AUTHOR=Aberle Hermann TITLE=Axon Guidance and Collective Cell Migration by Substrate-Derived Attractants JOURNAL=Frontiers in Molecular Neuroscience VOLUME=12 YEAR=2019 URL=https://www.frontiersin.org/journals/molecular-neuroscience/articles/10.3389/fnmol.2019.00148 DOI=10.3389/fnmol.2019.00148 ISSN=1662-5099 ABSTRACT=
Neurons have evolved specialized growth structures to reach and innervate their target cells. These growth cones express specific receptor molecules that sense environmental cues and transform them into steering decisions. Historically, various concepts of axon guidance have been developed to better understand how axons reach and identify their targets. The essence of these efforts seems to be that growth cones require solid substrates and that major guidance decisions are initiated by extracellular cues. These sometimes highly conserved ligands and receptors have been extensively characterized and mediate four major guidance forces: chemoattraction, chemorepulsion, contact attraction and contact repulsion. However, during development, cells, too, do migrate in order to reach molecularly-defined niches at target locations. In fact, axonal growth could be regarded as a special case of cellular migration, where only a highly polarized portion of the cell is elongating. Here, I combine several examples from genetically tractable model organisms, such as