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There are a lot of evidences on the beneficial effects mediated by exercise on the
prevention of not communicable diseases (NCDs) including different type of
cancer. The production of circulating exerkines transported in exosomes
represents a novel pathway activated by exercise. However, the biological
mechanisms that could explain the role of exosomes in cancer prevention
have been not fully elucidated. The aim of this mini-review is to provide an
update on the biological mechanisms bringing the release of muscle-derived
exosomes during exercise and cancer prevention.
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Introduction

It is well established that regular engagement in physical activity reduces the incidence of
many chronic non-communicable diseases, including hypertension, coronary disease,
obesity, type 2 diabetes and cancer (Pedersen and Saltin, 2015; Maridaki et al., 2020;
Papadopetraki et al., 2022; Mohr et al., 2023). Current research fully agrees that regular
exercise can induce several adaptations including an improvement in: body composition
with reduced adiposity, especially in the abdominal region; a greater efficiency in glucose
homeostasis and insulin sensitivity (Pedersen and Saltin, 2015; Hoffmann and Weigert,
2017); an improvement in plasma lipoprotein profile; a reduction of systemic inflammation,
with enhanced immune response (Franczyk et al., 2023).

The health effects of exercise are largely ascribed to the secretion of a great number of
circulating muscle-derived factors released in response to the exercise, namely, myokines. In
fact, the skeletal muscle, in response to physical exercise, releases hundreds of
secretory products, including proteins, microRNAs (miRNAs) and cytokines into the
circulation (Di Felice et al., 2020). Myokines are expressed, produced and released by
muscle fibers, exerting autocrine, paracrine or endocrine effects (Severinsen and Pedersen,
2020).

Exercise represents the most important stimulus for myokine release, which represent
novel therapeutic targets to counteract both muscular and non-muscular diseases. Recent
studies also attributed to myokines a key role in muscle regeneration, a process linked to
inflammation that affects many chronic diseases (Di Felice et al., 2022). The latter hypothesis
is supported by novel evidences indicating that physical exercise induces the increase of
telocytes, a population of stromal cells, in skeletal muscle interstitium, which appears to
promote regenerative mechanisms and to support local stem cell differentiation in exercised
rodents (Ravalli et al., 2021).

Furthermore, regular exercise promotes the release of circulating small extracellular
membranous vesicles, containing myokines, from muscle cells. The mechanisms through
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which myokines produced during exercise are conveyed in
exosomes and involved in cross-talk between organs are topics of
great interest (Di Felice et al., 2020).

Here, we provide an update on the biological mechanisms
bringing the release of muscle-derived exosomes during exercise
and cancer prevention.

Myokines, exerkines and exosomes

There are about 600 myokines that are regulated in response to
muscle contraction (Di Felice et al., 2020). IL-6 was the first
described myokine with anti-inflammatory properties in
mammals (Pedersen et al., 2003). Some of other myokines are:
brain-derived neurotrophic factor (BDNF), angiopoietin-like 4
(ANGPTL4), BAIBA (β-aminoisobutyric acid, a non-protein
amino acid), fibroblast growth factor 21 (FGF-21), chemokine
(C–C motif) ligand-2 (CCL-2) (also called monocyte
chemoattractant protein-1 (MCP-1), chemokine (C–X3–C motif)
ligand 1 (CX3CL1) (also called fractalkine (FKN)), irisin, leukemia
inhibitory factor (LIF), interleukin-6 (IL-6), IL-7, IL-8, IL-15,
myostatin, meteorin-like protein (Metrnl), and secreted protein
acidic and rich in cysteine (SPARC) (Hoffmann and Weigert,
2017; Severinsen and Pedersen, 2020).

The beneficial effects of myokines include the regulation of
energy expenditure, insulin sensitivity, lipolysis, free fatty acid
oxidation, adipocyte browning, glycogenolysis, glycogenesis and
general metabolism (Severinsen and Pedersen, 2020).

More recently, novel metabolites as mediators of
communication between skeletal muscle and other organs have
emerged (Severinsen and Pedersen, 2020): the already mentioned
“exerkines” (Safdar et al., 2016; Safdar and Tarnopolsky, 2018).
Many studies identified different circulating factors released with the
exercise and derived from other organs such as heart (cardiokines),
liver (hepatokines), white adipose tissue (WAT; adipokines), brown
adipose tissue (BAT; baptokines) and the nervous system
(neurokines) (Chow et al., 2022). Exerkines thus consist of a
broad range of signalling molecules, including cytokines, nucleic
acids (microRNA, mRNA and mitochondrial DNA), lipids and
metabolites, which are driven by exosomes and play a key role in
the cross-talk between organs during exercise (Vechetti et al., 2021).

Exosomes are one type of Extracellular Vesicles (EVs) that differ
among them for size, tissue of origin, biochemical composition and
density. Through ultracentrifugation, it is possible to classify EVs
into large, medium and small size (Trovato et al., 2019). Moreover,
EVs are divided in “ectosomes” or “exosomes” based on the
biogenesis pathway, i.e., release after the fusion of multivesicular
bodies with the plasma membrane or production of micro-vesicles
by outward budding of the plasma membrane (Yáñez-Mó et al.,
2015; Trovato et al., 2019; Di Felice et al., 2020). Exosomes and their
biogenesis represent a protein quality control mechanism, since
their release produces a remodelling of the extracellular matrix and
the communication among cells (Pegtel and Gould, 2019; Rong
et al., 2020). Recent research on exosomes focuses on their ability to
deliver complex signals through the engagement and clustering of
specific receptors on the cell surface (Dai et al., 2020; Benjamin-
Davalos et al., 2021). Guescini and colleagues were the first to
demonstrate that skeletal muscle cells produce EVs, including

exosomes (Guescini et al., 2010). In addition to proteins,
myokines and cytokines, there are other molecules whose
production is induced by exercise: miRNAs (see Figure 1). In
fact, it has been observed that after exercise the expression of
different miRNAs was increased in exosomes (Estébanez et al.,
2021) as miR-1 in response to acute cycling exercise (D’Souza
et al., 2018) or miR-1, miR-133a and b, miR-206, miR-208a,
miR-499 after chronic exercise (Yin et al., 2019). Similarly, other
studies evidenced the increase of exosomes circulating-miRNAs as a
consequence of different type of exercise (Muroya et al., 2015; Hou
et al., 2019).

Exercise and cancer

In recent years, growing interest on the role of physical exercise
in preventing cancer emerged. Approximately 30%–40% of cancer
can be prevented by lifestyle modification, including physical
exercise, diet and environmental factors (Huang et al., 2022).
However, the effect of exercise in reducing cancer risk depends
from intensity and frequency (Wang and Zhou, 2021). Most
evidences on the effect of exercise on breast cancer has been
provided: the incidence was reduced in fertile women who
performed high-intensity exercise for at least 3–5 h/week, even in
postmenopausal women (Magnè et al., 2011; Desnoyers et al., 2016;
Orlandella et al., 2021).

Regular exercise, together with a healthy lifestyle, has a positive
impact on the incidence of colorectal cancer: many studies indicated
that the risk of this cancer was reduced of 19% in subjects with
higher levels of fitness (Liu et al., 2016), and similarly, on gastric
cancer incidence, where it was reduced of 19% in trained subjects
(Psaltopoulou et al., 2016). In smokers, the risk of lung cancer was
lower in exercised subjects, even if this benefit disappeared in non-
smokers (Schmid et al., 2016). Exercise also affects the IGF-1
signaling pathway involved in cancer proliferation/survival,
expecially in different epithelial tumors thus explaining, at least
in part, the molecular mechanisms underlying cancer prevention
(Cevenini et al., 2018). Conversely, limited evidences in other types
of cancers (such as blood, pancreatic, ovarian) regarding the effects
of exercise on prevention and progression of cancer were reported
(Wang and Zhou, 2021).

Exosomes and cachexia

Present in up to 80% of cancer patients, cachexia is a complex
metabolic syndrome characterized by significant loss of muscle mass
(up to 75% of skeletal muscle mass) with poor quality of life and
decreased survival (Tisdale, 2010). Cachexia is considered the
immediate cause of death in 20%–50% of all cancer patients
(Marinho et al., 2018). Despite its clinical relevance, this
syndrome is underdiagnosed and not yet fully elucidated.

High levels of circulating pro-inflammatory cytokines associated
with tumor cachexia represent a potential target of exercise.
Exercise, in fact, represents a non-pharmacological therapeutic
strategy, in synergy with anticancer therapy, to counteract
systemic inflammation through the production and secretion of
anti-inflammatory myokines, thus promoting the reduction of
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muscle wasting and the improvement of response rates and survival
(Leal et al., 2021).

Furthermore, recent studies demonstrated that one of the
mechanisms that may be involved in the transduction of
inflammatory signals and the activation of the catabolic state in
muscle is linked to exosomes containing miRNAs and myomiRs. He
and colleagues evidenced that lung and pancreatic cancer cells
secrete exosomes containing miR-21 that, once transported in the
bloodstream, is able to induce apoptosis of muscle cells (He et al.,
2014). More recently, Zhang and colleagues (Zhang et al., 2017)
demonstrated that HSP70 and HSP90 proteins, present in the
membrane of exosomes, are released by cancer cells thus
inducing muscle wasting in cancer cachexia models. Conversely,
Hudson and colleagues showed that miR-182, present in exosomes,
counteracts the role of Foxo3 in inducing atrophy in the skeletal
muscle (Hudson et al., 2014).

Interestingly, recent evidences demonstrated that exercise
could increase cytoprotective proteins expression,
counteracting muscle atrophy. In particular, exercise improves
the expression of Hsp60 protein, associated to mitochondrial
biogenesis and oxidative capacity of muscle cells (Di Felice et al.,
2022). Similarly, Morton and colleagues found significantly
increased (25%) Hsp60 expression levels in the vastus lateralis
muscle of trained compared to sedentary individuals (Morton
et al., 2008); moreover, a significant release of Hsp60-bearing
exosomes was found in the blood of BALB/c mice subjected to a
6-week training program compared to sedentary animals
(Campanella et al., 2008). Recently, a potential anti-cachexia
drug based on Hsp60-containing nanovesicles has been
proposed, which could mimic the beneficial effects of exercise
by improving patient survival and quality of life (Di Felice et al.,
2022).

Exercise-induced exosomes and cancer

Although several mechanisms have been hypothesized as crucially
related to the anti-cancer benefits of exercise, the exact mechanism by
which exercise may produce this effect remains unclear (Magnè et al.,
2011; Goncalves et al., 2014; Desnoyers et al., 2016; Reis et al., 2017;
Wang and Zhou, 2021). It has been demonstrated that exercise,
through the circulating muscle derived-exosomes, secretes more
than 300 molecules such as proteins, myokines, miRNAs and
glycolytic enzymes (Whitham et al., 2018). It can act as a tumour
suppressor, both by influencing several distinctive features of cancer
cells (Hojman et al., 2011; Ruiz-Casado et al., 2017) and by inducing
changes in the metabolic activity of tumour cells (Pedersen and Saltin,
2015). In fact, exercise can affect cancer metabolism and anaerobic
glycolysis, strongly enhanced in cancer cells: these effects on tumor
metabolism represent an useful tool to better understand cancer
biology and to develop therapies targeting cancer energy
metabolism (Vulczak and Alberici, 2022).

Muscle-derived exosomes appear to directly interact with
tumour cells by altering their structure, as well as by modifying
the function of tumour-infiltrating immune cells, thereby
influencing the growth rate of cancer cells (Sadovska et al., 2021).
Recent data provide novel evidence on the effects of muscle-derived
exosomes on delay prostate cancer progression and metastasis,
acting on several physiological processes including protein
folding, energy metabolism and regulation of immune responses
triggered by exercise (Sadovska et al., 2021). Furthermore, a pattern
of several miRNAs in the urinary exosomes including miR-21, miR-
451 and miR-636 has been recently identified as non-invasive
prognostic biomarker for prostate cancer (Shin et al., 2021;
Zhang et al., 2021). Finally, Bryant and colleagues demonstrated
that several miRNAs, such as miR-107, miR-130b, miR-141, were

FIGURE 1
Graphical representation of exercise-induced exosomes released from contracting skeletal muscle.
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increased in circulating exosomes from prostate cancer patients
compared to healthy individuals, reinforcing the relevance of
molecules carried by exosomes as prognostic markers for prostate
cancer (Bryant et al., 2012).

Exercise-induced miRNAs are closely linked to the Hippo Tumor
Suppressor Pathway, whose activation, through the inhibition of two
homologous transcription factors, the Yes-Associated Protein (YAP)
and Transcriptional Co-activator with PDZ-bindingMotif (TAZ), block
target genes, involved in cancer cell proliferation and survival (Badouel
and McNeill, 2011; Yu et al., 2013). Du and colleagues recently
demonstrated that miR-223-3p transcription levels were increased in
breast cancer cells. The inhibition of miR-223-3p transcription reduces
proliferation, migration and invasion of breast cancer cells, through the
Hippo/Yap signaling pathway (Du et al., 2021). Furthermore,
Dethlefsen and colleagues demonstrated that catecholamines induced
by exercise could activate the Hippo Tumor Suppressor Pathway, thus
reducing the risk of breast cancer development (Dethlefsen et al., 2017).

Furthermore, circulating muscle-derived factors produced during
exercise can counteract tumorigenesis and cancer progression by
influencing the tumor microenvironment constituted by different
cell types, mechanical and chemical stressors and humoral factors
(Koelwyn et al., 2017). The interaction of all these components greatly
affects cancer cells and, subsequently, the growth rate of tumor. To
data, few studies focused on the exercise and tumormicroenvironment
adaptations. Koelwyn and colleagues pointed out that exercise affects
tumor microenvironment through several mechanisms such as tumor
perfusion, vascularization, hypoxia and immune response, playing a
key role in cancer suppression (Koelwyn et al., 2017).

Regular exercise stimulates cross-talk between organs through
the secretion of hormones, cytokines and growth factors from
various tissues, including skeletal muscle, which promotes many
adaptations, including: enhancing energy metabolism through the
availability of nutrients, and the modulation of growth factors such

as insulin and IGF-1 which promote cell proliferation; reducing
inflammation by decreasing the circulating levels of cytokines such
as IL-6 and C-reactive protein (CRP) with evident pro-tumorigenic
action (see Figure 2). These exercise-induced adaptations also
modify key regulatory mechanisms of tumor microenvironment,
such as angiogenesis, immune regulation and metabolism, thus
having a cumulative antitumorigenic effect. Furthermore, during
exercise, blood flow is redirected to active skeletal muscle with
surprisingly increased tumor blood perfusion and reduced tumor
hypoxia: this represents an alternative mechanism of exercise
regulation on the tumor microenvironment (Koelwyn et al., 2017).

Finally, regular exercise, through exercise-induced circulating
molecules, also modifies the immune-system response as
demonstrated by many studies that highlighted the role of miR-
486-5p in regulating the breast cancer microenvironment, through
increased recognition of tumor cells by cytotoxic T lymphocytes and
natural killer cells in patients with breast cancer (ElKhouly et al.,
2020; Siqueira et al., 2021, 2023).

Discussion

The relevance of exosomes as carriers for exerkines and their
role in the prevention of NCDs and cancer, including cachexia, have
pointed out. More evidences have been provided supporting the
hypothesis that skeletal muscle, during contraction, secretes not only
myokines and cytokines, already widely discussed, but also miRNAs
and other bioactive molecules (including DNA and proteins), which
are secreted in exosomes whose concentration is regulated by type
and intensity of the exercise (Fruhbeis et al., 2015; Whitham et al.,
2018; Nielsen et al., 2019; Rigamonti et al., 2020).

These transport systems involved in cell-to-cell communication
require a broad spectrum of mechanisms that allow signal

FIGURE 2
Schematic representation of the potential effects of exercise on the regulation of tumor microenvironment.
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transduction; all these systems are not well described in skeletal
muscle cells, and therefore the detailed study of their function will be
of great interest, as they can mediate the effects induced by exercise
on the regulation of cancer (Darkwa et al., 2021).

In this context, physical exercise, through exerkines, seems to
have multitarget actions, which directly or indirectly, can act on
tumor microenvironment by modifying the anti-cancer immune
response, promoting vascularization, hypoxia and tumor perfusion
and modifying energy metabolism in tumor cells.

Conclusion

It therefore appears clear that myokines induced by exercise and
transported in exosomes can induce systemic effects, so that they can
be considered novel molecular targets to prevent the onset of cancer
and/or to delay the development of disease.

Future studies will be needed to gain insight into the intricate
molecular and exercise-induced regulatorymechanisms that control the
release of both exerkines and exosomes and their role in regulating
cancer development. Moreover, further insights are required to develop
tailored exercise protocols useful to counteract cancer progression and
cachexia and promote a better quality of life in cancer survivors.
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