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Transcriptionally profiling minor cellular populations remains an ongoing challenge

in molecular genomics. Single-cell RNA sequencing has provided valuable insights

into a number of hypotheses, but practical and analytical challenges have limited

its widespread adoption. A similar approach, which we term single-cell type RNA

sequencing (sctRNA-seq), involves the enrichment and sequencing of a pool of cells,

yielding cell type-level resolution transcriptomes. While this approach offers benefits in

terms of mRNA sampling from targeted cell types, it is potentially affected by off-target

contamination from surrounding cell types. Here, we leveraged single-cell sequencing

datasets to apply a computational approach for estimating and controlling the amount of

off-target cell type contamination in sctRNA-seq datasets. In datasets obtained using a

number of technologies for cell purification, we found that most sctRNA-seq datasets

tended to show some amount of off-target mRNA contamination from surrounding

cells. However, using covariates for cellular contamination in downstream differential

expression analyses increased the quality of our models for differential expression

analysis in case/control comparisons and typically resulted in the discovery of more

differentially expressed genes. In general, our method provides a flexible approach for

detecting and controlling off-target cell type contamination in sctRNA-seq datasets.

Keywords: brain, RNA-seq, contamination, single cell, LCM-seq, TRAP-seq

INTRODUCTION

Traditional RNA-sequencing, which occurs on homogenized bulk tissue samples, has made it
possible to have a global view on the entire transcriptome of a great many tissues and species
with relative ease and affordability. Although the technology is mature and its analysis is
well-documented, it lacks the ability to capture changes in minor cellular populations. For this
purpose, newer technologies (single cell RNA-sequencing) are typically used for analysis at the
single cell (rather than whole tissue) level (Kim et al., 2015). Although these enable a powerful
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new view on transcriptomics, they are technically challenging
and artifacts such as so-called “dropout” complicate data analysis
(Kim et al., 2015). These and high costs remain limiting factors
in the widespread adoption of these methods. To balance
between the sensitivity of single cell sequencing and the relative
affordability of bulk tissue RNA sequencing (RNA-seq), cell type
specific transcriptomes are now also being obtained using a
variety of technologies and methods (Kim et al., 2015; Yuan
et al., 2017). These methods typically involve the enrichment of
a specific cell type of interest by morphological or fluorescence-
based approaches, followed by the sequencing of a pool of
these cells, usually resulting in one pooled cell type group
per sample. They are collectively termed single cell type RNA-
seq (sctRNA-seq).

There are a number of advantages of sctRNA-seq compared
to bulk tissue RNA-seq or even single cell RNA-seq (scRNA-
seq). Relative to bulk RNA-seq, sctRNA-seq (and scRNA-seq) can
reveal changes in gene expression in minor or rare cell types, or
cell types of a priori interest, which may obscured by changes
in more prevalent cellular populations in traditional expression
profiling methods (Hwang et al., 2018). Relative to scRNA-seq,
sctRNA-seq affords the choice to sequence mRNA from pools
of cells to a greater depth, which could greatly simplify the cost
for collection, analysis, and interpretation of these data. Another
important difference is that with sctRNA-seq (as compared to
scRNA-seq), cell type labels are known a priori rather than
assigned by cluster associations. For more information on the
considerations and differences between these methods, we refer
readers to (Hwang et al., 2018; Chen et al., 2019).

Laser capture microdissection coupled with RNA-sequencing
(LCM-seq) is one such technology for sctRNA-seq. In LCM-
seq, a thin slice of tissue is mounted under a high power
microscope with the cells of interest visibly labeled for targeted
excision by a laser and collected for sequencing (Bonner
et al., 1997; Kummari et al., 2015). There are a number
of approaches for labeling cells, including using transgenic
animals or through the use of fluorescence in situ hybridization
(Progatzky et al., 2013). LCM-seq differs from other methods for
sctRNA-seq, including Fluorescence Assisted Cell Sorted (FACS)
and immunopurification-based methods such as Translating
Ribosome Affinity Purification (TRAP-seq), in that it affords the
ability to visually target cells in situ prior to capture. LCM-seq has
been widely adopted in the context of cell type specific profiling,
including inmotor neurons (Bouçanova et al., 2020; Harjuhaahto
et al., 2020; Nizzardo et al., 2020), enterocytes (Moor et al.,
2018), cortical (Pereira et al., 2017) and hippocampal neurons
(Deng et al., 2019), and cortical interneurons (Shukla et al., 2019;
Newton et al., 2020).

One potential challenge with LCM-seq is that mRNA from
interfering cell bodies and processes may bemicrodissected along
with the cell type of interest (Okaty et al., 2011; Kummari et al.,
2015; Rocco et al., 2017). This phenomenon, which we term
off-target cell type contamination, may arise in part due to
physical overlap or close apposition by surrounding cells or long-
range processes (illustrated schematically in Figure 1A). Off-
target cellular contamination is especially relevant in brain tissue,
in which diverse populations of distinct cell types are densely

FIGURE 1 | Illustration for potential off-target cellular contamination in

single-cell type RNA-seq studies. (A) A schematic showing cell targeted

mRNA sampling in LCM-seq, illustrating targeted sampling of specific cells

(green) along with the potential for undesired sampling from surrounding cells

(orange). In this case, the desired SST interneuron (green) will be

microdissected by cutting around the black path. In this area, processes of the

orange cell (orange) lay above and below the targeted cell (green). (B)

Expression levels of characteristic cell type specific marker genes for

pyramidal cells (Slc17a7) and SST interneurons (Sst) in “Single Cell” (single cell

Allen Brain Institute reference data) and two LCM-Seq experiments: “Aging”

(GSE119183) and “Stress” (GSE145521). Note the presence of relatively high

levels of Slc17a7 in samples from SST, PV, and VIP interneurons in the

LCM-Seq Aging and Stress datasets, indicating likely off-target contamination.

packed and surrounded by a myriad of other cell types (Kummari
et al., 2015; Tremblay et al., 2016). While this potential issue
has been noticed previously in the context of microarray data
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(Okaty et al., 2011) and in other data types, including Patch-
seq (Tripathy et al., 2018), to our knowledge there is currently
no approach that attempts to systematically identify this issue
across sctRNA-seq datasets and assess its potential impact on
downstream analyses.

In order to gain a deeper understanding about how off-target
cellular contamination might affect data analysis in sctRNA-
seq datasets, we applied a computational method to estimate
the extent of off-target cellular contamination in sctRNA-seq
datasets. Our approach relies upon the availability of high-quality
scRNA-seq data as a reference for comparisons. The output of
the analysis is a set of coefficients that estimate, on a per-sample
basis, the degree of off-target cellular contamination per cell type
in the surrounding tissue. We present two primary use-cases for
these cellular contamination estimates in the context of brain
sctRNA-seq analysis. The first is in simply assessing the quality
and purity of collected sctRNA-seq derived transcriptomes. The
second is in using these coefficients in the context of condition-
specific differential expression analyses to help correct for the
confounds of sample-to-sample and across-condition variances
in sample quality.

MATERIALS AND METHODS

Access and Pre-processing of Single Cell
Type RNA-seq Data
Raw reads for each LCM-seq library were downloaded from
GEO (GSE119183 and GSE145521) and aligned using STAR
(v2.7.5) (https://github.com/alexdobin/STAR) to the mouse
genome build mm10_ensembl98. The following options were
used: —outSAMtype BAM SortedByCoordinate—quantMode
GeneCounts—outReadsUnmapped Fastx—limitBAMsortRAM
10000000000—outFilterMultimapNmax 1. PCR duplicates
were removed by running STAR on the original output with
the options: —bamRemoveDuplicatesType UniqueIdentical—
runMode inputAlignmentsFromBAM. Only reads that aligned
uniquely were retained. After mapping, quantification was
performed by aligning to exons and introns separately. Other
sctRNA-seq data were downloaded as filtered count matrices
from Gemma (Lim et al., 2020).

Access of Single Cell Reference Dataset
As a reference, we used single cell transcriptomic profiles from
the Allen Institute for Brain Sciences from multiple neocortical
regions and the hippocampus from mouse brain samples. To
our knowledge, this is the largest and highest quality publicly
available data of this type. Single cell transcriptomes were
downloaded from the Brain Map Portal (https://portal.brain-
map.org/atlases-and-data/rnaseq) for mouse whole cortex and
hippocampus SMART-seq (2019) as cell metadata and gene
expression matrices for introns and exons separately.

Comparison of Single Cell Type RNA-seq
Data to Single Cell Reference Data
Here, we give a general overview of the analytical workflow before
going into further detail below.

1) We generate a list of marker genes for each cell type using the
single cell reference data.

2) We then summarize the single cell reference data to the level
of cell types by taking the average gene-wise expression level
of all cells within each type.

3) We evaluate the similarity of sctRNA-seq data to the
summarized scRNA-seq data. Similarity is scored as the
Pearson correlation of the expression levels of the marker
genes in the test sctRNA-seq data to the summarized
scRNA-seq expression profiles generated in 2). This key step
generalizes and builds on a method described by Tripathy
et al. (2018) in which a scalar contamination index is
generated using similar assumptions.

4) To contextualize these scores against the expected biological
similarities, we scale “contamination coefficients” based on
the average correlation of a subsample of reference single cells
to the collapsed reference data generated in 2).

Determination of Cell Type Specific Marker Genes
Seurat’s (v3.1.5) FindAllMarkers function was used with MAST
(v1.12.0) differential expression testing to generate a robust set
of cell type specific marker genes on the single cell Allen Brain
data (Stuart et al., 2019). MAST is well-suited for this task as it
utilizes a hurdle model tailored for single cell RNA-seq (scRNA-
seq) data (Finak et al., 2015). To ensure our cell typemarker genes
exhibit a relatively binary (on/off) expression pattern between the
cell type of interest and all other cell types, we applied stringent
settings such that there must be at least a 40% difference in the
fraction of detection between the two populations. Only genes
that exhibited at least a two-fold difference in expression between
populations (at an FDR of 0.01) were retained for downstream
analysis (Supplementary Table 1).

Calculation of Cluster Centroids
To facilitate pairwise gene correlations, we collapsed the cell-level
gene expression matrices into per-cluster truncated interquartile
means of the log2 counts-per-million (i.e., after excluding the
lowest and highest 25% of normalized gene counts) of each gene.

Per-sample Correlation and Normalization Scaling
The Pearson correlation of the log2 normalized marker gene
expression levels of each sample in the test data (enriched for
a single cell type) to the expression centroids of the reference
cell types (defined above) is used as a proxy for sample
purity. This can be expressed mathematically as [cor(log2(1 +

CPM)markers, test, log2(mean(1 + CPM))markers, reference]. It is
calculated on the expression of marker genes only (as opposed
to the whole gene-set) because most of the variance in their
expression is expected to be due to presence of off-target cell types
rather than true biological differences. To reduce the impact of
outlying marker genes and to estimate the confidence interval
of these correlations, we randomly subsample a smaller fraction
(60%) of the total marker genes (with an equal number of marker
genes per cell type), calculate the correlation of each sample
to every reference cell type, and repeat for 10,000 iterations.
We then use the average correlation across all iterations as the
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consensus correlation coefficient and retain the entire set for
downstream statistical analysis.

These coefficients are more readily interpretable after they
are scaled by the expected biological correlation. For instance, a
sample enriched for cell type A whose marker gene expression
profile correlates with the reference cell type B at a Pearson’s r of
0.6 may naively seem to be unexpectedly highly correlated, but if
the correlation of a true cell of type A to the same reference is also
0.6, the sample is actually behaving exactly as expected.

Using this approach, to obtain estimates on this expected
level of biological similarity between cell types, we selected a
random subsample of single cells in the reference data and
correlated their expression profiles against the centroids of the
same reference data (as described above). Since each cell in
the reference data is annotated with its “true” cell type, this
yielded a set of expected correlation coefficients for each cell type
to every cell type. Scaling the correlation coefficients obtained
on the test data to the respective set of expected coefficients
thus results in a fractional score where the test data correlates
at x times the expected value, producing easily interpretable
purity scores.

Differential Expression Analysis
DESeq2 (v1.26.0) was used for differential expression analysis,
pre-filtering genes that had zero counts in more than half of
the samples per condition to ensure analysis was restricted
to those which we had sufficient power to call differential
expression (Love et al., 2014). An FDR threshold of 0.1 was
used to select differentially expressed genes (DEGs). We
performed this analysis both with and without correlation
coefficients (for the top four off-target cell types) reflecting
off-target contamination scores. To assess the amount of overlap
between these two analyses, we generated hypergeometric
p-values using the RRHO (v1.26.0) package in R (Rosenblatt
and Stein, 2020). To more objectively evaluate which model
(whether including contamination coefficients or not) better fits
these data, we calculated the Akaike information criterion
(AIC) for each gene’s model fit. Under this estimator,
lower scores correspond to less information loss, and thus,
the model with lowest gene-wise AIC value fits the data
the best.

Synthetic Data
We generated synthetic cell type specific gene expression data
according to methods outlined in Soneson and Delorenzi
(2013) for 20,000 synthetic genes with 3,000 genes differentially
expressed. Cellular identities were added to these “pure” synthetic
clusters by appending the marker gene expression profiles
corresponding to the reference data centroids outlined above
(such that each pure cluster would correlate with its reference cell
types with r2 = 1). Contamination by other synthetic clusters
was then simulated by biasing the expression profiles toward the
expression level of other pure clusters by a predefined fraction
with a set amount of inter- and intra-cluster noise. We also
modeled a confounding effect of contamination by biasing high
contamination toward one condition (and low contamination in
the other) for each cluster.

RESULTS

Illustration of Off-Target Cellular
Contamination
As an initial examination into potential off-target contamination
in sctRNA-seq datasets (shown schematically in Figure 1A),
we reanalyzed two recent LCM-seq datasets collected from the
mouse brain, where fluorescence in situ hybridization (FISH)
was used to label specific neuronal cell types prior to LCM-
based cellular isolation (Shukla et al., 2019; Newton et al.,
2020). We contrasted these datasets with an additional dataset
made available by the Allen Institute for Brain Sciences, where
cells were first dissociated and sorted prior to scRNA-seq,
presumed to likely be free from off-target cellular contamination
(Tasic et al., 2018).

We first examined expression of gene expression markers
for various cell types in the reference scRNA-seq dataset.
We found virtually no detected expression of gene expression
markers for off-target cell types in the reference mouse
scRNA-seq dataset. For example, pyramidal cells showed strong
expression of markers known to be expressed in pyramidal
cells, such as Slc17a7 or VGLUT1 (Figure 1B, top row).
Pyramidal cells sampled by scRNA-seq also showed little to
no expression of markers of various subtypes of interneurons,
Pvalb, Sst, or Vip (markers of PV, SST, and VIP GABAergic
interneurons, respectively).

In contrast, in the LCM-seq based sctRNA-seq datasets,
we observed considerable expression of the pyramidal cell
marker, Slc17a7 in each of the PV, SST, and VIP interneuronal
types, suggesting off-target contamination by pyramidal cells.
Contrastingly, we did not observe much or any expression of Sst
mRNA in pyramidal cells, PV, or VIP interneurons, indicating
little off-target contamination contributed by SST interneurons
in other cell types. One explanation for these observations is
that since pyramidal cells are physically larger, more numerous,
and have a greater extent of projections throughout the entire
tissue than interneurons (Erö et al., 2018), they are more likely to
contribute off-target contamination than interneuron cell types.

Brain LCM-Seq Data Is Subject to
Measurable Levels of Contamination
We used this analytical approach to quantify the levels of
off-target cellular contamination in publicly available LCM-seq
datasets. In brief, this approach seeks to quantify the extent
of off-target cell type contamination by scoring each sample’s
transcriptional similarity against each of the cell types available
in the single cell reference data. Specifically, for each sctRNA-seq
sample, the method yields off-target contamination coefficients
per tested cell type in the scRNA-seq reference data. These
coefficients are scaled such that values at or near 1.0 indicate no
detectable off-target contamination and values>1.0 indicates off-
target cellular contamination (see section Materials and Methods
for further details).

As a control, we first applied our approach to calculate
contamination coefficients in an separate scRNA-seq dataset
(Tasic et al., 2016), collected using similar methodologies as our
reference scRNA-seq dataset (Tasic et al., 2018). We found that
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FIGURE 2 | LCM-seq but not scRNA-seq shows off-target cell-type marker expression. (A) Scaled contamination coefficients for an alternative scRNA-seq dataset

(Tasic et al., 2016) that was not used previously as reference data (top row), the LCM-seq Aging dataset, and the LCM-seq Stress dataset (bottom row, left to right).

Y-axis values are scaled to 1.0, which indicates the expected amount of off-target cellular marker expression if the sample was behaving exactly as expected for its

“actual” cell type [based on the scRNA-seq reference data from Tasic et al. (2018)]. The “actual” cell type (for which the sample was enriched) is on the x-axis and the

groups represent the reference cell type from single cell reference data. (B) Scatterplots for the scaled contamination coefficients in the Stress and Aging LCM-seq

datasets for samples enriched for pyramidal cells (PYC Neurons) and SST interneurons (SST Neurons). Each point reflects the off-target cell type group averages

shown in (A).

each of the derived contamination coefficients in this separate
scRNA-seq dataset were centered at or near 1.0, indicating
no or little contamination. However, we noticed in some
cases, such as astrocyte contamination coefficients observed in
pyramidal cells, that the off-target contamination coefficients

modestly diverged from the expected value of 1.0 (Figure 2A
top row). Such minor deviations could be in part due to true
variability (in data quality, biological noise, etc.) between the two
scRNA-seq datasets, but may also demonstrate some uncertainty
in the coefficients.
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TABLE 1 | Summary of simulation experiments.

Contamination Confound FPF FNF AUROC

Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected

None None 12% 2% 10% 3% 0.982 0.981

Low Low 12% 3% 8% 3% 0.863 0.899

High Low 29% 3% 15% 3% 0.799 0.902

High High 79% 5% 33% 14% 0.618 0.677

Summary of synthetic data simulations varying contamination (either low: 5%, high: 20%, or none: 0% by the contaminating group) and confoundedness (either low: 20%, high: 100%,

or none: 0%). False positive/false negative fractions (FPF/FNF) are given as the proportion of calls at FDR < 0.1. Note that lower false positive and negative rates are better.

Applying our approach to the two LCM-seq based sctRNA-seq
datasets, “Stress” and “Aging,” we found that each sctRNA-seq
sample demonstrated some cellular contamination due to several
off-target cell types (Figure 2A, bottom row). For example,
we found that each of the interneuron subtypes in the
LCM-seq datasets displayed a degree of contamination from
pyramidal cells, supporting the qualitative analysis of Slc17a7
gene expression shown in Figure 1B. We also observed off-
target contamination by oligodendrocytes and astrocytes in each
profiled cell type, including pyramidal cells and SST, PV, and
VIP interneurons. Encouragingly, off-target contamination due
to interneuronal cell types observed in pyramidal cell samples
(or in other interneuronal types) appears low, again supporting
the qualitative observations shown in Figure 1B. Finally, we
observed that pyramidal cell sctRNA-seq samples showed less
off-target contamination than each of the profiled interneuronal
cell types, supporting the notion that these larger neurons are
more easily separated from contaminating cell types than the
smaller interneurons.

As a final point, we noted that the degree of off-target cellular
contamination is similar between cell types sampled from the two
LCM-seq datasets in our analysis (Figure 2B). For example, SST
interneuron samples tended to show themost contamination due
to astrocytes, pyramidal cells, and oligodendrocytes, regardless
of the dataset of origin. This observation, albeit anecdotal, is
interesting as it might represent shared but replicable sampling
limitations using the LCM-seq methodology.

Contamination Coefficients Improves
Differential Expression Analysis in
Synthetic Data
We next assessed the extent to which off target-cellular
contamination might affect the results of downstream analyses,
such as differential expression analyses in the context of
a condition, such as aging or stress (Shukla et al., 2019;
Newton et al., 2020). To first understand how various factors
might impact differential expression analyses in sctRNA-seq,
we used a modeling approach where we simulated multiple
synthetic sctRNA-seq datasets with varying degrees of off-target
cellular contamination and magnitude of differential expression
signal. We further modeled the effect of contamination that is
confounded with the condition or contrast of interest, specifically
asking how this affects the accuracy or validity of downstream
differential expressed genes (DEGs). We evaluated the efficacy

of our contamination coefficients in improving differential
expression analysis by including them as covariates in the
differential expression linear model and calculating the difference
in area under the resulting receiver operator characteristic
curve (AUROC), as well as the difference in false positive and
negative calls.

Our simulations revealed that, in general, as the amount
of off-target contamination and degree of confoundedness of
contamination with the condition of interest increases, including
the coefficients improves differential expression analysis. We
observed this effect both by an increase in AUROC and in a
reduction in false positive calls without a corresponding increase
in false negative calls. This is true regardless of the mean effect
size (Supplementary Figure 1, top row). In addition, in cases
of no off-target contamination, incorporating contamination
coefficients had a negligible effect on the analysis (Table 1).
Together these analyses on synthetic datasets suggest that these
off-target contamination coefficients will improve differential
expression analyses in real sctRNA-seq datasets.

Accounting for Cellular Contamination Improves

Detection of Differentially Expressed Genes in

Real-World sctRNA-seq Datasets
We next used our derived contamination coefficients in the
context of differential expression analyses in real-world LCM-
seq datasets. We performed differential expression analysis on
the “Aging” and “Stress” LCM-seq datasets to assess genes whose
expression levels are changing in the context of aging and stress.

We first evaluated the efficacy of incorporating contamination
coefficients using a statistical information criterion approach.
Specifically, since differential expression analysis involves fitting
linear models to the gene expression data, we assessed whether
including contamination coefficients as a covariate in the model
improves the fit of these models on each gene individually
(see section Materials and Methods). Given a pair of possible
models, the preferred one is the one that yields the smaller AIC
value. We found that models with contamination coefficients
were estimated to minimize the information loss (represented
by smaller AIC values on a per-gene basis) 64 and 67% of the
time in the Aging and Stress datasets, respectively, compared to
the minimal models. This is significantly better than 50% which
would be selected by random chance (i.e., if themodel pairs fit the
data approximately equally well). These indicate that including
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FIGURE 3 | Differential expression analysis of case/condition LCM-seq datasets with and without including covariates for off-target cellular contamination. Venn

diagrams indicating the number of differentially expressed genes (FDR < 0.1) in the Aging and Stress datasets. Non-outlined circles indicate counts of differentially

expressed genes without including cellular contamination covariates and outlined circles indicate counts following inclusion of covariates. Empty sets (i.e., PV Neurons

in the Stress dataset) are not shown.

the contamination coefficients likely leads to a better model most
of the time.

In terms of differential expression events at a particular
statistical threshold, we found that many more genes were
called at FDR < 0.1 after including covariates for cellular
contamination in our linear models (see section Materials and
Methods). For example, for SST interneurons, we detected
eight genes differentially expressed in the Aging dataset without
inclusion of contamination coefficients but detected 58 genes
after the inclusion of covariates (Figure 3). In the Stress
dataset, we noticed a similar, but more profound trend, with
0 and 22 genes detected as differentially expressed among
PV and VIP interneurons (respectively) without covariates,
but 135 and 221 genes after inclusion of covariates. In
only one instance, PV Neurons in the Aging dataset, were
fewer genes called as differentially expressed after including
contamination coefficients. A complete list of differentially

TABLE 2 | Datasets analyzed in this work.

GSE DOI Type Description

GSE119183 10.1016/j.biopsych.2018.09.019 LCM-seq Aging

GSE145521 10.1101/2020.08.18.249995 LCM-seq Stress

GSE141337 Unpublished TRAP-seq Cocaine 1

GSE141464 Unpublished TRAP-seq Cocaine 2

GSE115746 10.1038/s41586-018-0654-5 scRNA-seq Reference data

GSE71585 10.1038/nn.4216 scRNA-seq Single cell data

A summary of datasets used in this paper. In the manuscript, they are referred to by the

name given in the description column.

expressed genes derived from both LCM-seq datasets is provided
Supplementary Table 2.

Of note, the global rankings of gene differential expression
by p-value remain quite similar before and after cellular
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contamination covariate inclusion (minimum hypergeometric p-
value< 0.001 for all cell types). This suggests that while inclusion
of these covariates may result in somewhat more DEGs passing a
statistical threshold, their effect might nevertheless be moderate.
In general, we predict that the effect of including contamination
coefficients will depend on a number of factors, including the
strength of true expression differences relative to the sample-to-
sample variance caused by off-target contamination.

Off-Target Cellular Contamination Is
Prevalent Across Multiple Methodologies
of Cell Purification for sctRNA-seq
As a final analysis, we were interested in evaluating how
prevalent off-target cellular contamination might be in datasets
sampled using alternative strategies for sctRNA-seq. Focusing
on pyramidal cell sctRNA-seq datasets sampled using a number
of methodologies (see Table 2), we re-analyzed two TRAP-
seq datasets [GSE141337 (Cocaine 1) and GSE141464 (Cocaine
2)], which includes samples of S100a10- and Glt25d2-labeled
pyramidal cells from the mouse cerebral cortex from which
mRNAs from translating ribosomes were immunopurified and
sequenced. We also re-analyzed Hipposeq, which includes
samples from pyramidal cells specific to hippocampal areas

CA1, CA2, and CA3 (Cembrowski et al., 2016). Samples from
this data were generated by dissociating and manually sorting
fluorescently-labeled cells, which is generally thought to generate
relatively pure cell type pools as compared to other sctRNA-seq
methodologies (Hempel et al., 2007).

We found that among the sctRNA-seq methodologies,
fluorescence-based manual sorting exhibited the least off-
target contamination followed by LCM-seq and then TRAP-
seq (Figure 4). For example, we found that among pyramidal
cells sampled across each of these technologies, we found
off-target contamination from oligodendrocytes yielded mean
scaled contamination coefficients of 0.65, 1.35, and 2.21 in
manually sorted cells, LCM-seq, and TRAP-seq, respectively.
These differences were significant in all pairwise comparisons
(p < 10−9 and 10−16 for manual sorting vs. LCM-seq and LCM
vs. TRAP-seq, respectively). Across technologies, we found that
non-neuronal cell types (as opposed to interneurons) contributed
the greatest amount of off-target contamination.

DISCUSSION

In this work, we applied an approach for characterizing off-target
cellular contamination in RNA-seq-based datasets of pooled

FIGURE 4 | Comparison of off-target contamination across cell purification methodologies. Estimated relative amount of off-target cellular contamination among

different methodologies. Each point represents a single sample (a cell pool). Both LCM-seq datasets (Aging and Stress) were grouped, as well as both TRAP-seq

datasets (Cocaine 1 and 2). The difference in mean contamination coefficients is statistically significant for most comparisons *p < 0.05, **p < 0.01.
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cell types (sctRNA-seq datasets). By comparing these sctRNA-
seq samples to analogous high-purity scRNA-seq datasets, we
were able to derive a series of contamination coefficients that
yield an estimated amount of contamination for each off-target
cell type. We note that using markers derived from single
cell RNA-seq data and applying them to RNA-seq datasets
to derive cell type-specific insights is commonly done in the
context of cellular deconvolution applications for bulk and
spatial transcriptomics datasets (Wang et al., 2019; Elosua et al.,
2021), including methods developed by our group previously
(Mancarci et al., 2017; Toker et al., 2018). Here, in the context
of sctRNA-seq datasets, such coefficients help contextualize
the cellular sources and relative amounts of off-target cellular
contamination. They can be used to help correct for sample-to-
sample differences in purity in downstream analyses. Further,
by applying our approach to multiple sctRNA-seq datasets
collected using different methodologies for cell type-specific
enrichment (LCM, TRAP, and manual purification), we were
able to qualitatively compare how these different methodologies
compare in terms of sample purity. Though our applications here
were focused on sctRNA-seq datasets collected from the mouse
neocortex and hippocampus, this method can in principle be
applied to any species or tissue.

We found that pyramidal cells and non-neuronal cells,
namely oligodendrocytes and astrocytes, were among the greatest
contributors to off-target contamination in each dataset and cell
purification methodology we re-analyzed. Across methodologies,
we observed that manual sorting appears to show the least
apparent off-target contamination, followed by LCM-seq and
then by TRAP-seq, consistent with previous reports based on
microarray datasets (Okaty et al., 2011). We reason that to a large
extent, this cellular contamination is likely to reflect underlying
biology. For example, apparent pyramidal cell contamination in
interneuron-specific samples, as we observed here for LCM-seq
and we and others observed previously for Patch-seq (Tripathy
et al., 2018; Gouwens et al., 2020; Scala et al., 2020), is likely due to
pyramidal cells’ large size and extensive projections throughout
the neocortex. As such, pyramidal cells are more likely to
have their mRNA captured inadvertently when sampling non-
pyramidal cell types such as interneurons. Interestingly, we found
anecdotal evidence that sources of off-target contamination
tended to be similar in different datasets sampled using the same
methodology despite being collected by different experimenters
such as the LCM-seq mouse Aging (Shukla et al., 2019) and Stress
(Newton et al., 2020) datasets reported here. Together, these
findings indicate that off-target contamination is widely present,
but of overall modest size (relative to expectations based on single
cell reference data), and likely an unavoidable consequence of
various methodologies for sctRNA-seq.

Despite the modest effect sizes of contamination associated
with single cell type captures, we show analytical improvement
when correcting for off-target contamination in the context of
group-level modeling analyses, such as case/control differential
expression analyses. We note that this is just one possible use of
such covariates: they may also be used in other ways, including
to remove samples with outlying levels of contamination, as
covariates in analyses such as limma (Ritchie et al., 2015) or

ComBat (Johnson et al., 2007) to normalize gene-level read
counts for contamination, etc. Applying our approach initially
within the context of a simulation-based framework, we found
that incorporating contamination coefficients was effective in
improving true calls of differentially expressed genes without
a corresponding increase in false calls. This approach was also
effective when contamination was confounded with or biased
toward a particular group (e.g., greater contamination in the
“disease” group). Applying our approach to real-world LCM-seq
datasets, we found a greater number of differentially expressed
genes per cell type. Importantly, given that the models that
included our coefficients provided a statistically improved fit to
these data relative to models without them, we further posit
that correcting for off-target cellular contamination is likely to
improve the quality of differentially expressed gene calls (rather
than simply increasing the number thereof). However, we note
that without experimental validation, we do not know which
genes are truly differentially expressed between condition and
control, making it difficult to rigorously evaluate the accuracy and
validity of this approach.

Based on our simulation and real-data analyses, we expect that
including covariates for sample-specific off-target contamination
will tend to improve such group-level analyses. Nonetheless,
correcting for off-target contamination when it is mild and
consistent across experimental conditions is of minimal benefit.
As we have described, the physical source of off-target
contamination is necessarily due to the presence of cellular
soma and processes surrounding the cell of interest (see
Figure 1). Indeed, many psychiatric and neurological disorders
are characterized by altered neuronal and astroglial morphology,
which pose potential confounds to the interpretation of LCM
and TRAP-seq data. Examples include reduced soma size of
hippocampal neurons in major depressive disorder (MDD)
(Stockmeier et al., 2004), reduced pyramidal cell dendritic
branching in natural aging (Luebke et al., 2015) and MDD
(Qiao et al., 2016), reduced astrocyte size and density in MDD,
bipolar disorder, and schizophrenia (Cotter et al., 2002), and
regionally-varying atrophy and hypertrophy of astrocytes in
Alzheimer’s disease (Verkhratsky et al., 2019). Themorphological
changes outlined above represent sources of contamination
that are confounded with disease and thus may introduce
false differentially expressed genes or mask the true differential
expression of others. These kinds of conditions are thus likely to
benefit the most from the approach we outline.

The major assumption underlying our approach is that
high-purity scRNA-seq datasets can provide a useful proxy for
sctRNA-seq samples. This assumption, while reasonable, has
a number of limitations. First and foremost, this approach
requires the availability of scRNA-seq reference datasets, such
as those we used here from the mouse neocortex (Tasic et al.,
2018). Second, there may be genuine differences in sctRNA-
seq expression profiles relative to scRNA-seq that are not the
result of contamination; for example, such differences might
arise due to technical factors such as differences in library
preparation and collection protocol [which may also include
transcriptional differences related to cellular dissociation-based
cell stress (Adam et al., 2017)]. Similarly, true biological
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differences can result in large changes in cell-state, including
condition- or disorder-specific transcriptional regulation (Lee
and Young, 2013), or cell differentiation. As our approach relies
on the quality of cell type-specific marker genes: unsuitable
markers (e.g., those that are markers of cell state but not cell
type) or those with sufficiently non-binary expression patterns
may render the derived contamination coefficients unusable. A
related limitation is that as the markers derived here are markers
based on scRNA-seq samples from dissociated cell bodies, they
may not be entirely reflective mRNA in more distal cellular
processes (Glock et al., 2017). Each of these caveats are likely
to affect each dataset to varying degrees and we advise that
users carefully consider these assumptions prior to the use of
these methods.

Despite the fact that some amount of contamination
seems to be inevitable by current methodologies, cell
type specific RNA sequencing offers several advantages
compared to traditional bulk or single cell RNA sequencing.
Our approach for estimating sample-to-sample differences
in purity provides a simple yet flexible approach to
account and control for their effect in downstream
analyses, allowing for more meaningful interpretation of
sctRNA-seq datasets.
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