Skip to main content

EDITORIAL article

Front. Mol. Neurosci., 31 October 2018
Sec. Molecular Signalling and Pathways
This article is part of the Research Topic Neuroglia Molecular Mechanisms in Psychiatric Disorders View all 12 articles

Editorial: Neuroglia Molecular Mechanisms in Psychiatric Disorders

  • 1Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome, Rome, Italy
  • 2Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
  • 3Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
  • 4Faculty of Health and Medical Sciences, Center for Basic and Translational Neuroscience, University of Copenhagen, Copenhagen, Denmark
  • 5Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

Neuroglia are an extended class of cells of ectodermal (astroglia, oligodendroglia, and peripheral glial cells) and mesodermal (microglia) origin, which provide extensive homeostatic support, protection, and defense of nervous tissue (Kettenmann and Ransom, 2013; Verkhratsky and Butt, 2013; Verkhratsky and Nedergaard, 2018). Pathological potential of glial cells has been recognized since their discovery (Virchow, 1858; Andriezen, 1893; Nissl, 1899; Alzheimer, 1910), while recent decade highlighted the fundamental role of neuroglia in the progression of all types of neurological diseases (Giaume et al., 2007; Verkhratsky et al., 2013, 2014, 2016, 2017; Burda and Sofroniew, 2014; Sofroniew, 2014; Zeidan-Chulia et al., 2014; Burda et al., 2016; Pekny et al., 2016; Verkhratsky and Parpura, 2016; Ferrer, 2018). The neurogliopathology is complex and is represented by glial reactivity (activation of microglia, astrogliosis) or glial degeneration, atrophy, and loss of functions. In particular glial cells undergo prominent changes in the context of neuropsychiatric diseases; these changes are generally represented by loss and asthenia of astroglia and oligodendroglia in conjunction with microglial activation (Rajkowska and Stockmeier, 2013; Verkhratsky et al., 2015; Cobb et al., 2016; Rajkowska et al., 2018). In this research topic we addressed the contribution of neuroglia to major neuropsychiatric conditions including major depression, schizophrenia, and alcohol use disorders.

The gliocentric theory of major depression has been overviewed by Czéh and Nagy who presented recent findings on glial structural and functional abnormalities at molecular and cellular levels. Subsequently they focused on clinical studies and summarized neuroimaging as well as post-mortem molecular and histopathological evidence supporting leading role of glia in the progression of depression and related mood disorders. Notably, the depression is associated with substantial loss of macroglial cells with loss of their function, in conjunction with microglial activation, which summarily affect neuronal networks and brain function. Structural and molecular alterations of astrocytes and oligodendrocytes also lie at the core of alcohol use disorders (Miguel-Hidalgo). In particular alcohol exposure, as well as alcohol withdrawal affects glial transporters, glutamate (GABA) glutamine shuttle and gap junctions, which connect glial syncytia. The association of endothelial cells, blood-brain barrier and neurovascular unit with neuropsychiatric diseases has been discussed by Malik and Di Benedetto, who presented evidence supporting pathophysiological role of disrupted erythropoietin-producing-hepatocellular carcinoma receptors (EphR)/Ephrin signaling cascades.

Pathophysiological changes in microglia in context of environmental stress associated with neurodevelopmental and neuropsychiatric disorders are overviewed by Tay et al. In particular, they discuss the role of microglia in Nasu-Hakola disease, hereditary diffuse leukoencephaly with spheroids, Rett syndrome, autism spectrum disorders, obsessive-compulsive disorder and major psychiatric pathologies such as addiction, major depressive disorder, bipolar disorder, schizophrenia, eating disorders, and sleep disorders. Studies on humans have demonstrated neuroinflammation and microglial reactivity in patients with schizophrenia as well as in animal models. In the latter, the gender differences have been also described (Hui et al.); and it turned out that in males prominent differences in microglial distribution, morphology, and microglial activation may account for higher incidence of schizophrenia. Up-regulation of microglia associated genes following administration of IgG-Saporin has been demonstrated to alter a memory-associated behavior (Dobryakova et al.). The role of microglial activation and phagocytosis in Parkinson's disease and therapeutic potential of targeting microglia were reviewed by Janda et al. Of note both asphyxia and cesarean section are associated with the expression of Schizophrenia risk genes (Paparelli et al.). The link between neuregulin and β-secretase with schizophrenia is shown by Zhang et al.

Glial cells can be targets for specific therapy. Effects of electro-acupuncture on hippocampal neuroinflamamtion in rat depressed model (induced by unpredictable stress-induced depressive- and anxiety-like behavior) are presented by Yue et al. They showed that treatment with acupuncture reduce behavioral abnormalities and abrogate neuroinflammation. Quercitin neuroprotection was discussed by Gao et al.

All in all, the papers assembled in this Research Topic provide a wide picture of the importance of neuroglia in the pathogenesis of neuropsychiatric diseases and discuss possible therapeutic strategies aimed at glial cells.

Author Contributions

CS, MN, and AV wrote the editorial. All authors read and approved the submitted version.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

Alzheimer, A. (1910). “Beiträge zur Kenntnis der pathologischen Neuroglia und ihrer Beziehungen zu den Abbauvorgängen im Nervengewebe,” in Histologische und histopathologische Arbeiten über die Grosshirnrinde mit besonderer Berücksichtigung der pathologischen Anatomie der Geisteskrankheiten, Vol. 3, eds F. Nissl and A. Alzheimer (Jena: Gustav Fischer), 401–562.

Google Scholar

Andriezen, W. L. (1893). The neuroglia elements of the brain. Brit. Med. J. 2, 227–230.

PubMed Abstract | Google Scholar

Burda, J. E., Bernstein, A. M., and Sofroniew, M. V. (2016). Astrocyte roles in traumatic brain injury. Exp. Neurol. 275(Pt 3), 305–315. doi: 10.1016/j.expneurol.2015.03.020

PubMed Abstract | CrossRef Full Text | Google Scholar

Burda, J. E., and Sofroniew, M. V. (2014). Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81, 229–248. doi: 10.1016/j.neuron.2013.12.034

PubMed Abstract | CrossRef Full Text | Google Scholar

Cobb, J. A., O'Neill, K., Milner, J., Mahajan, G. J., Lawrence, T. J., May, W. L., et al. (2016). Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder. Neuroscience 316, 209–220. doi: 10.1016/j.neuroscience.2015.12.044

PubMed Abstract | CrossRef Full Text | Google Scholar

Ferrer, I. (2018). Astrogliopathy in Tauopathies. Neuroglia 1, 126–150. doi: 10.3390/neuroglia1010010

CrossRef Full Text | Google Scholar

Giaume, C., Kirchhoff, F., Matute, C., Reichenbach, A., and Verkhratsky, A. (2007). Glia: the fulcrum of brain diseases. Cell Death Differ. 14, 1324–1335. doi: 10.1038/sj.cdd.4402144

PubMed Abstract | CrossRef Full Text | Google Scholar

Kettenmann, H., and Ransom, B. R. (2013). Neuroglia. Oxford: Oxford University Press.

Google Scholar

Nissl, F. (1899). Ueber einige Beziehungen zwischen Nervenzellerkrankungen und Erscheinungen bei verschiedenen Psychosen. Arch. Psychiatr. 32, 1–21.

Google Scholar

Pekny, M., Pekna, M., Messing, A., Steinhäuser, C., Lee, J. M., Parpura, V., et al. (2016). Astrocytes: a central element in neurological diseases. Acta Neuropathol. 131, 323–345. doi: 10.1007/s00401-015-1513-1

PubMed Abstract | CrossRef Full Text | Google Scholar

Rajkowska, G., Legutko, B., Moulana, M., Syed, M., Romero, D. G., Stockmeier, C. A., et al. (2018). Astrocyte pathology in the ventral prefrontal white matter in depression. J. Psychiatr. Res. 102, 150–158. doi: 10.1016/j.jpsychires.2018.04.005

PubMed Abstract | CrossRef Full Text | Google Scholar

Rajkowska, G., and Stockmeier, C. A. (2013). Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr. Drug Targets 14, 1225–1236. doi: 10.2174/13894501113149990156

PubMed Abstract | CrossRef Full Text | Google Scholar

Sofroniew, M. V. (2014). Multiple roles for astrocytes as effectors of cytokines and inflammatory mediators. Neuroscientist. 20:160–172. doi: 10.1177/1073858413504466

PubMed Abstract | CrossRef Full Text | Google Scholar

Verkhratsky, A., and Butt, A. M. (2013). Glial Physiology and Pathophysiology. Chichester: Wiley-Blackwell, 560.

PubMed Abstract | Google Scholar

Verkhratsky, A., Marutle, A., Rodríguez-Arellano, J. J., and Nordberg, A. (2015). Glial asthenia and functional paralysis: a new perspective on neurodegeneration and alzheimer's disease. Neuroscientist 21, 552–568. doi: 10.1177/1073858414547132

PubMed Abstract | CrossRef Full Text | Google Scholar

Verkhratsky, A., and Nedergaard, M. (2018). Physiology of astroglia. Physiol. Rev. 98, 239–389. doi: 10.1152/physrev.00042.2016

PubMed Abstract | CrossRef Full Text | Google Scholar

Verkhratsky, A., and Parpura, V. (2016). Astrogliopathology in neurological, neurodevelopmental and psychiatric disorders. Neurobiol. Dis. 85, 254–261. doi: 10.1016/j.nbd.2015.03.025

PubMed Abstract | CrossRef Full Text | Google Scholar

Verkhratsky, A., Parpura, V., Pekna, M., Pekny, M., and Sofroniew, M. (2014). Glia in the pathogenesis of neurodegenerative diseases. Biochem. Soc. Trans. 42, 1291–1301. doi: 10.1042/BST20140107

PubMed Abstract | CrossRef Full Text | Google Scholar

Verkhratsky, A., Rodríguez, J. J., and Parpura, V. (2013). Astroglia in neurological diseases. Future Neurol. 8, 149–158. doi: 10.2217/fnl.12.90

PubMed Abstract | CrossRef Full Text | Google Scholar

Verkhratsky, A., Steardo, L., Parpura, V., and Montana, V. (2016). Translational potential of astrocytes in brain disorders. Prog. Neurobiol. 144, 188–205. doi: 10.1016/j.pneurobio.2015.09.003

PubMed Abstract | CrossRef Full Text | Google Scholar

Verkhratsky, A., Zorec, R., and Parpura, V. (2017). Stratification of astrocytes in healthy and diseased brain. Brain Pathol. 27, 629–644. doi: 10.1111/bpa.12537

PubMed Abstract | CrossRef Full Text | Google Scholar

Virchow, R. (1858). Die Cellularpathologie in ihrer Begründung auf Physiologische and Pathologische Gewebelehre. Zwanzig Vorlesungen gehalten während der Monate Februar, März und April 1858 im Pathologischen Institut zu Berlin. Berlin: Hirschwald, 440.

Zeidan-Chulia, F., Salmina, A. B., Malinovskaya, N. A., Noda, M., Verkhratsky, A., and Moreira, J. C. (2014). The glial perspective of autism spectrum disorders. Neurosci. Biobehav. Rev. 38, 160–172. doi: 10.1016/j.neubiorev.2013.11.008

PubMed Abstract | CrossRef Full Text | Google Scholar

Keywords: neuroglia, astrocyte, microglia, oligodendrocyte, psychiatric disorder

Citation: Scuderi C, Noda M and Verkhratsky A (2018) Editorial: Neuroglia Molecular Mechanisms in Psychiatric Disorders. Front. Mol. Neurosci. 11:407. doi: 10.3389/fnmol.2018.00407

Received: 05 October 2018; Accepted: 16 October 2018;
Published: 31 October 2018.

Edited and reviewed by: Jochen C. Meier, Technische Universitat Braunschweig, Germany

Copyright © 2018 Scuderi, Noda and Verkhratsky. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Caterina Scuderi, Y2F0ZXJpbmEuc2N1ZGVyaUB1bmlyb21hMS5pdA==

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.