Pusic et al. (2016)

Stroke miRNA miR-126 BDNF/TrkB/Akt Mediating the decrease of
infarct volume and cell
apoptosis and increase of
microvessel density

Wang J. et al. (2020)

TNF-α, IL-1β Mediates the inhibition of
neuroinflammation

miR-17-92 PTEN Mediating the increase of
neural plasticity and
functional recovery after
stroke

Xin et al. (2017)

miR-134 IL-6, hs-CRP Mediating the intercellular
brain injury in ischemic
stroke

Zhou et al. (2018)

Epilepsy miRNA miR-346 GABRA5 Inducing depression of
inhibitory neurotransmission

Gitai et al. (2020)

miR-331-3p mTOR Inducing the abnormal
electrical brain activity

Amyotrophic lateral
sclerosis

miRNA miR-155 P2ry12, Egr1, Csf1r Suppressing microglia
phagocytosis functions and
lead to neuroinflammation

Vaz et al. (2019)

miR-146 TNF-α, IL-1β, HMGB1 Inducing inflammation in
ALS

miR-494-3p SEMA3A Mediating the decrease of
motor neuron survival
in vitro

Varcianna et al. (2019)

Depression miRNA miR-9-5p IL-1β, IL-6 and
(TNF-α)

Promoting M1 polarization
in microglia and exacerbating
depression symptom

Xian et al. (2022)
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differentiation. As a further confirmation of miR-219 function,
they inhibited miR-219 in young serum-derived exosomes and
found that the protein transcript levels of these miR-219 target
mRNAs decreased, resulting in these altered exosomes no longer
increasing myelination in slice culture. In conclusion, exosomal
miRNAs have been verified to regulate both immune responses
and myelination, making them attractive candidates both for
pharmacological intervention and as disease biomarkers (Mycko
and Baranzini, 2020).

The functions of other ncRNAs in MS

Emerging evidence has indicated the potential role of
ncRNAs in the regulation of gene expression of MS pathogenesis,
which provides new opportunities to better understand the
course of MS (Yang X. et al., 2018). For instance, lncRNA
GAS5 was found to suppress the transcription of TRF4, a key
factor controlling M2 polarization, which is a pivotal feature of
MS pathogenesis (Sun et al., 2017). Another group discovered
that circRNA affected the protein coding transcripts, which
elucidated a pathway directly linked with STAT3, a critical
factor for the inflammatory demyelination and polarization of
the immune response toward Th17 (Zurawska et al., 2019).
There have been some reports on the role of ncRNAs in the
pathological process of MS, but the association between ncRNAs
and exosomes and the effects of their interaction on MS remain
to be studied.

Stroke

The second outstanding cause of mortality worldwide is
stroke, which contributes to a considerable burden on families,
communities, and society (Feigin et al., 2014). Stroke is an acute
neurologic disorder that can threaten life if left untreated for a
certain amount of time or diagnosed late (Jafarzadeh-Esfehani
et al., 2020). The classic risk factors for stroke include high blood
pressure, cardiac diseases, intemperance, smoking, diabetes
mellitus, lipid metabolism disorder, and obesity. Symptoms
of stroke include disbalance with speech, numbness, vision
impairment, severe headache, obvious weakness and stiffness
throughout the body, and walking difficulty (Xia et al., 2019;
Table 3).

In terms of the pathology of stroke, the common reason
is blockage or rupture of the cerebral artery, which leads to
ischemic and hemorrhagic stroke, respectively, and results in
stroke becoming the most common cerebrovascular disease
(Wang Z. et al., 2019). Importantly, among different types of
strokes, ischemic stroke accounts for approximately 85% of
all strokes (Mirzaei et al., 2017). Moreover, various studies
have shown that exosomal ncRNAs play key roles in stroke
pathogenesis, complications, and outcomes (Mirzaei et al., 2017;
Li et al., 2021). For instance, Zhou with his colleagues isolated

exosomes from the blood of stroke patients and found that
exosomal miR-134 was highly expressed in stroke patients
compared with the control group (Zhou et al., 2018). Further,
they found that the level of serum exosomal miR-134 was
positively correlated with the expression of IL-6 and hs-CRP,
which were both reported to reflect the degree of brain ischemic
damage and stroke (Waje-Andreassen et al., 2005; Chaudhuri
et al., 2013; Zhou et al., 2018). This study suggests that the
enhanced production of exosomal miR-134 in stroke patients
might induce intercellular brain injury via IL-6 and other
cytokines. Except for the direct factors that contribute to the
occurrence of stroke, numerous mechanisms influence stroke
biogenesis, including angiogenesis, neurovascular integrity,
inflammation, and synaptic plasticity. Recent findings showed
that miR-134 regulated ischemia injury-induced neuronal cell
death, indicating that exosomal miR-134 might also participate
in the pathology of stroke by promoting neuroinflammation and
neuronal death (Huang et al., 2015).

Abundant studies have demonstrated that the expression
levels of many exosomal ncRNAs have an apparent difference
compared with healthy controls, however, by which exosomal
ncRNAs regulate the pathogenesis of stroke remains unknown.
For example, miR-124 mediated an increase in angiogenesis and
offered considerable neuroprotection against stroke, showing
the neurorestorative and neuroprotective potential of miR-124
(Doeppner et al., 2013). However, the expression of miR-124
in stroke patients has not been detected as downregulated.
These inspiring studies hint to us that a more incisive
understanding of the role of exosomal ncRNAs in stroke
pathogenesis needs to be established and could contribute to
the discovery and development of new therapeutic approaches
for stroke.

Epilepsy

Epilepsy is one of the most common serious brain
conditions, affecting over 70 million people worldwide (Thijs
et al., 2019). In the nursing and older age groups, the incidence
of epilepsy has a bimodal distribution with the highest stake.
Epilepsy is characterized by intermittent and reduplicative
spontaneous epileptic seizure with a verity of neurobiological,
cognitive, psychological, and social consequences (Fisher et al.,
2014). Although epilepsy results in tremendous passive impacts
on people and society, the mechanisms of its pathogenesis
are poorly understood. The role of ncRNAs in epilepsy is
indispensable for this unknown field. Thus, it is worth for further
exploration which might contribute to therapeutic strategies for
epilepsy (Table 3).

Despite that the pathogenesis of epilepsy is not clear, a
few studies about ncRNA functions had taken new steps. A
validation study revealed that miR-346 and miR-331-3p were
significantly downregulated in exosomes from the epileptic
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forebrain (Gitai et al., 2020). The enrichment pathway analysis
of these miRNAs showed an overrepresentation of signaling
pathways that were linked to molecular mechanisms underlying
chronic epilepsy, including GABA-ergic and mTOR (Gitai et al.,
2020). Functional studies on these two miRNAs might uncover
their roles in the pathophysiology and treatment of temporal
lobe epilepsy (TLE). Furthermore, there are still many ncRNAs
closely related to synaptic plasticity, neuronal excitability,
neuroinflammatory response, and neuronal death, which are
essential basic pathological processes for the occurrence of
epilepsy, such as miR-146a, miR-128, lncRNA BC1, and
circRNA—CDR1as (Gitai et al., 2011; Geng et al., 2016; He
et al., 2016). Nevertheless, no definitive experiment has ever
demonstrated that these ncRNAs existed in exosomes of epilepsy
patients. Thus, the mechanism of exosomal ncRNA-related
epilepsy has emerged as a new study field.

Amyotrophic Lateral Sclerosis (ALS)

Amyotrophic lateral sclerosis (ALS) is a fatal
neurodegenerative disease characterized by the progressive
loss of motor neurons (MNs), which usually evolves rapidly
and results in death due to respiratory failure within 1–5 years
after the onset of the disease (Yang et al., 2021). Furthermore,
ALS is a catastrophic neurodegenerative disease caused by
partial dysfunction and damage to upper MNs in the primary
motor cortex; and lower MNs in the brainstem and spinal
cord, resulting in the paralysis of voluntary muscles, stiffness,
muscle atrophy, fasciculation swallowing, phonation, and
respiratory function depression (Wang K. et al., 2021). These
findings indicate that MNs die from one unit to neighboring
neurons through mechanisms that involve altered intercellular
communication between neurons and glial cells (Garden and La
Spada, 2012). Therefore, an increasing number of scientists have
begun to pay attention to the role of exosomes and their contents
as a mode of cell-to-cell communication in the occurrence of
ALS (Table 3).

Several altered factors are involved in the pathogenesis of
ALS, including immune disorders, mitochondrial dysfunction,
oxidative stress, protein aggregates, neurofilament accumulation,
and neuroinflammation. To date, there have been many reports
related to exosomes, successively demonstrating the crucial
role of exosome-mediated ncRNA in the pathogenesis of
ALS given the relevance of RNA homeostasis in disease
pathogenesis (Gagliardi et al., 2021). For example, microglia
released exosomes enriched for miR-146 and miR-155, which
were implicated in the neuroinflammatory process affecting ALS
progression (Vaz et al., 2019). A similar study demonstrated that
exosomal inflammatory-related miRNAs induced persistent NF-
κB signal pathway activation in microglial cells, which might
result in aggravated microglial neurotoxicity or death toward
MNs and neuroinflammation in ALS patients (Frakes et al.,

2014; Pinto et al., 2017). Xu and colleagues found a reduction in
exosomal miR-27a-3p in ALS patient serum compared to healthy
control serum (Xu et al., 2018). Notably, 40%–55% of familial
ALS cases are due to pathogenic mutations in disease-related
genes, such as SOD1, TARDBP, and C9orf72, which are the most
frequently involved (Perrone and Conforti, 2020). Meanwhile,
it has been proven that these gene mutations might refer to
exosomal ncRNA (Rinchetti et al., 2018; Varcianna et al., 2019;
Nishimoto et al., 2021). Unfortunately, the detailed molecular
mechanism of ALS is still unclear. Thus, further investigation
is needed to elucidate the role of exosomal ncRNAs in ALS,
which promotes the development of early and specific diagnostic
methods.

Depression

Mental disorder is a significant concern for healthcare
systems worldwide and a cumbersome burden to both
individuals and society (Eaton et al., 2008). Depression
impacts an estimated 350 million people worldwide, which
is a typical neuropsychiatric disease and is associated with
genetic factors (Kessler and Bromet, 2013). Kessler with his
colleagues analyzed 191 unique miRNAs across 35 human
studies, then they provided an insightful understanding that
the molecular biology of mental disorders and physiological
explanation of psychological changes was possible (Gruzdev
et al., 2019). GO and KEGG enrichment analysis indicated that
the differential expression of exosomal miRNAs might play
an important role in the pathogenesis of depression through
the MAPK pathway, Wnt pathway, and mTOR pathway (Fang
et al., 2020). Moreover, Xian observed that BV2 microglial cells
successfully internalized PC12 neuron cell-derived exosomes
as well as transferred miR-9-5p (Xian et al., 2022). miR-9-
5p promoted M1 polarization in microglia and led to over
releasing of proinflammatory cytokines, such as IL-1β, IL-6,
and TNFα. Furthermore, miR-9-5p overexpression suppressed
SOCS2 expression and reactivated SOCS2-repressed Janus
kinase (JAK)/signal transducer and activator of transcription 3
(STAT3) pathways. From this study they confirmed that adeno-
associated virus (AAV)-mediated overexpression of exosomal
miR-9-5p polarized microglia toward the M1 phenotype and
exacerbated depressive symptoms in chronic unpredictable mild
stress mouse mode. Similarly, overexpression of exosomal miR-
146a-5p in hippocampal dentate gyrus suppressed neurogenesis
and spontaneous discharge of excitatory neurons by directly
targeting Kruppel-like factor 4 (KLF4; Fan et al., 2022).
Furthermore, miR-146a-5p downregulation reduced adult
neurogenesis deficits and depression-like behaviors in rats.
Deeper research found that circular RNA ANKS1B acted as a
miRNA sponge for miR-146a-5p to mediate post-transcriptional
regulation of KLF4 expression. In general, this study indicates
that exosomal miR-146a-5p can function as a vital factor to
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regulate the pathological processes of neurogenesis resulting
from depression.

Intriguingly, in vivo experiments showed that neuron-
derived exosomes decreased the levels of pro-inflammatory
cytokines (IL-1β, IL-6, and TNFα; Li et al., 2020). With more
detailed research, miR-207 was found to be overexpressed
in exosomes and experiments confirmed that exosomal
miR-207 directly targeted TLR4 interactor with leucine-rich
repeats (Tril) and inhibited NF-κB signaling in astrocytes. In
conclusion, exosomal miR-207 could decrease the release of
pro-inflammatory cytokines and inhibit the expression of Tril in
brain, which provides promising molecular therapies to decrease
antidepressant activity.

Exosomal ncRNA as a potential
biomarker in the diagnosis of CNS
diseases

Society has witnessed a skyrocketing increase in
the incidence of CNS diseases, such as brain tumors,
neurodegenerative diseases (AD, PD, etc.), stroke, epilepsy,
MS, and ALS, which have seriously undermined the quality of
life and substantially increased economic and societal burdens
(Zhang et al., 2021). Thus, early diagnosis and treatment
strategies with a good prognosis are needed to reduce the
harm to the physical and mental health of individuals and to
relieve the financial burden of families and the social medical
pressure. At present, medical checkups and imaging studies,
such as electroencephalogram, magnetic resonance imaging,
and neuropsychological examination, are the gold standard
diagnostic methods for patients with CNS disease. While these
methods do help some people get diagnosed and treated, the
early stages of CNS disease are not visual, and psychiatric
symptoms often represent the clinical onset and refractory
period of such diseases, thus potentially leading to misdiagnosis,
delays in treatment, and worse outcomes (Menculini et al.,
2021). Moreover, the neurological test cannot accurately
determine the subtype and stage of CNS disease due to the
subjectivity of doctors and imperceptible differences between
very similar symptoms. Many studies have reported some
biomarkers for CNS disease diagnosis, including circulating
proteins, enzymes, and circulating DNAs, but these markers
also have inconvenient drawbacks. For example, the number is
too small to detect, samples are difficult to collect, the sensitivity
is inadequate, and the specificity needs to be improved (Olsson
et al., 2011; McKeever et al., 2018; Yang T. T. et al., 2018; Lange,
2021). However, as we mentioned above, exosomes contain
multifarious functional ncRNAs that may reflect the typical
stages and types of CNS diseases (Xia et al., 2019; He et al.,
2021). Moreover, exosomal ncRNAs are relatively steadily
expressed and are readily accessible in a variety of human

biofluid types (Bullock et al., 2015). Furthermore, given the
irreplaceable role of exosomal ncRNAs in physiological and
pathological processes in CNS diseases, exosomal ncRNAs
are an emerging field for clinical diagnosis and have attracted
increasing attention (Xu et al., 2018; Liu et al., 2019; Xia et al.,
2019; Hornung et al., 2020; Wang and Zhang, 2020; Yu et al.,
2021; Table 4).

These factors make exosomal ncRNAs the most promising
biomarkers of CNS diseases. For example, in 2021, Liu observed
increased levels of ABCA1-labeled exosomal miRNA-135a in
the CSF of the AD group compared to those of the control
group (P < 0.05) and significantly increased levels in mild
cognitive impairment (MCI) and dementia of Alzheimer-type
(DAT) patient groups compared to those of the control group
(P < 0.05; Liu C. G. et al., 2021). Another study proved that
20 exosomal miRNAs showed distinct differences in the AD
group in preliminary screening, and seven of these exosomal
miRNAs (miR-342-3p, miR-141-3p, miR-342-5p, miR-23b-3p,
miR-24-3p, miR-125b-5p, and miR-152-3p) were sufficient to
predict the status of an individual sample with 83%–89%
accuracy (Lugli et al., 2015). Additionally, manifold other studies
have certified exosomal ncRNAs as a diagnostic tool for CNS
diseases (Table 5).

As stated, lncRNAs play important roles in the pathological
development of various CNS diseases accompanied by
upregulation or downregulation of expression, suggesting
that lncRNAs could be biomarkers for CNS disease
diagnosis and meet additional biological and statistical
criteria. In 2020, Zou et al. (2020) found highly upregulated
expression of linc-POU3F3 in plasma L1CAM exosomes
of PD patients compared with healthy controls (Zou
et al., 2020). Moreover, a recent study published by
Wang Q. et al. (2020) revealed 15 PD-relevant exosomal
lncRNAs with upregulated expression and 24 exosomal
lncRNAs with downregulated expression. For example,
among those differentially expressed exosomal lncRNAs,
MSTRG.242001.1 and MSTRG.169261.1 were highly expressed
in PD patients. Hence, exosomal linc-POU3F3, lncRNA-
MSTRG.242001.1, and lncRNA-MSTRG.169261.1 might be
potential biomarkers to improve the diagnostic efficiency
of PD.

Except for miRNAs and lncRNAs, which are classical
noncoding RNAs, there are still plenty of other exosomal
ncRNAs that can serve as promising biomarkers. For instance,
the team of Jain et al. defined a combined signature consisting
of three exosomal miRNAs (miR-27a-3p, miR-30a-5p, and miR-
34c) and three exosomal piRNAs (piR_019324, piR_019949, and
piR_020364) that were appropriate to diagnose AD with an AUC
of 0.83 (Jain et al., 2019).

Not only could exosomal ncRNAs be used as biomarkers to
diagnose complex CNS diseases, but among these ex-ncRNAs,
they also favor distinguishing analogous neurodegenerative
diseases and judging progression and subtype. For example,
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TABLE 4 The biomarker potential of exosomal ncRNAs in Alzheimer’s diseases, CNS tumors, multiple sclerosis, epilepsy, and amyotrophic lateral
sclerosis.

Diseases Classification
of ncRNA

ncRNAs Regulation ROC analysis Biomarker
potential

Source of
exosome

Reference

Alzheimer’s
disease

miRNA miR-135a Up - A biomarker for
AD early stages
diagnosis

Serum, CSF Liu C. G. et al.
(2021)

miR-193b Down - A blood-based
biomarker for MCI
and DAT patients

Blood, CSF Liu et al. (2014)

miR-34b, miR-29a Up AUC = 0.812,
sensitivity = 83%
(vs. VaD)
specificity = 74%
(vs. VaD);
AUC = 0.832
sensitivity = 63%
(vs. VaD)
specificity = 96%
(vs. VaD)

Biomarkers to
discriminate
clinically similar
neurodegenerative
and
vascular-related
diseases

Serum Barbagallo et al.
(2020)

miR-16-5p,
miR-451a,
miR-605-5p

Down AUC = 0.760
AUC = 0.951
AUC = 0.706

A biomarker for
YOAD diagnosis

CSF McKeever et al.
(2018)

miR-125b-5p Up AUC = 0.723

miR-384 Up AUC = 0.991
(vs. PDD)
sensitivity = 99.07%
(vs. PDD)
specificity = 100%
(vs. PDD)
AUC = 0.991
(vs. VaD)
sensitivity = 99.10%
(vs. VaD)
specificity = 100%
(vs. VaD)

A biomarker for
AD diagnosis and
discrimination
between AD, VaD,
and PDD

Serum Yang T. T. et al.
(2018)

miR-135a Up AUC = 0.598
(vs. PDD)
sensitivity = 75.70%
(vs. PDD)
specificity = 46.67%
(vs. PDD);
AUC = 0.721
(vs. VaD)
sensitivity = 89.70%
(vs. VaD)
specificity = 55%
(vs. VaD)

lncRNA Bace1-AS Up AUC = 0.761
sensitivity = 87.5%
specificity = 61.3%

A novel biomarker
for AD diagnosis

Plasma Wang D. et al. (2020)

circRNA KIAA1586 Up - A potential
biomarker for AD
diagnosis

Blood Zhang et al. (2019)

piRNA piR_019949 Up AUC = 0.96 Predict conversion
from MCI to AD
dementia

CSF Jain et al. (2019)

piR_020364 AUC = 0.89 A biomarker for
classifying AD
dementia patients

piR_019324 Down

CNS tumor miRNA miR-454-3p Down AUC = 0.866
sensitivity = 79.17%
specificity = 91.67%

An exosomal
biomarker for
glioma diagnosis
and prognosis

Serum Shao et al. (2019)

miR-21 Up AUC = 0.927 (vs.
health)
AUC = 0.872
(grade III/VI
vs. II)
AUC = 0.751
(grade VI vs. II)

A biomarker for
glioma diagnosis,
prognosis and
different grade

CSF Shi et al. (2015)

(Continued)
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TABLE 4 (Continued)

Diseases Classification
of ncRNA

ncRNAs Regulation ROC analysis Biomarker
potential

Source of
exosome

Reference

RNU6 Up AUC = 0.852 A biomarker for
GBM diagnosis

Serum Manterola et al.
(2014)

miR-574-3p Up AUC = 0.738

miR-320 Up AUC = 0.719

lncRNA HOTAIR Up AUC = 0.913
sensitivity = 86.1%
specificity = 87.5%

A biomarker for
GBM diagnosis

Serum Tan et al. (2018)

HOTAIR Up - Promising
prognostic
predictors for
GBM

Serum Wang Z. et al. (2021)

SOX21-AS1 Down

STEAP3-AS1 Up

circRNA circNFIX Up AUC = 0.885 A biomarker for
glioma diagnosis
and prognosis

Serum Ding et al. (2020)

circHIPK3 Up - A potential
biomarker for the
TMZ-resistant
glioma diagnosis

Serum Yin and Cui (2021)

circMMP1 Up AUC = 0.8144 A biomarker for
glioma diagnosis
and prognosis

Serum Yin and Liu (2020)

Multiple
sclerosis

miRNA miR-15b-5p Up AUC = 0.740 Biomarkers for
RRMS diagnosis

Ebrahimkhani et al.
(2017)

miR-122-5p Down AUC = 0.878 Biomarkers for
RRMS diagnosis

Serum Selmaj et al. (2017)

hsa-miR-196b-5p Down AUC = 0.866

miR-19b, miR-25
and miR-92a

Up - Potential exosomal
biomarkers for MS
diagnosis

Plasma Kimura et al. (2018)

miR-326 Up - A biomarker for
MS diagnosis

Serum Azimi et al. (2019)

miR-22-3p,
miR-660-5p

Down - Biomarkers for MS
diagnosis and the
response after
IFN-b therapy

Serum Manna et al. (2018)

Epilepsy miRNA miR-328-3p Up AUC = 0.63 (vs.
TLE)
AUC = 0.90 (EAS
vs. EBS)

A novel biomarker
for epilepsy
diagnosis and
different subtypes

Plasma Raoof et al. (2018)

miR-8071 Down AUC = 0.932
sensitivity = 83.33%
specificity = 96.67%

A novel biomarker
for TLE-HS
diagnosis

Plasma Yan et al. (2017)

miR-451a,
miR-21-5p,
miR-19b-3p

Up
Down
Up

AUC = 0.80 Biomarkers for
TLE diagnosis

CSF Raoof et al. (2017)

ALS miRNA miR-27a-3p Down - Biomarkers for
ALS diagnosis

Serum Xu et al. (2018)

miR-124-3p Down - A disease stage
indicator in ALS

CSF Yelick et al. (2020)

miR-199a-3p
miR-151a-5p

Up - Biomarkers for
ALS/MND
diagnosis

plasma Banack et al. (2020)

serum exosomal miR-193b was downregulated, while miR-135a
and miR-384 were upregulated in AD patients compared to
control groups (Yang T. T. et al., 2018). Among these three
miRNAs, the expression of serum exosomal miR-384 was
higher in AD patients than in vascular dementia (VD) and
Parkinson’s disease with dementia (PDD) patients (Yang T. T.
et al., 2018). This result indicated that miR-384 appeared to

be a biomarker for discriminating AD, VD, and PDD. It is
worth setting forth that a reduced content of exosomal miR-
16-5p in young-onset AD (YOAD, <65 years), but not in
late-onset AD (LOAD, >65 years), was detected in CSF-derived
exosome samples compared to controls (McKeever et al., 2018).
Interestingly, with further study, Gui and colleagues analyzed
several miRNAs, mRNA transcripts, and lncRNAs present in
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TABLE 5 The biomarker potential of exosomal ncRNAs in Parkinson’s diseases and stroke.

Diseases Classification
of ncRNA

ncRNAs Regulation ROC
analysis

Biomarker
potential

Source of
exosome

Reference

Parkinson
disease

miRNA miR-34a-5p Up AUC = 0.740 A potential
biomarker for PD
diagnosis

Plasma Grossi et al. (2021)

miR-331-5p Up AUC = 0.849 Biomarkers for PD
diagnosis

Plasma Yao et al. (2018)

miR-505 Down AUC = 0.898

miR-19b Down AUC = 0.753
sensitivity = 68.8%
specificity = 77.5%

Biomarkers for PD
diagnosis

Serum Cao et al. (2017)

miR-24 Up AUC = 0.908
sensitivity = 81.7%
specificity = 85.0%

miR-195 Up AUC = 0.697
sensitivity = 82.6%
specificity = 55.0%

miR-1 Down AUC = 0.920 Reliable
biomarkers for PD
diagnosis

CSF Gui et al. (2015)

miR-409-3p Up AUC = 0.970

miR-19b-3p Down AUC = 0.705

miR-10a-5p Up AUC = 0.900

lncRNA RP11-462G22.1,
PCA3

Up - CSF Gui et al. (2015)

POU3F3 Up AUC = 0.763
sensitivity = 68%
specificity = 72%

A biomarker is
significantly
correlated with PD
severity and for
PD diagnosis

Plasma Zou et al. (2020) and
Kuo et al. (2021)

AK127687,
AX747125,
SNCA-AS1,
UCHL1-AS1,
PINK1AS1,
MAPT-AS1

Down - Representing novel
targets for PD
diagnosis

Blood Elkouris et al. (2019)

Stroke miRNA miR-134 Up AUC = 0.834
sensitivity = 75.3%
specificity = 72.8%

A novel biomarker
for the diagnosis
and prognosis of
stroke

Serum Zhou et al. (2018)

miR-223 Up - A potential
biomarker
correlated with
stroke severity and
stroke diagnosis

Blood Chen et al. (2017b)

miR-21-5p Up AUC = 0.714
(vs. SIS)
AUC = 0.734
(vs. RIS)

Biomarkers for
different phases
and diagnoses of
stroke

Plasma Wang et al. (2018)

miR-30a-5p Up AUC = 0.826
(vs. HIS)

miR-9
miR-124

Up AUC = 0.8026
AUC = 0.6976

Promising
biomarkers for the
ischemic stroke
diagnosis and
predict the
ischemic damage

Serum Ji et al. (2016)

CSF exosomes from both PD and AD patients (Gui et al., 2015).
In particular, miR-10a-5p, let-7c-3p, miR-153, and miR-409-3p
were obviously upregulated in PD CSF exosomes compared
with AD and control exosomes. However, exosomal miR-1 and
exosomal miR-19b-3p were downregulated (Gui et al., 2015;
Leggio et al., 2017). These studies indicated the potential of
a specific subset of exosomal miRNAs to distinguish between
AD and PD. In conclusion, existing studies have verified

the feasibility of large-scale clinical applications of exosomal
ncRNAs as biomarkers for CNS disease diagnosis and the
differentiation of disease stages and types (Chen J. J. et al., 2019;
He et al., 2021).

Above all, developing performance accuracy methods for the
detection, differentiation, and prognosis of CNS diseases will be
clinically meaningful. These above mentioned studies suggest
that exosomal ncRNAs have shown outstanding potential as
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novel tools for CNS disease diagnosis, and their clinical
applications deserve further investigation.

Exosomal ncRNA as a potential
therapeutic strategy for CNS
diseases

Once a CNS disease occurs, it usually cannot be repaired by
the body’s internal repair system. Instead, it usually needs to be
treated with advanced medical care. Unfortunately, CNS disease
seems to be increasing around the world. However, this has also
brought about an increase in research and treatments, though
they have their own defects more or less. A major problem
to overcome in CNS disease treatment is trying to overcome
the problem of BBB. The BBB protects the brain from many
types of diseases but also makes it difficult to create a drug
treatment that targets the specific regions in brain (Dong, 2018).
Because of the biocompatibility of exosomes and the singular
function of ncRNAs, scientists in mounting numbers have been
exploring exosomal ncRNAs as a promising strategy for CNS
disease therapy (Li et al., 2018; Iranifar et al., 2019; Xia et al.,
2019; Wu and Kuo, 2020; Dolati et al., 2021; Mattingly et al.,
2021; Figure 3).

Exosomes, which are secreted by the majority of cells, are
involved in numerous neurophysiological functions, such as
growth, differentiation, proliferation, and cell death (Lopez-
Verrilli and Court, 2013). Since liposoluble exosomes can easily
cross the BBB, they might be used as natural nanoscale drug
delivery vesicles (Yu et al., 2020). In addition, since exosomes are
part of the body’s intercellular carriers of patients, using them to
transfer drugs into the recipient cells would probably not evoke
the immune system (Iranifar et al., 2019).

This dual advantage could potentially make exosomes a
strategy with safety and effectiveness for the treatment of
CNS diseases. For example, in vitro and in vivo studies have
demonstrated that dopamine can be successfully loaded into
exosomes and delivered to the striatum and substantia nigra.
This had a better therapeutic effect in a PD mouse model
and showed less toxicity than free dopamine by intravenous
systemic administration (Qu et al., 2018). Similarly, many studies
have reported the successful loading of exosomes with catalase,
dopamine, catalase mRNA, and small interfering RNA (Alvarez-
Erviti et al., 2011; Luo et al., 2020). The findings disclosed the
therapeutic potential of exosome-mediated targeting for CNS
disease treatment and showed striking therapeutic effects.

In addition to exosomes themselves, the ncRNAs in the
exosomes are regarded as another restorative option. This could
exert their effects by influencing various cellular and molecular
pathways involved in CNS diseases. Emerging evidence suggests
that specific exosomes induce a pro-neurogenesis effect,
which is attributed to histone deacetylase 6 inhibition via

the transfer of exosomal miR-26a. Thus, Ling et al. (2020)
indicated that exosomal ncRNAs can be used as a novel and
promising strategy for brain ischemia. In vivo tumorigenesis
experiments performed by Chai showed that exosomal lnc-
ROR1-AS1 promoted glioma development by inhibiting the
miR-4686 axis, indicating that upregulating the expression of
exosomal lnc-ROR1-AS1 could alleviate the progression of
glioma (Chai et al., 2020). Therefore, it seems that exosomal
ncRNAs could be used as potential therapeutic candidates in
CNS disease treatment.

In conclusion, ongoing studies have proposed that exosomes
could be applied as a promising therapeutic delivery system
by targeting their cargos to recipient cells, and ncRNAs in
endogenous cell-derived exosomes may have the potential to
adjust neurogenesis to treat various CNS diseases. However,
exosomes and the ncRNAs they contain, are commonly limited
in scale (Liu et al., 2022a,b). We still do not have comprehensive
methods to investigate this (Liu Y. et al., 2021). This wealth
of raw information requires time-consuming experiments to
pinpoint the benefits and harm of less conserved ncRNAs in the
pathogenesis of CNS diseases (Xia et al., 2019). Further study of
the association between other biomolecules and exosome needs
to be considered in the future (Ehrlich et al., 2016; Liu et al.,
2022c,d). Thus, a massive amount of further study is needed
before these therapeutic approaches will be available for clinical
application.

Conclusions and perspectives

CNS diseases persist to be one of the most demanding
burdens on medical and health care services as well as
being one of the most complex of diseases. Moreover, our
understanding of their pathologic mechanisms is relatively poor.
Their pathogenesis has long been a source of confusion, which
is the reason for the difficulty in early diagnosis and the poor
prognosis of CNS diseases. Exosomes constitute a novel form
of cell-to-cell interaction and communication with manifold
components. Current studies indicate that exosomes in the
microenvironment have crucial impacts on both interneuron
and neuron-glia cells by transferring their contents, such as
proteins, lipids, and ncRNAs. Moreover, exosomal ncRNAs,
including miRNAs, lncRNAs, circRNAs, and piRNAs, regulate
physiological functions and play vital roles in sustaining CNS
homeostasis. Convincing discoveries present the potential value
of exosomal ncRNAs as diagnostic tools and therapeutic
strategies in clinical applications due to their ability to cross the
biological barrier and deliver cargo to recipient cells.

However, as mentioned above, the lack of perception of
the mechanisms of CNS diseases and approaches for selecting
disease-specific exosomal ncRNAs and limitations in scale are
nonnegligible barriers to their application in clinical settings.
The large amounts of exosomal ncRNA information available
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FIGURE 3

Schematic representation of the role of exosomal ncRNAs as a potential therapeutic strategy for CNS diseases. (A) Liposoluble exosomes can
cross the BBB easily. They are intended as natural nanoscale vesicles; therefore, they can be engineered to delete vehicles that contain specific
drugs or biological ncRNAs. (B) The biological functions of exosomal ncRNAs in the brain microenvironment.

require time-consuming experiments to pinpoint the valuable
functions of these ncRNAs in the pathogenesis of CNS diseases.

This will undoubtedly require large amounts of manpower,
material and financial resources, and will require the screening
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of a large clinical sample size. Furthermore, it is worth pointing
out that exosomal ncRNAs regulated by pathogenic genes
are heterogeneous. Thus, further extensive research needs to
distinguish the differences between the initial heterogeneity
of the cell response and minor adjustments of pathological
processes.

Meanwhile, pioneering studies that focus on exosomal
ncRNAs in the CNS have produced results that are lacking
precision and sometimes even contradict each other.
Additionally, these studies ignore the fact that subtly monitoring
and commanding exosomes to recipient regions in the
application of exosomal ncRNA as therapeutic “drugs” is still
a challenging prospect. In conclusion, based on the present
detailed insights into the current state of ncRNAs, a better
understanding of the expression patterns and pathological
roles of exosomal ncRNAs in CNS diseases is needed. The
recruitment of exosomal miRNAs as promising biomarkers in
the diagnosis and therapeutic strategies in the treatment of CNS
diseases is a near possibility.
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