AUTHOR=Herrmann Tanja , Gerth Melanie , Dittmann Ralf , Pensold Daniel , Ungelenk Martin , Liebmann Lutz , Hübner Christian A. TITLE=Disruption of KCC2 in Parvalbumin-Positive Interneurons Is Associated With a Decreased Seizure Threshold and a Progressive Loss of Parvalbumin-Positive Interneurons JOURNAL=Frontiers in Molecular Neuroscience VOLUME=14 YEAR=2022 URL=https://www.frontiersin.org/journals/molecular-neuroscience/articles/10.3389/fnmol.2021.807090 DOI=10.3389/fnmol.2021.807090 ISSN=1662-5099 ABSTRACT=
GABAA receptors are ligand-gated ion channels, which are predominantly permeable for chloride. The neuronal K-Cl cotransporter KCC2 lowers the intraneuronal chloride concentration and thus plays an important role for GABA signaling. KCC2 loss-of-function is associated with seizures and epilepsy. Here, we show that KCC2 is expressed in the majority of parvalbumin-positive interneurons (PV-INs) of the mouse brain. PV-INs receive excitatory input from principle cells and in turn control principle cell activity by perisomatic inhibition and inhibitory input from other interneurons. Upon Cre-mediated disruption of KCC2 in mice, the polarity of the GABA response of PV-INs changed from hyperpolarization to depolarization for the majority of PV-INs. Reduced excitatory postsynaptic potential-spike (E-S) coupling and increased spontaneous inhibitory postsynaptic current (sIPSC) frequencies further suggest that PV-INs are disinhibited upon disruption of KCC2.