AUTHOR=Zhang Pan , He Zhaoxuan , Mao Yangke , Sun Ruirui , Qu Yuzhu , Chen Li , Ma Peihong , Yin Shuai , Yin Tao , Zeng Fang TITLE=Aberrant resting-state functional connectivity and topological properties of the subcortical network in functional dyspepsia patients JOURNAL=Frontiers in Molecular Neuroscience VOLUME=15 YEAR=2022 URL=https://www.frontiersin.org/journals/molecular-neuroscience/articles/10.3389/fnmol.2022.1001557 DOI=10.3389/fnmol.2022.1001557 ISSN=1662-5099 ABSTRACT=

Functional dyspepsia (FD) is a disorder of gut-brain interaction. Previous studies have demonstrated a wide range of abnormalities in functional brain activity and connectivity patterns in FD. However, the connectivity pattern of the subcortical network (SCN), which is a hub of visceral information transmission and processing, remains unclear in FD patients. The study compared the resting-state functional connectivity (rsFC) and the global and nodal topological properties of SCN between 109 FD patients and 98 healthy controls, and then explored the correlations between the connectivity metrics and clinical symptoms in FD patients. The results demonstrated that FD patients manifested the increased rsFC in seventeen edges among the SCN, decreased small-worldness and local efficiency in SCN, as well as increased nodal efficiency and nodal degree centrality in the anterior thalamus than healthy controls (p < 0.05, false discovery rate corrected). Moreover, the rsFC of the right anterior thalamus-left nucleus accumbens edge was significantly correlated with the NDSI scores (r = 0.255, p = 0.008, uncorrected) and NDLQI scores (r = −0.241, p = 0.013, uncorrected), the nodal efficiency of right anterior thalamus was significantly correlated with NDLQI scores (r = 0.204, p = 0.036, uncorrected) in FD patients. This study indicated the abnormal rsFC pattern, as well as global and nodal topological properties of the SCN, especially the bilateral anterior thalamus in FD patients, which enhanced our understanding of the central pathophysiology of FD and will lay the foundation for the objective diagnosis of FD and the development of new therapies.