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Cytokine release syndrome is a serious complication of chimeric antigen
receptor-T cell therapy and is triggered by excessive secretion of
inflammatory cytokines by chimeric T cells which could be fatal. Following an
inquiry into themolecular mechanisms orchestrating cytokine release syndrome,
we hypothesize that DeltaRex-G, a tumor targeted retrovector encoding a
cytocidal CCNG1 inhibitor gene, may be a viable treatment option for
corticosteroid-resistant cytokine release syndrome. DeltaRex-G received
United States Food and Drug Administration Emergency Use Authorization to
treat Covid-19-induced acute respiratory distress syndrome, which is due to
hyperactivated immune cells. A brief administration of DeltaRex-Gwould inhibit a
certain proportion of hyperactive chimeric T cells, consequently reducing
cytokine release while retaining chimeric T cell efficacy.
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Introduction

Chimeric Antigen Receptor-T (CAR-T) cell therapy is a novel cancer treatment wherein
CARs are introduced into a patient’s own harvested T cells and subsequently infused
intravenously for the purpose of eradicating cancer (Kalos et al., 2011). Factors that limit the
efficacy of CAR-T cell therapy include minimal or exaggerated CAR-T cell proliferation, a
dysregulated inflammatory tumor microenvironment (TME) and a high baseline tumor
burden (Ventin et al., 2024). Cytokine Release Syndrome (CRS) is a severe, potentially fatal,
adverse event that could develop in patients receiving CAR-T cell therapy (Freyer and
Porter, 2020). Hypothesis: A brief administration of DeltaRex-G, a tumor targeted retroviral
vector encoding a cytocidal mutated cyclin G1 gene, would inhibit only the dividing T cells
thus reducing cytokine release by hyperactive CAR-T cells while retaining their
antitumor efficacy.

CAR-T cell therapy

T cells harvested from the patient are modified with chimeric antigen receptors
(CARs) engineered to recognize and bind antigens specific to a patient’s cancer
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(Sermer and Brentjens, 2019; Korell et al., 2022). Engineered
CAR-T cells equipped to target and eliminate cancer cells are
intravenously infused into the patient who has undergone
lymphodepletion. Upon recognizing and binding to the target
antigen in cancer cells, the activated CAR-T cells eradicate
tumor cells while proliferating simultaneously. CAR-T cell
therapy has been proven effective in pediatric and adult acute
lymphocytic leukemia, B cell lymphoma, mantle cell lymphoma,
and multiple myeloma by targeting the Cluster of Differentiation
19 (CD19) or B cell maturation antigen (BCMA) on these
malignant cells (Asmamaw et al., 2022).

Currently, there is only one FDA-approved CAR-T cell therapy for
solid tumors. The primary challenge to implementing CAR-T cell
therapy for solid tumors is tumor heterogeneity and consequent
difficulty in ascertaining which antigen, ideally a mutated oncogene,
should be targeted (Qin and Xu, 2022). Moreover, solid tumors are often
found in tissues with reduced regenerative capacity compared to the
hematopoietic system soCAR-T cell targetsmust be incredibly precise to
preserve the maximum amount of healthy tissue (Qin and Xu, 2022; Xia
et al., 2018). Two novel receptors enable inducible CAR expression to
enhance tumor specificity and prevent CAR-T cell exhaustion, including
Synthetic intramembrane proteolysis receptors (SNIPRs) and Signal
neutralization by an inhibitable protease (SNIP) (Qin and Xu, 2022;
Zhu et al., 2022; Labanieh et al., 2022). Additionally, stroma in tumors act
as physical barriers and the immunosuppressive tumor
microenvironment (TME) further prevents optimal CAR-T cell
penetration in solid tumors (Asmamaw et al., 2022). Ongoing
research has determined that intratumoral injection of CAR-T cells
and a hydrogel containing cytokine and CAR-T cells can overcome the
physical impediments to solid tumors and improve CAR-T cell
cytotoxicity and efficacy while preserving tumor-specificity (Qin and
Xu, 2022; Melero et al., 2021; Adusumilli et al., 2014; Grosskopf et al.,
2022). There are currently over fifty clinical trials investigating various
solid tumor targets for CAR-T cell therapy--Mesothelin,
Carcinoembryonic antigen, Claudin18.2, and Cluster of
Differentiation 70 (CD70) are the most common antigens in addition
to dual CAR targets to increase tumor specificity (A Phase I, 2016;
T Cells Armed With Chimeric, 2016; Phase I, 2017; Phase I Study of
Autologous, 2018; A First in Human Phase, 2018; A Phase I
Investigation of the Safety, 2019; An Open Label, 2019; An
Exploratory Study of αPD1, 2020; A Phase I Trial to Assess Safety,
2020; Open, 2020; B7-H3-Specific Chimeric Antigen Receptor
Autologous, 2021; Phase I Study of EGFR, 2021; A Single, 2021; A
Phase 1 Dose Escalation, 2022; A Phase 1 Study to, 2022; Clinical Trial to
Evaluate the, 2022; A Single, 2022; A Phase Ia/Ib, 2022; An Exploratory
Study of αPD1, 2022; Open-Label, 2022; Single-center, 2022a; A Phase I
Clinical Study, 2022a; A Safety and Efficacy Clinical, 2022; A Phase I
Clinical Study, 2022b; GD2/PSMA Bi, 2022; A Phase I Clinical Study,
2022d; Clinical Study of CLDN18, 2022; An Open, 2022; A Phase I
Clinical Study, 2022c; Chimeric Antigen Receptor T Lymphocytes CAR-
T, 2022; Clinical Study to Evaluate the, 2022; Exploratory Clinical Study
of PD, 2022; Single-center, 2022b; FIH and Arm, 2022; Efficacy and
Safety of Claudin18, 2022; Phase, 2022; A Phase 1, 2023; A Phase1/
phase2 and Single-arm, 2023; Mesothelin/GPC3/GUCY2C Targeted
CAR, 2023; A Clinical Study on the, 2023; Exploratory Clinical Trial
on the, 2023b; A Study to Evaluate the Safety et al., 2023; Phase I, 2023;
Exploratory Clinical Trial on the, 2023a; FTiH, 2023; A Phase I Clinical
Study, 2023; A Safety andEfficacyClinical, 2023; AnExploratoryClinical

Study Evaluating, 2023a; Phase I Clinical Study of, 2023; A Seamless
Phase 1, 2023; An Exploratory Clinical Study Evaluating, 2023b; A Phase
1 Study of, 2024; An Exploratory Study on the, 2024; Exploratory Study
of MSLN, 2024; Exploratory Study on the Treatment, 2024; Brudno and
Kochenderfer, 2016;Maude et al., 2014) (A Phase I, 2016; TCells Armed
With Chimeric, 2016; Phase I, 2017; Phase I Study of Autologous, 2018;
A First in Human Phase, 2018; A Phase I Investigation of the Safety,
2019; An Open Label, 2019; An Exploratory Study of αPD1, 2020; A
Phase I Trial to Assess Safety, 2020; Open, 2020; B7-H3-Specific
Chimeric Antigen Receptor Autologous, 2021; Phase I Study of
EGFR, 2021; A Single, 2021; A Phase 1 Dose Escalation, 2022; A
Phase 1 Study to, 2022; Clinical Trial to Evaluate the, 2022; A Single,
2022; A Phase Ia/Ib, 2022; An Exploratory Study of αPD1, 2022; Open-
Label, 2022; Single-center, 2022a; A Phase I Clinical Study, 2022a; A
Safety and Efficacy Clinical, 2022; A Phase I Clinical Study, 2022b; GD2/
PSMA Bi, 2022; A Phase I Clinical Study, 2022d; Clinical Study of
CLDN18, 2022; An Open, 2022; A Phase I Clinical Study, 2022c;
Chimeric Antigen Receptor T Lymphocytes CAR-T, 2022; Clinical
Study to Evaluate the, 2022; Exploratory Clinical Study of PD, 2022;
Single-center, 2022b; FIH and Arm, 2022; Efficacy and Safety of
Claudin18, 2022; Phase, 2022; A Phase 1, 2023; A Phase1/phase2 and
Single-arm, 2023; Mesothelin/GPC3/GUCY2C Targeted CAR, 2023; A
Clinical Study on the, 2023; Exploratory Clinical Trial on the, 2023b; A
Study to Evaluate the Safety et al., 2023; Phase I, 2023; Exploratory
Clinical Trial on the, 2023a; FTiH, 2023; A Phase I Clinical Study, 2023;
A Safety and Efficacy Clinical, 2023; An Exploratory Clinical Study
Evaluating, 2023a; Phase I Clinical Study of, 2023; A Seamless Phase 1,
2023; An Exploratory Clinical Study Evaluating, 2023b; A Phase 1 Study
of, 2024; An Exploratory Study on the, 2024; Exploratory Study of
MSLN, 2024; Exploratory Study on the Treatment, 2024; Brudno and
Kochenderfer, 2016; Maude et al., 2014)

Cytokine release syndrome

CAR-T cell therapy stimulates a robust immune response that can
cause cytokine release syndrome (CRS) in patients, which can be fatal.
CRS begins as a fever and myalgia two to 3 days after CAR-T cell
infusion but can progress to capillary leak, hypoxia, hypotension,
tachycardia, pulmonary edema, and pleural edema within 2 weeks
of treatment (Sermer and Brentjens, 2019). In dire cases, organ failure
and deathmay ensue. Themolecular basis for CRS is excessive secretion
of cytokines by T cells (Brudno and Kochenderfer, 2016),. One of the
core cytokines elevated in CRS patient serum is the inflammatory
interleukin-6 (IL-6) produced by monocytes, macrophages, and T-cells
(Maude et al., 2014). Patients with high IL-6 levels and large baseline
tumor burdens have inflammatory TMEs that prime myeloid cells and
macrophages to induce an immune response, and this condition is
amplified by CAR-T cell treatment. Elevated IL-6 levels post-treatment
have been correlated with diminished response to CAR-T cell therapy
and severe CRS (Sermer and Brentjens, 2019). Tocilizumab, an anti-IL-
6R antibody, is the current standard of care for mild CRS but
corticosteroid therapy like dexamethasone is often required in cases
of severe CRS. Recent studies have shown that high dose corticosteroid
treatment and early CRS interventionwith Tocilizumab and preemptive
corticosteroids decreased the risk of severe CRS without adversely
affecting CAR-T cell therapy efficacy (Gardner et al., 2019; Liu et al.,
2020). Anakirna, an IL-1 receptor antagonist has been identified as
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another therapeutic for severe CRS (grade 3 or 4) when administered
with corticosteroids, and if administered early in combination with
Tocilizumab, can prevent CRS (Ferreros and Trapero, 2022; Gazeau
et al., 2023). Siltuximab, another anti-IL-6 antibody, has also shown
promising results in treating mild CRS (Bajwa et al., 2024). However,
these treatments are not universally effective and as such, a demand for
a CRS treatment that will not only mitigate the potentially devastating
progression of CRS but could also maximize the potency of the
administered CAR-T cell therapy persists (Chawla et al., 2022).

DeltaRex-G for cytokine release syndrome

Originally developed as a cancer drug, DeltaRex-G (formerly
named Rexin-G, Mx-dnG1) is a tumor targeted retrovector
encoding a cytocidal CCNG1 inhibitor gene which inhibits
cyclin G1 expression, and consequently, blocks the cancer cell
cycle in G0-G1 phase, aborting the cell cycle and resulting in cell
death via the apoptosis-mediated pathway (Morse et al., 2021;
Chawla et al., 2019). The membrane gp70 envelope of DeltaRex-
G was molecularly engineered to display a signature (SIG)
protein-binding decapeptide that recognizes and binds to
abnormal anaplastic collagenous SIG proteins in the TME,
then fuses and enters via the innate amphotropic Pit2 receptor
and inhibits/destroys only highly proliferative cells including
cancer cells, neoangiogenic cells and stroma-producing
fibroblasts (Morse et al., 2021; Chawla et al., 2019). Phase I/II
studies in patients with pancreatic adenocarcinoma, sarcomas,
and metastatic breast cancers have established a significant
association between DeltaRex-G dosage and tumor control/
survival advantage (Chawla et al., 2019; Chawla et al., 2016;
Liu et al., 2021). During the COVID-19 pandemic, DeltaRex-G
was granted FDA Emergency Use Authorization for severe
COVID-19 induced CRS and acute respiratory distress
syndrome (ARDS) (Larkin, 2021). CRS from CAR-T cell
therapy and COVID-19 develop from excessive stimulation
and activation of immune cells and consequent cytokine
release resulting in tissue damage.

FIGURE 1
Inhibitory activity of DeltaRex-G in CD4+ CD8+ T cell cultures.
The percent inhibitory activity of DeltaRex-G is plotted on the vertical
axis as a function of time (days) from retroviral transduction of CD4+

CD8+ T cell cultures.

FIGURE 2
An artist’s illustration of DeltaRex-Gmechanism of action in CAR-T cell induced severe CRS. By killing a certain proportion of actively dividing CAR-T
cells and cancer cells, the secretion of inflammatory cytokines by chimeric T cells is reduced while retaining the efficacy of remaining CAR-T cells in
reducing tumor burden.
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Recently, we demonstrated the inhibitory activity of DeltaRex-G
in cultures of CD4+ CD8+ T cells (See Figure 1). This led to the
hypothesis that DeltaRex-G could also inhibit the activity of
activated CAR-T cells that cause CRS while retaining CAR-T cell
efficacy (See Figure 2). The fact that DeltaRex-G (a retroviral based
vector) only integrates in the chromosome of rapidly dividing cells, a
property that is common in rapidly dividing cancer cells and
proliferating CAR-T cells, is the rationale for using DeltaRex-G
in CAR-T induced CRS. Further, DeltaRex-G is not immunogenic,
so excessive immune responses are not expected to result from
DeltaRex-G treatment. In fact, previous studies in cancer patients
showed no development of CRS in DeltaRex-G treated patients and
is not expected to cause any serious adverse events, including B-cell
aplasia and neurotoxicity which are major sequelae of CAR-T cell
therapy (Chawla et al., 2022; Chawla et al., 2019; Chawla et al., 2016;
Liu et al., 2021; Bruckner et al., 2023).

Discussion and conclusion

Our hypothesis that a brief administration of DeltaRex-G would
reduce the severity of CAR-T cell therapy-induced CRS is supported
by the inhibitory activity of DeltaRex-G in transduced CD4 CD8 cell
cultures (Figure 1). DeltaRex-G may be used to treat CRS by
inhibiting a certain proportion of the proliferative cytokine-
releasing immune cells, hence reducing production of IL-6, while
retaining the efficacy of unaffected CAR-T cells (Figure 2). Clinical
data from cancer patients treated with DeltaRex-G have shown an
initial control of tumor growth with eventual tumor shrinkage and
attainment of clinical remission after 8 months of DeltaRex-G
therapy. Albeit DeltaRex-G has not yet been used to treat CRS,
DeltaRex-G has not been reported to cause hematologic nor organ
dysfunction in Phase 1 and Phase studies using DeltaRex-G in
advanced sarcoma, pancreatic cancer and carcinoma of breast
(Chawla et al., 2019; Chawla et al., 2016; Liu et al., 2021;
Bruckner et al., 2023). Further no vector neutralizing antibodies
have formed with prolonged DeltaRex-G therapy, indicating that
DeltaRex-G is not immunogenic (Chawla et al., 2019; Chawla et al.,
2016; Liu et al., 2021; Bruckner et al., 2023). Additionally, no delayed
adverse events have been reported in long term (>15 years) cancer
survivors with DeltaRex-G treatment (Liu et al., 2021). Nevertheless,
a phase 1/2 clinical study is warranted to show the safety and
inhibitory activity of DeltaRex-G in patients suffering from steroid-
resistant cytokine release syndrome following CAR-T cell therapy.
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