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This paper discusses the challenges of producing CAR-T cells for cancer treatment
and the potential for Artificial Intelligence (AI) for its improvement. CAR-T cell therapy
was approved in 2018 as the first Advanced Therapy Medicinal Product (ATMP) for
treating acute leukemia and lymphoma. ATMPs are cell- and gene-based therapies
that show great promise for treating various cancers and hereditary diseases. While
some newATMPs have been approved, ongoing clinical trials are expected to lead to
the approval of many more. However, the production of CAR-T cells presents a
significant challenge due to the high costs associated with the manufacturing
process, making the therapy very expensive (approx. $400,000). Furthermore,
autologous CAR-T therapy is limited to a make-to-order approach, which makes
scaling economical production difficult. First attempts are being made to automate
this multi-step manufacturing process, which will not only directly reduce the high
manufacturing costs but will also enable comprehensive data collection. AI
technologies have the ability to analyze this data and convert it into knowledge
and insights. In order to exploit these opportunities, this paper analyses the data
potential in the automated CAR-T production process and creates a mapping to the
capabilities of AI applications. The paper explores the possible use of AI in analyzing
the data generated during the automated process and its capabilities to further
improve the efficiency and cost-effectiveness of CAR-T cell production.
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1 Introduction

The approval of the first chimeric antigen receptor (CAR)-T cell product in the European
Union in 2018 marked a significant paradigm shift in the treatment of acute lymphoblastic
leukemia (ALL) (EMA/188757/2022 Kymriah, 2022). Since then, the field of advanced therapies
has rapidly evolved, with the approval of nine additional Gene Therapy Medicinal Products
(GTMP) and a multitude of ongoing clinical trials. Approved GTMPs are for the treatment of
multiple myeloma, melanoma and inherited diseases such as hemophilia and retinal dystrophy
(Paul-Ehrlich-Institut, 2023). In addition, current clinical trials focus on solid tumors and
alternatives for T cells such as NK cells and macrophages (Marofi et al., 2021; Pan et al.,
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2022). However, despite the significant clinical success of these therapies,
high costs inmanufacturing and supply hinder wide-scale patient access.
For cost reduction, the complex manufacturing processes need to be
better characterized to ultimately ensure a successful therapy outcome.

For this reason, the field is moving steadily toward digitization and
automation of the entire therapy process (Blache et al., 2022). One
project dedicated to this approach is the European Union Horizon
2020 project AIDPATH (European Commision, 2021a) which is an
acronym for Artificial Intelligence-driven, Decentralized Production for
Advanced Therapies in the Hospital. AIDPATH aims to develop an
open platform for the production of CAR-T cells using flexible
automation concepts together with digital solutions for data
management and the integration of AI (Hort et al., 2022). In
particular, the use of AI holds great potential and has the possibility
to improve CAR-T cell manufacturing in the future. AI has gained
increasing popularity in recent years due to its ability to process ever-
increasing amounts of data and support its analytical capabilities.

The use of AI in CAR-T cell therapy presents both
opportunities and challenges. Integrating AI technologies can
improve manufacturing efficiency and accuracy, optimize
logistics, and reduce costs. AI can also assist in identifying
appropriate patients for therapy and help monitor therapy
progression and predict treatment responses. However, there
are still open issues and challenges to overcome. Privacy,
security, and ethical issues play a critical role in implementing
AI in CAR-T cell therapy. In addition, the integration of AI
systems into existing production workflows and the validation of
AI-based decisions still need to be explored.

Therefore, this paper is dedicated to the topic of AI in CAR-T
cell therapy. It highlights the fundamentals and potentials of AI in a
manufacturing context and explores why its use in CAR-T cell
therapy has been limited to date. Furthermore, this paper discusses
the potential uses of AI in the treatment process and identifies
existing barriers. In addition, existing AI methods are categorized
and listed along the therapy process. Finally, an outlook on the
future development of AI in the field of CAR-T cell therapy is
provided, highlighting potential trends and opportunities.

Overall, the integration of AI into CAR-T cell therapy has the
potential to provide significant advances in the production of CAR-
T cells and treatment of leukemia and lymphoma. By overcoming
challenges and targeting the potential of AI, new therapies can be

developed more efficiently and made available to patients more
quickly.

2 Definition of AI and applications in
manufacturing

The potential of AI in healthcare is enormous, as evidenced by
its rapid market growth and significant investments in research and
development. By 2027, the AI market is projected to reach a
staggering $407 billion, with the manufacturing sector poised to
experience a financial impact of $3.8 trillion by 2035 (Maslej et al.,
2023). Notably, the healthcare industry has received the highest
investment, amounting to $6.1 billion in 2022. Organizations that
have already embraced AI in healthcare have reported remarkable
cost reductions and revenue increases (Haan, 2023).

In information systems, AI can be described as an agent. Kühl et al.
distinguish here between simple reflex agents and learning agents (Kühl
et al., 2022). A reflexive agent applies knowledge once acquired from an
initial implementation to its environment, while a learning agent
continues to learn by interacting with its environment after initial
training. Both types of agents are described by their interaction with
their environment. This interaction consists of the reception of data from
the environment and on an action to be executed in the environment.
Internally, acquired knowledge is applied to achieve a given goal by the
execution of an action. Now, such an intelligent agentmay have acquired
this knowledge by training Machine Learning (ML) models, or it may
have a non-ML based knowledge representation, such as a rule-based
expert system. ML, meanwhile, can be viewed as an implementation of
statistical learning. Thus, ML, is a method applied by AI systems (Kühl
et al., 2020).

Such an intelligent agent can interact with its environment with
different degrees of autonomy. A possible categorization of autonomy
can be made by the amount of human interaction in the process of data
analysis from the data basis to the decision or action. Here, a distinction
can bemade between descriptive, diagnostic, predictive, and prescriptive
tasks with which the agent is entrusted (Sallam et al., 2014; Kühn et al.,
2018). A descriptive agent describes what is happening in the
environment. The human must figure out why it is happening and
what will happen to derive a decision or action that will change the
environment in the desired sense. A diagnostic agent now goes one step

FIGURE 1
CAR-T cell therapy process and its challenges.
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further and tries to explain relationships in the environment. A
predictive agent goes further still and predicts how the environment
will change in the future. Finally, a prescriptive agent supports the
human in deciding which action to take to achieve a desired result or
carries out the action itself. A bioreactor can provide an example of the
differentiation of agents in the process of CAR-T cell production
explained here: a descriptive agent describes the number of cells in
the bioreactor, a diagnostic agent can justify why exactly this number of
cells is found in the reactor on the basis of the information supplied. A
predictive agent can predict the number of cells for a point in time in the
future and a prescriptive agent can determine the optimal time to harvest
and propose it to the operator and if all regulatory aspects are covered,
trigger the process itself.

3 CAR-T therapy process and its
challenges

The manufacturing and provision of CAR-T cells pose new
challenges for hospitals and treatment centers. Due to the
autologous nature of the therapy, T cells are removed from
patients in the hospital, shipped to a pharmaceutical company or
an academic site for CAR-T cell manufacturing, and then shipped
back for administration to the patient. Figure 1 illustrates the
treatment process and the challenges involved (Iyer et al., 2018;
Enejo, 2019; Braga et al., 2021).

First, the patients are registered in the hospital and their eligibility for
the therapy is determined (Braga et al., 2021). Blood is then drawn from
the patient and the leukocytes are isolated (leukapheresis). At the
manufacturing site the leukocytes are preprepared and the desired
T cells are selected. Which T cells are selected depends on the
chosen product. Which T cells and in which ratio they yield the best
quality is the focus of current research. In the subsequent activation step,
the cells are stimulated for proliferation and differentiation. Afterward,
the CAR is integrated in the genome of the T cells (geneticmodification).
Differentmethods can be used for this such as viral transduction or non-
viral transfection. The latter was developed more recently for safer and
more cost-efficient geneticmodification (Harris and Elmer, 2021). Then,
the CAR-T cells are expanded to reach the required amount. With
7–10 days, the expansion process is by far the longest manufacturing
process and thus a major driver for the overall delivery time, besides the
final quality and release criteria control. Therefore the trend is to reduce
the duration of the expansion time to the minimum amount of time to
get a sufficient product and reduce the delivery time. Lastly, the CAR-T
cells are cryopreserved and shipped back to the hospital. At the hospital,
the patient receives the necessary bridging therapies (e.g.,
chemotherapy), the manufactured product is checked and
administered to the patient. In the post-treatment phase, the patient
continues to bemonitored and remains in the hospital for up to 10 days.
For the following 28 days, it is recommended that the patient stays
within a 2-h distance to the hospital (Kymriah, 2018; Iyer et al., 2018;
Vormittag et al., 2018; Braga et al., 2021).

Across the treatment process, challenges emerge that currently
still hinder equitable and affordable CAR-T cell therapy. Figure 1
summarizes the main challenges. A major barrier to wide access to
CAR-T cell therapy is the associated cost. The cost of approved
products is $475,000 for Kymriah® and $373,000 for Yescarta®
(Geethakumari et al., 2021). In addition, there are other costs

associated with bridging therapies, follow-up, and possible
treatment of side effects (Kamal-Bahl et al., 2022). In the EU,
reimbursement practices for CAR-T cell therapies are
inconsistent and occur through separate compensation payments.
Pricing decisions are mostly made between pharmaceutical
companies and regulators. A uniform reimbursement model is
proving difficult due to regional and country-specific factors
(Haag et al., 2022). A 2020 study highlights the significant
administrative and financial challenges faced by hospitals and
treatment centers in Germany. Problems with reimbursement
and the need to make advance payments are often apparent here
(Wörmann, 2020). One solution for uniform and fair
reimbursement could be outcome-based reimbursement models
(OMS), in which costs are only incurred if the therapy is
successful. Challenges arise here, however, in the comparability of
clinical studies and an overall lack of understanding of the
manufacturing process (Solbach et al., 2020).

An autologous CAR-T cell product is a complex biological product
consisting of the patient’s genetically modified T cells. Accordingly, the
quality of the product varies greatly with the patient’s biological material
as well as with themanufacturing process. Thus, even small effects in the
process can have a large impact on the product. These include, for
example, different procedures for T-cell stimulation and the gene
delivery process (Stock et al., 2019), as well as the choice of reagents
(Egri et al., 2020; Ghassemi et al., 2020). The focus in recent years has
also tended to be on optimizing biological parameters to increase
response rates rather than improving the overall process chain. More
recently, the field has also been shifting to optimizing the production
process and thus reducing process times and eliminating manual
processes. Technological concepts and devices enable the automation
of single process steps (e.g., through liquid handling units or bioreactors)
and the entire process chain (e.g., CliniMACS®, Lonza Cocoon®)
(Moutsatsou et al., 2019). While the latter drastically reduce human
interaction and thus increase standardization and reproducibility, they
follow a one-device-per-patient approach, which makes scalability
difficult. In the AIDPATH research project, these limitations are
being addressed via a modular, vendor-independent platform for
parallel, automated manufacturing and quality control (Hort et al.,
2022).

Another challenge is evident in the side effects and uncertain
efficacy of CAR-T cell therapy. The most common side effects are
cytokine release syndrome (CRS) and immune effector cell-
associated neurotoxicity syndrome (ICANS). In CRS, there is a
massive release of cytokines caused by the contact of CAR-T cells
with the target antigens of cancer cells. ICANS affects the central
nervous system and can cause a variety of symptoms. Other
phenomena that affect efficacy include antigen loss, tumor
heterogeneity, and lack of persistence (Ayuketang et al., 2022;
Rees et al., 2022).

Adequate infrastructure also has a major impact on equitable
access to CAR-T cell therapy. While there is sufficient coverage in
Germany with 39 CAR-T centers (Novartis, 2023), there are large
gaps in coverage in the USA (especially in the Southeast and
Midwest) (Kamal-Bahl et al., 2022). This involves not only the
buildings, facilities, and cleanrooms, but also adequately trained
personnel. A variety of individuals from different disciplines are
needed throughout the therapy process, all of whommust be trained
and qualified (Beaupierre et al., 2019).
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4 AI application scenarios in CAR-T cell
therapy

In this section the process described in Section 3 is overlaid with
AI use cases found in the literature. Table 1 provides an overview of
the process steps as well as the stages of development of AI systems.
Relevant work is mapped herein to identify focus areas of research
and highlight potential gaps.

A large focus of current research on AI in CAR-T cell therapy deals
with patient follow-up. Here, the emphasis is on predicting the
occurrence of side effects like CRS or sepsis after the therapy is
administered (Bedoya et al., 2020; Fleuren et al., 2020; G et al., 2019;
Le et al., 2019; Tang et al., 2020; Tedesco andMohan, 2021). Tomonitor
patientsmore closely, one team is proposing the use of smart devices and
wearables to useML to analyse the data collected there and respond even
more quickly (Banerjee et al., 2021). In the field of patient evaluation and
selection, biomarker evaluation plays a crucial role to ensure successful
therapy in the CAR-T process. In this regard (Gil and Grajek, 2022),
suggests a consideration of biomarker-based selection criteria to ensure
that therapy is optimally effective (not yet implemented, therefore
marked with * in Table 1). Another use case is to select patients in
whom the therapy is likely to achieve the best results (Liberini et al.,
2021). Another important step in the CAR-T process is the extraction
and preparation of the T cells. Here, healthy CD3 T cells are specifically
selected to provide an optimal starting point for the further steps of the
process (Sugimoto, 2019). In addition, pre-cell selection data will allow
prediction of optimal cell selection timing for patients individually to
achieve maximum benefit (O’Reilly et al., 2023).

In the genetic engineering and expansion phase, predictive quality
assessment of the cell product is performed to predict the clinical
outcome of the therapy (Naghizadeh et al., 2022). Surveys by Wu et al.
(Wu et al., 2018) in 2018 and Reyes et al. (Reyes et al., 2022) in
2022 provide insights into the state-of-the-art soft sensors and AI for
cell culture control. Wu et al. (Wu et al., 2018) focus on automated cell
expansion trends and KPIs such as foaming, cell count, viability,
glycosylation, biomass, and morphology, highlighting fluorescence,
Raman spectroscopy, chemometrics, and artificial neural networks.
Reyes et al. (Reyes et al., 2022) conduct a comprehensive survey
covering various modern sensor tools, including artificial neural
networks, spectroscopy, optical sensors, free-floating wireless sensors,

and statistical methods for modeling cell density and antibody titers.
Another field that is being strongly addressed is the design of the CAR
gene and its effect on cells and tumours prior to the manufacturing
process. Here, the correlations between different possible markers and
their effects on tumour cells are investigated and an attempt is made to
predict possible efficacy (Mösch et al., 2019; Dannenfelser et al., 2020;
Lee et al., 2020).

In addition to the listed use cases from literature, other use cases for
AI in CAR-T cell production are being investigated in the AIDPATH
research project. Two of those use cases (UC) deal directly with themost
time-consuming process step, the expansion of the CAR-T cells in the
bioreactor. Use case 1 focuses on the development of a digital twin of the
bioreactor bymechanistically modelling its design and control, as well as
modelling the CAR-T cells growth via the consumption of key nutrients
and production of metabolites. This digital twin will provide a soft-
sensor of cell-concentration in real-time, as well as short term (1–2 days)
forecasts of cell concentration in the future. Such predictions can then be
used to informwhen the expansion stage should be terminated based on
assessment of whether the target dose (i.e., required cell number for
treatment) has been reached. In Use case 2 a reactive online process
control based on a set of ‘soft’ sensors is developed to complement the
existing PID controller for real-time monitoring of key bioreactor
parameters [UC2]. These soft sensors process data from 8 selected
‘hard’ sensors and provide consensus alerts to the human operator.
Different soft sensor algorithms, including statistically based and
artificial intelligence techniques, contribute to the overall confidence
in assessing the situation. Future developments aim to include patient-
specific adaptations by adjusting sensor set points and algorithm
configurations. Furthermore, the modular concept (Section 3) raises
the problem of the production scheduling of the manufacturing
platform. If, in the future, the capacity of the plant is increased so
that the products ofmultiple patients can bemanufactured concurrently,
the optimization of the production through scheduling [UC3] becomes
inevitable. The uncertainty of the cell-expansion process combined with
hard time constraints between consecutive production processes
requires new scheduling methodology. Furthermore, the coordination
of the patients’ therapies running in parallel [UC4]must be added to the
system in order to manage the uncertainties in all steps of the therapies
and to ensure that the patient and the product are ready at the same time
(Hort et al., 2022).

TABLE 1 Relevant AI research in CAR-T cell manufacturing and therapy (* marks work, that is not yet implemented).

CAR design Patient
evaluation and
selection

T-Cell
extraction and
preparation

Genetic
engineering and
expansion

Conditioning
therapy and
infusion

Post-treatment and
recovery

descriptive Lee et al. (2020) Naghizadeh et al.
(2022)

[UC2]

diagnostic Liberini et al.
(2021), Beekers et al.
(2023)

predictive Mösch et al. (2019),
Dannenfelser et al.
(2020), Lee et al.
(2020)

Gil and Grajek
(2022)*

O’Reilly et al. (2023) [UC2] Wu et al.
(2018), Reyes et al.
(2022)

Banerjee et al. (2021), Tang et al.
(2020), Tedesco and Mohan
(2021), Le et al. (2019), Fleuren
et al. (2020), Bedoya et al. (2020),
Giannini et al. (2019), Beekers
et al. (2023)

prescriptive [UC3, 4] Sugimoto
(2019)

[UC1, 3, 4] [UC4]
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A further consideration in the project is the personalizable
nature of the CAR-T cell product. Different patients theoretically
require personalized product properties, such as CD4/CD8 ratio or
similar. These are balanced on competing risks, e.g., tumour-free
survival and therapy survival. In addition, the accompanying
therapy must be adapted to the patient. Here, a clinical decision
support system can provide support [UC5] (Beekers et al., 2023).

5 Conclusion and outlook

In this paper, a classification of AI systems for the application in
CAR-T cell manufacturing and therapy was proposed and filled with
approaches from literature and current investigations in AIDPATH.
Even if this paper is only intended to provide an initial overview and
makes no claim to completeness, it is nevertheless possible to draw
initial conclusions and derive suggestions for the further use of AI in
CAR-T therapy. While the first ML algorithms exist in the processes
upstream and downstream of the manufacturing process—CAR
design and post-treatment—there is still a lack of approaches to
control and optimize the manufacturing process as such. The
authors see the reason for this in the lack of understanding
between the effects of the critical process parameters (CPP) and
the critical quality attributes (CQA). And it is precisely at this point
that AI systems can release their full potential through
comprehensive data analyses and determine cause-and-effect
relationships (diagnostic). In addition to the technical
implementation of such AI systems, the authors see in particular
the need for (EMA/188757/2022 Kymriah, 2022) knowledge transfer
between data scientists, biotechnologists, and physicians (Paul-
Ehrlich-Institut, 2023), adapting regulatory processes based on
adaptive manufacturing and Quality by Design approaches and
(Marofi et al., 2021), an end-to-end, standardized data
acquisition and provision. International EU consortia such as
AIDPATH (European Commision, 2021a), ImSavar (European
Commision, 2019) and T2EVOLVE (European Commision,
2021b), have set themselves the task of addressing these needs
and aim at an equitable and affordable access to CAR-T cell therapy.
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