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Often considered the “housekeeping” cells of the brain, astrocytes have of late
been rising to the forefront of neurodegenerative disorder research. Identified as
crucial components of a healthy brain, it is undeniable that when astrocytes are
dysfunctional, the entire brain is thrown into disarray. We offer epilepsy as a well-
studied neurological disorder in which there is clear evidence of astrocyte
contribution to diseases as evidenced across several different disease models,
including mouse models of hippocampal sclerosis, trauma associated epilepsy,
glioma-associated epilepsy, and beta-1 integrin knockout astrogliosis. In this
review we suggest that astrocyte-driven neuroinflammation, which plays a
large role in the pathology of epilepsy, is at least partially modulated by
interactions with perineuronal nets (PNNs), highly structured formations of the
extracellular matrix (ECM). These matrix structures affect synaptic placement, but
also intrinsic neuronal properties such as membrane capacitance, as well as ion
buffering in their immediate milieu all of which alters neuronal excitability. We
propose that the interactions between PNNs and astrocytes contribute to the
disease progression of epilepsy vis a vis neuroinflammation. Further investigation
and alteration of these interactions to reduce the resultant neuroinflammation
may serve as a potential therapeutic target that provides an alternative to the
standard anti-seizuremedications fromwhich patients are so frequently unable to
benefit.
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1 Introduction

1.1 Epilepsy

Affecting approximately 50 million people (World Health
Organization, 2019), epilepsy is one of the most common
neurological disorders in the world. Epilepsy is characterized by
an individual suffering from repeated unprovoked seizures, which
are a result of synchronous discharge of thousands of neurons which
give rise to an abnormal EEG and are associated with a variety of
behavioral abnormalities.

Temporal lobe epilepsy (TLE), which designates seizures
originating in the temporal lobe, is the most common form of
epilepsy observed in adults and adolescents (Blair, 2012). The
majority of patients with TLE have seizures originating from
internal structures of the region, which is further classified as
mesial TLE (MTLE). It is well characterized by the pathological
hallmark of mesial temporal lobe or hippocampal sclerosis (HS),
which involves clearly demarcated regions of neuronal loss and
reactivity of glial cells, or gliosis, throughout the subfields of the
hippocampus and surrounding areas (Thom, 2014). Approximately
one-third of patients with epilepsy are treatment-resistant, with
MTLE-HS patients making up themajority of those, highlighting the
need for therapeutic treatments that can specifically address the
neuronal loss and gliosis that characterize HS. Although the roles of
neurons and the consequences of their loss are crucial to
understanding the progression of epilepsy, it has become quite
evident that glial cells, particularly reactive astrocytes, can
contribute to epileptogenesis; that is, the processes occurring in
the brain that lead to seizures and subsequent epilepsy.

1.2 Astrocytes

Astrocytes have long been acknowledged as essential for normal
brain function as well as being major contributors to injury and
diseases. These specialized glial cells tile the entire brain and contact
vasculature, synapses, and each other, forming gap junctions
between the individual cells. In the healthy brain, these
interactions enable astrocytes to be engaged in energy
metabolism, blood-brain-barrier maintenance, glutamate
clearance, and neurotransmitter uptake and homeostasis.

At the synaptic level, astrocytes effectuate not only
neurotransmitter regulation but also synaptic formation,
maturation, pruning, and stability (Dityatev and Schachner, 2003;
Dityatev and Rusakov, 2011; Chung et al., 2015; Hösli et al., 2022).
They do so by extending branching processes with small terminal
extensions, often called leaflets, to contact and stabilize pre and
postsynaptic partners (Khakh and Sofroniew, 2015; Torres-Ceja and
Olsen, 2022), resulting in the classic “tripartite synapse.” The
presence of astrocytic leaflets, which contain a variety of
membrane receptors, permits astrocytes to closely monitor and
respond to molecular changes in their immediate domains. These
are crucial in regulating and redistributing molecules associated with
neuronal firing released into the extracellular space (ECS),
particularly potassium and glutamate.

Astrocytic processes are highly enriched in potassium (K+)
channels, enabling them to clear K+ from the synaptic cleft and

surrounding area following neuronal activity. Under normal
homeostatic conditions, their inwardly rectifying potassium
channels (Kir) maintain a membrane potential that hovers
around the equilibrium potential for K+, so that upon K+

concentration increase in the ECS, astrocytes are able to swiftly
take up excess K+ ions. They are then conveyed via K+-permeable
gap junctions to neighboring astrocytes, enabling them to
redistribute ions from regions of high to low K+ concentration
(Olsen and Sontheimer, 2008; Blutstein and Haydon, 2014;
Ohno, 2018). A similarly astrocyte-driven mechanism controls
the extracellular concentration of the excitatory neurotransmitter
glutamate, which influences neuronal excitability and can become
excitotoxic if allowed to remain in the ECS. Astrocyte-specific
glutamate transporters EAAT1 (GLAST) and EAAT2 (GLT-1)
transport glutamate into the astrocyte along with 3Na+ in
exchange for 1K+, after which the glutamate is converted to
glutamine by glutamine synthetase (GS) and shuttled back to the
neurons.

At each step of these synaptic processes, astrocytes inherently
alter and are altered by their interactions with not only neurons, but
also immune cells, signaling molecules, and even non-cellular
components of the brain such as extracellular matrix. In
pathological states, astrocytes can easily become reactive and
transition to an inflammatory state, altering their interactions
with the other brain constituents and potentially creating
neuroinflammatory feedback loops.

2 Neuroinflammation

Neuroinflammation, which refers broadly to the innate immune
response of the entire CNS, involves a non-specific immune system
response to trauma, infection, disease, or other injurious challenge.
This innate response of the CNS consists of a number of well-
characterized responses including activation of microglia and
increased production of cytokines, chemokines, antibodies, and
other inflammatory molecules and mediators. Neuroinflammation
can of course be beneficial by addressing and resolving the injury;
alternatively, it can lead to dysfunction in the organism, dependent
on what specific cytokines and chemokines are expressed and how
long the tissue and cells are exposed to the signaling molecules. The
main glial responders in the brain are microglia; however, astrocytes
are also strongly associated with neuroinflammation and the
inflammatory response, and in fact exhibit some of the swiftest
inflammatory reactions following a brain injury.

2.1 Reactive astrocytes and astrocytic
dysfunction in disease

In a neuroinflammatory situation, astrocytes can very quickly
become reactive. Also referred to as “astrogliosis,” “astrocytosis,”
“gliosis,” or “reactive gliosis,” these astrocytes undergo molecular,
chemical, morphological, proliferative, and functional changes
following an immune challenge (Sofroniew and Vinters, 2010;
Vezzani et al., 2011; Zamanian et al., 2012; Robel et al., 2015;
Escartin et al., 2019). These changes vary in degree of reactivity
depending on the intensity or nature of the initial instigator; in fact,
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the heterogeneity of astrocytic responses seems to be the one agreed-
upon facet of this widespread immune reaction (Escartin et al.,
2019). Some reactive astrocytes are considered more beneficial or
neuroprotective as they release more anti-inflammatory and health-
associated signaling molecules, and others are considered more
harmful or neurodegenerative as they release more pro-
inflammatory, disease-associated molecules like cytokines and
chemokines. This has led to a classic “good vs. bad” taxonomy of
reactive astrocytes that some consider too disparate. An excellent
consensus paper covers this topic (Escartin et al., 2021). For this
paper, it is sufficient to express that reactive astrocytes exist along a
spectrum and a single astrocyte can express both beneficial and
detrimental growth factors and signaling molecules.

Keeping in mind their clearly important roles in supporting
normal brain function, astrocytic dysfunction is linked to many
pathologies that involve neurodegeneration including Alzheimer
disease (AD) (Nwaobi et al., 2016; Pajarillo et al., 2019),
Huntington’s disease (HD) (Tong et al., 2014), and amyotrophic
lateral sclerosis (ALS) (Rossi et al., 2008; Ferrer, 2017; Neal and
Richardson, 2018). Astrocytes and astrogliosis are also heavily
implicated in epilepsy and epileptogenesis, as evidenced in the
brains of human epilepsy patients (Lee et al., 1995; Crespel et al.,
2002; Wetherington et al., 2008; Das et al., 2012; Devinsky et al.,
2013; Eid et al., 2013; Gibbons et al., 2013; Bedner et al., 2015;
Coulter and Steinhaeuser, 2015; Hayatdavoudi et al., 2022), and
recapitulated in a variety of animal models.

2.2 Neuroinflammation in epilepsy

Neuroinflammation and its associated changes have been found in
practically every neurodegenerative disorder (Escartin et al., 2019).Many
studies have linked neuroinflammation with epilepsy in human patients
(Ravizza et al., 2008; Aronica et al., 2012; Gibbons et al., 2013; Bedner
et al., 2015; Ferrer, 2017; DeSena et al., 2018; Wenzel et al., 2019; Tan
et al., 2021; Aulická et al., 2022), which has been replicated by a variety of
animal epilepsy models including but not limited to: traumatic brain
injury (TBI) associated epilepsy (Abdul-Muneer et al., 2016; Kim et al.,
2016; Webster et al., 2017; Sharma et al., 2019; Zhou et al., 2020; Gao
et al., 2022; Golub and Reddy, 2022), post-ischemic stroke epilepsy
(Tröscher et al., 2021), glioma-associated epilepsy (Olsen and
Sontheimer, 2008; Buckingham et al., 2011; Buckingham and Robel,
2013; MacKenzie et al., 2016; Tewari et al., 2018; Campbell et al., 2020;
Komiyama, 2022), kainic acid (KA)-induced epilepsy (Canto et al., 2022;
Han et al., 2019; Huang et al., 2022; Hubbard et al., 2016; McRae et al.,
2010; Takahashi et al., 2010; Wolinski et al., 2022; Wu, Z et al., 2021),
pilocarpine-induced epilepsy (Borges et al., 2003; Canto et al., 2022; Han
et al., 2019; Kong et al., 2012; Mátyás, A et al., 2021; Ravizza et al., 2008;
Schauwecker, 2012; Shapiro et al., 2008; Wyeth et al., 2012), kindling
models of epilepsy (Kołosowska et al., 2016; Ueno et al., 2020), and a β1-
integrin knockout astrogliosis mouse model (Robel et al., 2015). The
models particularly analogous to human MTLE-HS include the
pilocarpine model and the KA model, which exhibit varying degrees
of HS in addition to upregulation of proteins associated with immune
responses and inflammation (Canto et al., 2022).

Notably, both short-term and chronic exposure to inflammation
can increase brain excitability and lead to lower seizure thresholds
(Inyushin et al., 2010; Vezzani et al., 2013). In fact, application of

lipopolysaccharide (LPS) to induce neuroinflammation in rat
models of epilepsy has been shown to increase susceptibility to
KA, pilocarpine, and pentylenetetrazol (PTZ)-induced seizures, as
well as increased hippocampus neuronal degeneration (Galic et al.,
2008; Huang et al., 2022).

2.2.1 Specific inflammatory molecules in epilepsy
Some of the specific neuroinflammatory pathways and signals that

are particularly tied to epileptic activity and epileptogenesis include
cytokines such as interleukin-1β (IL-1β) (Balosso et al., 2008; Sinha et al.,
2008; Maroso et al., 2010; Arisi et al., 2015; Kołosowska et al., 2016;
Semple et al., 2017; Webster et al., 2017; Soltani Khaboushan et al., 2022;
Zhang, 2022), the TGF-β pathway (Ivens et al., 2007; Lachos et al., 2011;
Das et al., 2012;Mercado-Gómez et al., 2014; Levy et al., 2015; Kim et al.,
2017), high mobility group protein B1 (HMGB1) (Maroso et al., 2010;
Zurolo et al., 2012; Balosso et al., 2014; Webster et al., 2017; Zaben et al.,
2021; Zhang, 2022), and tumor necrosis factor α (TNF-α) (Galic et al.,
2008; Soltani Khaboushan et al., 2022), as well as chemokine C-C motif
ligands 2, 3, 4, and 5 (CCL2-5) (Wu et al., 2008; Fabene et al., 2010; Kan
et al., 2012; Arisi et al., 2015; Srivastava et al., 2017;Wolinski et al., 2022).

2.2.1.1 IL-1β
The cytokine interleukin-1β (IL-1β) is considered to be a pro-

inflammatory and has a variety of inflammation-associated
downstream effectors including some of those mentioned above
such as TNF-α and IL-6 (Vezzani et al., 2008). Increases or
overexpression in IL-1β have been found in human patients with
TLE (Zaben et al., 2021), HS and cortical dysplasia tissue (Srivastava
et al., 2017), TBI associated epilepsy (Webster et al., 2017), and tumor
associated epilepsy (Sun et al., 2022). This has been recapitulated in
experimental epilepsy models including KA (Balosso et al., 2008; Tian
et al., 2017; Wolinski et al., 2022), pilocarpine (Arisi et al., 2015), and
electrical stimulation (De Simoni et al., 2000). In an epileptic setting, IL-
1β is considered to be primarily secreted by activated astrocytes and
microglia (Maroso et al., 2011); its receptor IL-1R1 is furthermore
overexpressed in epileptic neurons and glia (Ravizza et al., 2008).
Application of its endogenous antagonist IL-1Ra acts as an
anticonvulsant in mice (Vezzani et al., 2000); thus, IL-1β itself may
be considered a proconvulsant (Vezzani et al., 2008), although it also
mediates other cell signaling pathways.

2.2.1.2 TGF-β
Transforming growth factor-β (TGF-β), a family of hormonal

polypeptides, is well associated with tissue homeostasis,
development, and remodeling (Massagué and Chen, 2000; Stewart
et al., 2018) as well as inflammation and immune modulation. The
first step in a pathway with highly variable outcomes, the members of
the TGF-β family function by activating Smad proteins which enter the
nucleus to regulate target genes.

Activation of TGF-β signaling is associated with epilepsy
(Mercado-Gómez et al., 2014; Kim et al., 2017; Webster et al.,
2017), particularly when triggered by expression of extravascular
albumin, i.e., in event of blood-brain barrier (BBB) leakage (Ivens
et al., 2007; Webster et al., 2017). Notably, increase in albumin
uptake by astrocytes has been found to correlate with
downregulation of Kir4.1 channels and reduced astrocytic
buffering, further contributing to epileptiform activity (Ivens
et al., 2007). Other neuroinflammatory molecules associated with
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epilepsy such as TLR, HMGB1, and NF-κB are also affected by TGF-
β signaling (Kim et al., 2017; Webster et al., 2017).

2.2.2 Astrocytes and neuroinflammation in epilepsy
Although both systemic inflammation and astrogliosis are well-

correlated with increased risk of or susceptibility to seizures (Wilcox
et al., 2015), astrocytic roles in the overall progression of epilepsy,
and whether they play a more contributory or compensatory role,
are still debated. The heterogeneity of reactive astrocytes does not
easily lend itself to an answer to this question; indeed, even adjacent
astrocytes exposed to the same insult may exhibit differences in
reactivity (Zamanian et al., 2012). Notably, though
neuroinflammation can increase seizure susceptibility, seizure
activity itself can upregulate the production of inflammatory
markers and mediators, thus creating a vicious epileptogenic
feedback loop.

We suggest that one way to investigate the correlation between
neuroinflammation and epilepsy would be to investigate astrocyte
interactions with a portion of the brain that has long been
considered part of the support network, much like the historical
role of astrocytes- the extracellular matrix.

3 ECM and PNNs

Rather than being a simple fluid-filled space, the gaps between
adjacent cells in the brain are occupied by extracellular matrix
(ECM), a loosely organized structure comprised of a variety of
proteoglycans, link proteins, and hyaluronic acid. The ECM subsists
in three categories: the basement membrane, which is closely
associated with vasculature and blood vessels; the interstitial
matrix, which is loosely structured and more associated with
support and scaffolding; and perineuronal nets, which are more
structured and form in only specific regions of the brain. Although
all three are important, it is the perineuronal nets, hereafter referred
to as “PNNs,” which will be the main focus of this review, as they are
closely associated with astrocytic leaflets.

PNNs primarily form around parvalbumin-positive (PV+), fast-
spiking GABAergic interneurons, where they surround the soma
and generally extend along the axon initial segment and other
neurites (Celio and Blumcke, 1994; Härtig et al., 1999; Slaker
et al., 2016). Their physical appearance has historically been
likened to “armor,” “lattice,” or “netting,” from which they derive
their name. They are found in a number of brain regions including
the cortex with high levels of density and intensity, specifically in the
somatosensory cortex, visual cortex, and whisker barrel cortex in
rodents, but are also present in the amygdala, hypothalamus, basal
ganglia, and cerebellum (McRae et al., 2007; Bozzelli et al., 2018).
Although PNNs also condense sparsely around cells in the
hippocampus, they are expressed almost exclusively around
excitatory neurons in the CA2 region (Carstens et al., 2016;
Lensjø et al., 2017).

3.1 Components

The molecular components of perineuronal nets are both
neuronal and glial in origin (Brückner et al., 1993; Giamanco

and Matthews, 2012) and include hyaluronic acid, hyaluronan
and proteoglycan link (Hapln) proteins, tenascins R and C, and a
variety of chondroitin sulfate proteoglycans (CSPGs), mainly of the
lectican family, including aggrecan, versican, brevican, and
neurocan (Figure 1).

Aggrecan is the primary lectican component of PNNs
(Giamanco and Matthews, 2012; Morawski et al., 2012; Wen T.
H. et al., 2018) as well as the most well-studied; it is the loss of
aggrecan that is most associated with critically impaired (Kwok et al.,
2010) to practically ablated (Rowlands et al., 2018) PNN structures.
Aggrecan and its fellow lecticans are anchored to neuronal cell
membranes by hyaluronic acid (HA), which is produced by
hyaluronic acid synthase (HAS) and stabilized by Hapln proteins,
predominantly Hapln1 and 4 (Kwok et al., 2010; Mohamedi et al.,
2020; Jakovljević et al., 2021). HA, HAS and Hapln proteins are also
critical for PNN formation (Carulli et al., 2010; Giamanco et al.,
2010; Kwok et al., 2010), as is tenascin-R (TnR). TnR, which links
the lecticans of the structure, is a direct component of the PNNs,
whereas tenascin-C (TnC) is affiliated with the structure but does
not appear to physically contribute to it (Morawski et al., 2014).
Instead, it interacts with cell surface receptors like integrins and cell
adhesion molecules, and indirectly modulates the other constituents
of the ECM (Jakovljević et al., 2021). Aggrecan is primarily produced
by neurons (Giamanco et al., 2010) and CA2 pyramidal neurons
(Carstens et al., 2016), whereas most of the other CSPGs appear to be
expressed by astrocytes, which express transcripts for HAPLN1,
TnR, and the other three lecticans (Giamanco and Matthews, 2012).
Hyaluronic acid binding protein (HABP) is associated with both
neurons and glia; glial removal results in diminished but not
completely depleted HABP expression in vitro (Giamanco and
Matthews, 2012).

Visualization of these structures is most often achieved using the
plant lectin marker Wisteria floribunda agglutinin (WFA)
(Figure 2), which binds to the glycosaminoglycan (GAG) side
chains of the PNNs and is considered a fairly universal marker
(Giamanco et al., 2010; Slaker et al., 2016). GAGs, which adhere to
the CSPG/lectican backbone of the structure, express various
sulfation patterns that contribute heavily to the negative charge
of PNNs as well as influencing their overall heterogeneity, dividing
CSPGs into primarily two groups with either 4-sulfated or 6-sulfated
GAG chains (Bonneh-Barkay, 2009; Miyata et al., 2018). These
sulfation patterns- much like the nets themselves- are dynamic and
have been observed to change during development, adolescence, and
through adulthood (Carulli et al., 2010; Yutsudo and Kitagawa,
2015).

3.2 Known PNN functions

Despite being first immortalized in published form by Camillo
Golgi in 1898 (Celio and Blumcke, 1994), the purposes of PNNs are
still not fully elucidated. In general, the ECM is important for
organization, support, and maintenance of the neural and glial
cells it surrounds and encapsulates. PNNs specifically are
furthermore intimately involved with the formation, stability and
remodeling of synapses and synaptic signaling (Dityatev and
Schachner, 2003; Frischknecht and Gundelfinger, 2012; Bozzelli
et al., 2018; Lipachev et al., 2019; Reichelt et al., 2019) and thus

Frontiers in Molecular Medicine frontiersin.org04

Woo and Sontheimer 10.3389/fmmed.2023.1198021

https://www.frontiersin.org/journals/molecular-medicine
https://www.frontiersin.org
https://doi.org/10.3389/fmmed.2023.1198021


neuronal plasticity and learning and memory (Romberg et al., 2013;
Tsien, 2013; Thompson et al., 2018; Bosiacki et al., 2019; Wei et al.,
2019; Chelyshev et al., 2022; Fawcett et al., 2022).

Juvenile animals still in early development display experience-
dependent neuronal plasticity. This capability, observed during what
is referred to as the “critical period,” is fairly depleted by the time

postnatal development ends, which also coincides with the
formation of PNNs (Pizzorusso et al., 2002; Hensch, 2004;
Gundelfinger et al., 2010; Miyata and Kitagawa, 2015; Cornez
et al., 2018). PNNs appear to stabilize or “lock” synapses into
place to reduce synaptic plasticity at this point, as their physical
presence restricts the placement of astrocytic leaflets and
presynaptic boutons. This is particularly relevant in the sensory
system, where incoming sensory information competes for cortical
representation. In the visual system, for example, the closure of the
ocular dominance that allocates cortical territories to each of the
eyes is marked by the deposition of PNNs. Experimental
degradation of the visual system PNNs using the enzymatic drug
chondroitinase ABC (ChABC) reverses this process, restoring a
more adolescent-like plasticity in adult animal models
(Pizzorusso et al., 2002; McRae et al., 2007; Carulli et al., 2010;
Hou et al., 2017). Degradation of PNNs around CA1 and
CA2 hippocampal regions in mice replicated these findings,
shifting the excitatory/inhibitory balance and reinstating juvenile-
like plasticity (Carstens et al., 2016; Khoo et al., 2019). This
characteristic stabilization of synapses further suggests a role in
the formation or retention of memory (Romberg et al., 2013; Howell
et al., 2015; Yang et al., 2015; Rowlands et al., 2018; Thompson et al.,
2018; Wei et al., 2019) [See (Wingert and Sorg, 2021; Fawcett et al.,
2022) for thorough reviews on PNNs in plasticity and memory].
Application of ChABC for treatment of glial scars, often associated
with areas of neuroinflammation, was found to promote axonal
regeneration and a return to plasticity in the spinal cord after injury
as well (Bradbury et al., 2002; Massey et al., 2006). It is therefore
proposed that PNN structures form a “repulsive barrier” that

FIGURE 1
Perineuronal nets are comprised of long hyaluronic acid (HA) chains linked together with the CSPG lecticans aggrecan, versican, neurocan and
brevican. Hyaluronan and proteoglycan link (Hapln) proteins and tenascin-R stabilize the CSPGs. These net-like structures are anchored by HA and
hyaluronic acid synthase (HAS) on the enveloped neurons, and by HA-CD44 interactions on nearby astrocytes. Created with Biorender.com.

FIGURE 2
WFA+ PNNs (yellow) typically surround the soma and can extend
along the axon initial segment and dendrites of inhibitory,
parvalbumin-positive interneurons.
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inhibits axonal and dendritic growth, not only by physically
blocking leaflet and bouton formation but also via their highly
negative charges as well as their interactions with growth-
suppressing signaling molecules (Bonneh-Barkay, 2009; Sharma
et al., 2012) [For a thorough review on glial scar formation and
its immunological interactions, see (Raposo, 2014)].

Other studies have alluded to further purposes of PNNs such as
helping to regulate extracellular reactive oxygen species (ROS) or
protect against oxidative stress (Morawski, 2004; Beurdeley et al.,
2012; Cabungcal et al., 2013) and enabling the inhibitory,
GABAergic PV+ fast-spiking neurons (FSNs) that they envelop to
fire action potentials at extremely high rates (Balmer, TS, 2016;
Tewari et al., 2018). They also appear to play a role in ion buffering,
as indicated by their highly anionic structures mentioned above
(Brückner et al., 1993; Brückner et al., 1998; Härtig et al., 1999).

4 Astrocyte-ECM interactions

Astrocytes and ECMmutually interact at multiple levels in normal
physiology. As discussed previously, multiple ECM components are
produced by astrocytes including HAPLN1, TnR, HABP, neurocan,
brevican, and versican. In the event of an injury, for example, activated
astrocytes will increase secretion of CSPGs to form a glial scar around
the area (Silver and Miller, 2004; Haist et al., 2012). Other ECM
molecules such as TnC, laminins, and thrombospondins, while also
produced by astrocytes, feature in more cell-cell signaling and cell-
matrix interaction capacities instead of contributing to the physical
ECM structure, and are often considered “matricellular” proteins
(Eroglu, 2009; Morawski et al., 2014). Thrombospondin, for
example, appears to be necessary for synaptogenesis in vitro and in
vivo (Christopherson et al., 2005; Crawford et al., 2012) [See Eroglu
(2009) and Jones and Bouvier (2014) for thorough reviews on
astrocytically released matricellular proteins]. Astrocytes additionally
are known to regulate ECM by producing molecules that degrade,
remodel, and dictate the matrix structure (Kim et al., 2016), including
matrix metalloproteinases and a group of metalloproteases called “a
disintegrin and metalloproteinase” with and without thrombospondin
motifs (ADAMs and ADAMTSs, respectively) (Ethell and Ethell, 2007;
Cieplak and Strongin, 2017).

However, ECM components are also important to astrocytes,
notably in development and injury response. Supplying astrocyte
cultures with varying ECM proteins revealed that ECM composition
determined the ability of the astrocytes to regrow following injury
(Johnson et al., 2015), and alteration or removal of ECM
components in development has been found to affect normal
astrocytic development. Upregulation of TnC was observed post-
injury (Laywell et al., 1992), as well as being associated with
increased GFAP+ astrocytes (Karus et al., 2011). Similarly,
knockout of aggrecan in chicken embryos results in altered glial
precursor differentiation, favoring GFAP+ astrocytic cells
(Domowicz et al., 2008). The glycoprotein component TnC
appears to be essential for proper gliogenesis, maturation,
proliferation, and differentiation (Wiese et al., 2012), with
knockout resulting in changes in early astrocyte development and
proliferation, and tiling in vitro (Ikeshima-Kataoka et al., 2007;
Karus et al., 2011), and later increases in astrocytic GFAP expression
in vivo (Karus et al., 2011).

Lastly, astrocytes also interact with the more condensed ECM
structures of the brain, PNNs, on multiple levels as well. Although
these have been mentioned above and will be described in later
sections with greater detail, PNNs are thought to interact with
astrocytes to facilitate synaptic activity, neurotransmitter uptake,
and ionic buffering, all of which can be altered in inflammatory or
disease states, i.e., that of the epileptic brain.

5 ECM and PNN alterations in epilepsy

A variety of ECM components and related molecules are altered
in epilepsy. Although PNN expression varies across brain regions
(Brückner et al., 1993; Yamada and Jinno, 2013), changes in the
hippocampus are most often described. In human patients, studies
have ranged from finding degradation of PNNs and decreases in
PNN expression around PV+ fast-spiking neurons in chronic TLE
(Perosa et al., 2002; Kim et al., 2017), to increases in diffuse ECM
expression in HS(Sitaš et al., 2022) and increased expression of
CSPGs and HA in MTLE hippocampus (Perosa et al., 2002). That is
not to say that all individuals with epilepsy display altered brain
ECM; one study even found no perceptible differences in the ECM
or PNNs of adolescent or adult TLE patients (Rogers et al., 2018).
However, the majority of these findings have been well replicated in
the literature, primarily in rodent models of epilepsy (see Table 1).

PNNs have generally been found to be degraded or depleted in
patients and experimental models of epilepsy, whereas ECM
expression overall is often similar to non-epileptic controls or
may even be increased. This may be explained by several
mechanisms, including but not limited to a) the fact that the
most common immunohistochemical PNN marker, WFA, stains
for CSPGs of the PNNs and can still mark CSPG cleavage products
after degradation, or b) the possibility that astrocytes and neurons
that produce ECM components ramp up production in ECM-
depleting circumstances as described below.

6 ECM remodeling

As previously alluded to, PNNs are dynamic assemblies
constantly undergoing remodeling in the healthy brain.
Fluctuations in their presence, structure, density, and intensity
occur during normal physiological stages from development to
adulthood, mediated by the expression of remodeling enzymes
that also oscillate over time and development. Recent studies also
suggest seasonal behavior-based (Cornez et al., 2020; Marchand and
Schwartz, 2020) and circadian or diurnal rhythm based
(Pantazopoulos et al., 2020; Harkness et al., 2021) changes in
PNN intensities and expression. However, loss, alteration, and
malfunction of PNNs have been increasingly associated with
pathological states, including trauma or injury (Lipachev et al.,
2019; Mahmud et al., 2022) and a variety of psychiatric disorders
(Pantazopoulos et al., 2010; De Luca and Papa, 2016; Alcaide et al.,
2019; Murthy et al., 2019; Brown and Sorg, 2022). Aberrant changes
in PNN expression are heavily implicated in neurodegenerative
disorders as well, including AD and dementia (Baig, S et al.,
2005; Crapser et al., 2020b; Logsdon et al., 2021; Yang et al.,
2015), Huntington’s disease (Crapser et al., 2020a), ischemia or
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stroke (Härtig, 2016; Tröscher et al., 2021), and epilepsy (Kim et al.,
2016; McRae et al., 2012, 2010; Rankin-Gee et al., 2015; Rogers et al.,
2018; Ueno et al., 2019; Wegrzyn, D. et al., 2020).

6.1 MMPs and other remodeling molecules
regulate ECM and inflammatory markers

6.1.1 MMPs
Matrix metalloproteinases (MMPs) are a family of zinc-

dependent endopeptidase enzymes expressed in and secreted by
neurons, glia, and other cell types in the developing and adult
nervous system (Ethell and Ethell, 2007; Reinhard et al., 2015).
Once activated (by serine proteases, reactive oxygen species, nitric
oxide, or other MMPs), MMPs can cleave their substrates including
ECM proteins such as brevican, tenascin, aggrecan, laminin, and
collagens (fromwhich their name is derived), synaptically associated
proteins such as cadherins and ephrins, growth factors and cell
adhesion molecules, and cytokines such as TNF-α (Ethell and Ethell,
2007; Cieplak and Strongin, 2017). Activation of MMPs, although
important in normal physiological states, is also associated with the
regulation of many pathological processes, especially in the CNS
wherein MMP-2, MMP-3, and MMP-9 are most abundantly found
and studied. MMP-9 especially is thought to be important for brain
development, critical periods, and synaptic structuring and plasticity
(Reinhard et al., 2015). Notably, this MMP specifically contributes to
ECM degradation following monocular deprivation (MD), leading

to increased plasticity in the visual cortex which is not observed in
MMP-9 knockout mice (Kelly et al., 2015; Murase et al., 2017).

Although they stimulate inflammation-associated molecules
such as IL-1β and TNF-α, MMPs can also be regulated by them,
including but not limited to interleukins IL-1, IL-4, and IL-6.
Other enzymes, proteases and cytokines that regulate MMPs
include TGF-β, TNF-α, tissue inhibitors of metalloproteinases
(TIMPs), tissue plasminogen activator (tPA), and “a disintegrin
and metalloproteinase” with and without thrombospondin
motifs (ADAMs and ADAMTSs, respectively) (Cieplak and
Strongin, 2017). TIMPs, small endogenous inhibitor proteins,
can bind to and inhibit both MMPs and ADAMs/ADAMTs
(Ethell and Ethell, 2007; Arpino et al., 2015). Notably, these
interactions are not merely unidirectional as the ECM can also
affect remodeling molecules. TGF-βs, for example- TGF-β1 in
particular-are held in place in the ECM and must be released
before being able to activate their signaling pathways (Hinz,
2015).

6.1.2 ADAMTSs
ADAMTSs are a subgroup of cell surface metalloproteases

released by neurons and glia which are associated with
neurodegeneration, inflammation, adhesion to integrins, shedding
of cytokines and growth factors, and degradation of ECM
proteoglycans- specifically lecticans (Bonneh-Barkay, 2009;
Kelwick et al., 2015; Song and Dityatev, 2018; Mohamedi et al.,
2020). They themselves also regulate MMP activity, but are

TABLE 1 Alterations in ECM, PNNs, and individual PNN components in experimental epilepsy models.

Component Changes in experimental epilepsy models References

ECM and PNNs ↑ ECM following PTZ, KA and pilocarpine induced seizures McRae et al. (2012), Pollock et al. (2014), Rankin-Gee et al. (2015), Yutsudo and
Kitagawa (2015), Wen et al. (2018b), Han et al. (2019), Ueno et al. (2019), Ueno et al.

(2020)↓ PNNs around PV+ following seizures

CSPGs ↑ CSPG expression in epilepsy models Naffah-Mazzacoratti et al. (1999), Yutsudo and Kitagawa (2015), Kim et al. (2017)

HA and HAS

↓ HA expression following pilocarpine seizures, TGF-β or
albumin exposure

McRae et al. (2012), Arranz et al. (2014), Kim et al. (2017), Balashova et al. (2019)↓ expression HAS3 following pilocarpine seizures

HAS3 knockout mice develop SRS

Aggrecan

↑ expression following KA seizures (transient)

McRae et al., 2012, Rankin-Gee et al. (2015), Dubey et al. (2017)↑ fragmentation following pilocarpine seizures

↓ aggrecan+ PNNs following pilocarpine seizures

Neurocan and brevican

↑ brevican fragmentation following KA seizures

Yuan et al. (2002), Okamoto et al. (2003), Kim et al. (2017), Blondiaux et al. (2020)
↓ brevican in epileptic Bassoon knockout mice

↑ neurocan expression following KA seizures, brain insults,
TGF-β or albumin exposure

Tenascin-C and
Tenascin-R

↑ TnC following pilocarpine seizures, brain insults, TGF-β or
albumin exposure

Hoffmann et al. (2009), Dityatev et al. (2010), Mercado-Gómez et al. (2014)
TnR knockout develops kindling seizures slower than
wildtype

HAPLNs ↓ HAPLN1 expression following pilocarpine seizures, TGF-β
or albumin exposure

McRae et al. (2012), Kim et al. (2017)

Abbreviations: CSPG, chondroitin sulfate proteoglycan; ECM, extracellular matrix; HA, hyaluronic acid or hyaluronan; HAS, HA synthase; Hapln, hyaluronan and proteoglycan link proteins;

HS, hippocampal sclerosis; KA, kainic acid; PNN, perineuronal net; PTZ, pentylenetetrazol; PV, parvalbumin; TMEV, Theiler’s murine encephalomyelitis virus.
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primarily associated with regulating ECM composition and function
(Kelwick et al., 2015). ADAMTS-4 and ADAMTS-5, two of the
group of ADAMTS referred to as aggrecanases or proteoglycanases,
target CSPGs including aggrecan, brevican, neurocan, and versican
(Nakada et al., 2005; Kelwick et al., 2015).

6.1.3 tPA
tPA, another protease enzyme, activates microglia, upregulates

MMP-3 and MMP-9, and promotes leakage of the BBB when
activated (Shapiro, 1998; Dzwonek et al., 2004; Bonneh-Barkay, 2009;
Rosenberg, 2009; Mehra et al., 2016). Increased proteolytic activity of tPA
is further associated with the loss of dendritic spines in visual cortex MD;
when tPA was blocked, MD associated spine loss was prevented (Mataga
et al., 2004), supporting the idea that PNNs may assist in stabilizing
synapses. As discussed previously, albumin leakage into the parenchyma
can also trigger activation of TGF-β signaling, release of inflammatory
factors such as IL-1β, and result in increased astrocytic MMP-9 levels
(Ranaivo et al., 2012), which are then available to degrade ECM
components and further stimulate inflammatory molecules (i.e., IL-
1β). Furthermore, exposure to albumin is associated with changes in
ECM components including HA, TnC, and neurocan (see Table 1).

6.2 Inflammatory markers associated with
ECM remodeling and epilepsy

6.2.1 TGF-β
Although well associated with neuroinflammation and epilepsy as

covered previously, TGF-β is also known to be crucial in a number of
peripheral nervous system disorders wherein tissue straining, stiffening,
or scarring plays a role, including obstructive lung diseases and
numerous cancers (Hinz, 2015; Chakravarthy et al., 2018; Stewart
et al., 2018). Activation of TGF-β and a variety of dependent Smad
proteins has been linked to ECM synthesis, remodeling, and deposition,
especially in wound healing and repair (Li et al., 2003; Hinz, 2015), and
increases in astrocytic TGF-β activation have been observed in PNN
degradation and hyperexcitability, likely contributing to epileptogenesis
(Kim et al., 2017).

6.2.2 Chemokine C-C motif ligands (CCLs)
Chemokines of the CCL family, especially CCL5 and its receptor

CCR5, are thought to be key in ECM regulation. A number of studies
have found increased expression or upregulation of CCL5 in human
epilepsy patients (Fabene et al., 2010; Srivastava et al., 2017),
recapitulated in rodent models of pilocarpine (Arisi et al., 2015)
and KA (Wolinski et al., 2022; Zhang et al., 2023) induced epilepsy.
CCL5 has also been found to induce the expression of MMP-9 via
monocytes, and is well-associated with a variety of cancers, mainly
assisting in increasing MMP secretion to promote tumor invasion
and dissemination (Aldinucci et al., 2020), as well as being correlated
with astrocytic activation in a KA mouse model of epilepsy (Zhang
et al., 2023). Experimental application of a CCL5/CCR5 antagonist
was found to attenuate neuroinflammation, preventing
neurodegeneration and activation of microglia (Zhang et al.,
2023) and indicating the role of CCL5 in neurodegeneration in
this model. Increases in another CCL, CCL2, and its corresponding
receptor CCR2, have also been found in human TLE (Wu et al.,
2008) as well as pilocarpine (Foresti et al., 2009; Mercado-Gómez

et al., 2014; Arisi et al., 2015) and KA (Manley et al., 2007; Tian et al.,
2017) induced epilepsy, where it plays a crucial role in inflammation,
neuronal death, and activation of the downstream effectors
STAT3 and IL-1β (Tian et al., 2017).

6.3 Remodeling molecules are associated
with neuroinflammation and seizure activity

Though expressed and active in normal healthy physiology due
to the constant turnover of ECM components, MMPs and their
regulators are important mediators in CNS inflammation (Klein and
Bischoff, 2011; Gaudet and Popovich, 2014) and neuroinflammatory
processes (Rosenberg, 2002; Berezin et al., 2014; Reinhard et al.,
2015) and have been associated with pathological disorders and
diseases such as TBI(Abdul-Muneer et al., 2016; Pijet et al., 2018),
stroke (Pielecka-Fortuna et al., 2015; Akol et al., 2022), glioma
(Markovic et al., 2005; Varol and Sagi, 2018), and of course
epilepsy (Wilczynski et al., 2008; Rankin-Gee et al., 2015;
Zybura-Broda et al., 2016; Dubey et al., 2017; Pijet et al., 2018).

Systemic inflammation is well associated with increases in
remodeling enzymes, especially with regards to epileptic activity.
MMP-2 and MMP-9 in particular have been found to be
upregulated in glia and neurons in general seizure activity, TLE,
and post-status epilepticus (Dubey et al., 2017; Dzwonek et al., 2004;
Kim et al., 2017; Lukasiuk et al., 2011; Pijet et al., 2018; Reinhard
et al., 2015; Szklarczyk et al., 2002; Ulbrich, P. et al., 2020; Wegrzyn,
D. et al., 2020; Wilczynski et al., 2008; Zybura-Broda et al., 2016).
Rankin-Gee et al. (2015) find that seizure activity increases MMP
proteolysis of aggrecan, which suggests a mechanism by which
PNNs are degraded in epilepsy and thus contribute to the
progression of the disorder. Indeed, one study found that two
different strains of MMP-9 overexpressing rats displayed higher
seizure susceptibility to PTZ kindling than wild type rats
(Wilczynski et al., 2008). Kim et al. (2017) found upregulation of
genes encoding MMP9 and 14 and ADAMTS1 in multiple brain
injury and BBB leakage models as well as in resected tissue from
human TLE patients (Kim et al., 2017).

In glioma-associated epilepsy, for example, epileptic activity in
peritumoral areas may be attributed to MMP-driven PNN
degradation. Glioma cells and tumor-associated macrophages
(TAMs) release MMPs, but the host’s inflammatory cells can also
release MMPs in response to the tumor cells. Glioma has also been
found to overexpress ADAMTS-5, which as mentioned previously
targets CSPGs, specifically cleaving brevican (Nakada et al., 2005).
Furthermore, the ECM itself is thought to actively promote cancer
growth by altering collagen degradation and re-deposition via
remodeling enzymes so as to clear space and allow progression
and growth of the tumor (Shapiro, 1998; Markovic et al., 2005; Varol
and Sagi, 2018). Peritumoral areas immediately surrounding
resected low-grade epilepsy-associated tumors exhibit not only
increased inflammatory markers, but also an increased ripple
rate, possibly implicating an MMP-driven discrepancy in
excitatory-inhibitory balance (Sun et al., 2022).

Treatment of cultured rat astrocytes and microglia with
inflammatory mediators such as IL-1β, TNF-α, and LPS also
stimulates the production of MMP-2 and MMP-9 (Gottschall
and Deb, 1996; Shapiro, 1998; Dzwonek et al., 2004), and
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accelerates the epileptogenesis process and/or increases seizure
susceptibility in rat models of kindling induced seizures
(Wilczynski et al., 2008; Kołosowska et al., 2016). In concurrence,
application of MMP inhibitors or knockout of MMP-9 seemingly
protected mice and rats against KA-induced and kindling-induced
seizures (Wilczynski et al., 2008; Pollock et al., 2014) as well as TBI-
induced spontaneous seizures (Pijet et al., 2018). Notably, a critical
amount of MMPs seems to be required for optimal function-
inhibiting MMP-2 and MMP-9 can suppress plasticity in the
visual cortex, but briefly inhibiting the same MMPs post-stroke
can rescue plasticity (Akol et al., 2022), indicating that intervention
timing and intensity are crucial.

6.4 ECM cleavage products are associated
with neuroinflammation

Degraded segments of PNNs and ECM are known to act as
alarmins or damage-associated molecular patterns (DAMPs) and
thus amplify CNS inflammation (Gaudet and Popovich, 2014; Jang
et al., 2020). Buildup of fragmented HA in particular, specifically the
low molecular weight (LMW) HA (10–500 kDa) generated due to
ECM damage, is known to serve as an injury and inflammatory
signal, binding to CD-44 and TLR4 to induce pathways such as
NFκB signaling and increasing IL-1β and TNF-α in vitro (Noble,
2002; Wang et al., 2006). Hyaluronidase treatment of cultured rat
astrocytes induced more stellate-like, branching morphology,
indicating cleavage of HA may be associated with astrocytic form
and/or function (Konopka et al., 2016).

CSPGs and tenascins are released from activated astrocytes
following CNS injury, with TnC specifically increasing after
exposure to IL-1β, TNF-α and INF-γ (Laywell et al., 1992; Jang
et al., 2020). TnC serves as an activator of TLR4, which is well
associated with increased pro-inflammatory cytokines and
neuroinflammation (Midwood et al., 2009; Eidson et al., 2017).
Studies have also found increased CSPG expression in the
pathological hallmarks of neurodegenerative diseases with
chronic inflammation components such as AD plaques and
tangles and MS lesions (Jang et al., 2020).

This is not to say that all ECM components and cleavage
products are pro-inflammatory; in fact, the GAG sidechains of
CSPGs may have different effects due to increased or decreased
affinity for specific chemokines depending on their sulfation pattern
[see (Monneau et al., 2016) for a thorough review on chemokine-
GAG interactions]. 6-sulfated CSPGs, for example, appear to help
suppress microglial activation and production of IL-6 and TNF-α
(Tan and Tabata, 2014; Jang et al., 2020).

7 Inflammatory astrocyte-ECM
interactions contribute to
epileptogenesis and epilepsy

Experimental degradation of PNNs or removal of its components
can lead to increased propensity to epileptic activity, but may also in
and of itself cause spontaneous seizure activity (Arranz et al., 2014;
Tewari et al., 2018; Balashova et al., 2019; Wegrzyn. et al., 2020).
Seizure activity, however, appears to cause degradation of ECM and

PNNs (McRae et al., 2012; Pollock et al., 2014; Dubey et al., 2017;
Ueno et al., 2019). Thus, one incidence of epileptogenic activity or
PNN alteration could easily begin a feedback loop of increased
degradation accompanied by increased seizure activity.

We suggest that some of these correlations are due to
neuroinflammatory pathways triggered by changes in how PNNs
and astrocytes are interacting, specifically at the levels of a) synapses,
b) ionic buffering, and c) other biophysical properties such as cell
membrane capacitance.

8 Synapses

Astrocytes and PNNs interact at the synapse in ways that may
lead to neuroinflammation, thus feeding into the potential for
increased susceptibility to or increased severity of epilepsy.

8.1 Reactive astrocytes affect ECM
components

Many of the molecules released by reactive astrocytes can
indirectly or directly lead to ECM-altering outcomes, including
changes in the expression of HA, CSPGs, and tenascin proteins
(Wiese et al., 2012; Bosiacki et al., 2019). Activated astrocytes are
known to migrate to injury sites in the CNS and release inflammatory
factors such as CCL2 and 3 (Fabene et al., 2010), as well as increasing
secretion of CSPGs including neurocan, versican, and brevican, likely
via TGF-β and subsequent signaling (Schiller et al., 2004). Genes
associated with ECM and integrin signaling are also significantly
upregulated in rat models of kainic acid and pilocarpine epilepsy after
SE (Han et al., 2019) as well as being associated with genes
upregulated in astrogliosis (Zamanian et al., 2012). PTZ-induced
seizures were found to trigger astrogliosis in the targeted
hippocampus and many cortical areas, as well as overall increases
in the amount of extracellular matrix (Ueno et al., 2020) [For a
thorough review of glial-ECM remodeling, see (Kim et al., 2016)].

8.2 Changes in CSPGs and tenascins alter
synapses

Removal of multiple lecticans in vivo and in vitro is associated
with not only abnormal PNN morphology, but also altered synaptic
function, including reduced inhibitory synapses and increased
excitatory presynaptic markers (Geissler et al., 2013) (Mueller-
Buehl et al., 2022). Aggrecan knockout cells show a complete
lack of PNNs in vitro (Kwok et al., 2010), but removal of other
CSPGs does not appear to lead to such drastic changes. Brevican, for
example, appears to be required for modulating synapses and
excitatory contacts of inhibitory interneurons; lack of brevican at
PV+ interneurons led to altered pruning of excitatory synapses and
thus alterations in spike properties and miniature EPSCs (Favuzzi
et al., 2017). Although a genetically deleted brevican mouse model
did not show changes in the structure of the PNN itself, multiple
studies reported seeing significant alterations of synaptic plasticity
and transmission (Frischknecht and Gundelfinger, 2012; Blosa et al.,
2016). A knockout mouse model of neurocan also correlated with
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notable decreases in brevican mRNA levels and visibly altered
brevican ECM structures (Sonntag et al., 2018; Schmidt et al.,
2020), though neurocan itself did not appear to be altered.
Astrocytically released ECM molecules such as TnR and laminins
interact directly with voltage-gated Ca2 channels, AMPARs, and
GABARs, and as such, influence synaptic organization and function
(Dityatev and Schachner, 2006); thus, upon astrogliosis,
upregulation or alteration of ECM components and signaling
molecules can easily follow.

8.3 Changes in CSPGs also alter neural
networks

Replicating CSPG degradation along with removal of HA
in vitro was found to increase synaptogenesis and decrease
glutamate sensitivity (Pyka, 2011), both of which could readily
lead to increases in excitability. Increases in excitability are not
the only method by which the excitation/inhibition balance can be
altered; in fact, a study in which PNNs were experimentally
degraded using ChABC showed reduced excitability of PV+

neurons and inhibitory synaptic transmission in the visual cortex
(Liu et al., 2019). Similarly, a recent study (Dzyubenko, 2021) that
also experimentally degraded PNNs saw a decrease in the density of
inhibitory synapses to both excitatory and inhibitory neurons, along
with an increase in the strength of inhibitory synapses. However, the
action potential threshold for excitatory neurons also decreased, and
as such, the strengthened inhibitory neuron outputs were
insufficient to balance the excitatory activity, leading to overall
network changes (Dzyubenko, 2021).

8.4 Neuroinflammation-associated
molecules regulate synapses

8.4.1 IL-33
The cytokine interleukin-33 (IL-33) is well established as a

mediator of ECM remodeling, provided by both neurons and
astrocytes. Release of IL-33 from hippocampal neurons in an
experience-dependent matter has been found to activate
microglia engulfment and remodeling of ECM, thus resulting in
synaptic plasticity (Yasuoka et al., 2011; Vainchtein et al., 2018;
Nguyen et al., 2020). Furthermore, astrocytic IL-33 mRNA and
protein results in proliferation of microglia and increased
proinflammatory cytokines like IL-1β and TNF-α (Yasuoka et al.,
2011).

Suppression of hippocampal neuronal activity increases
astrocytic release of IL-33 and has been found to promote
increased excitatory synaptogenesis (Hudson et al., 2008;
Wang et al., 2020). Notably, astrocytic IL-33 expression
increases upon exposure to pathogen-associated molecular
patterns (PAMPs) (Hudson et al., 2008), meaning that
immune activation may be associated with increased
excitation. If the increased neuronal activity is then
suppressed, release of IL-33 may also increase, leading to an
inflammatory-synaptogenesis feedback loop which would affect
not only individual neuronal activity but again, overall network
changes and thus the potential for epileptic activity.

8.4.2 HA-CD44 interactions
CD44 is a widely expressed transmembrane protein that serves

as a receptor for HA and has been associated with cell adhesion,
inflammation, and production of cytokines (Levesque and Haynes,
1997; Puré and Cuff, 2001). When expressed in myeloid cells,
CD44 has been implicated in increased production of MMP-9,
TNF-α, and IL-1β in vitro via TLR2 activation (Ivanova, 2022).
However, other studies suggest an anti-inflammatory role of the
CD44 receptor (Neal, 2018).

Expression of HA within the synaptic cleft decreases towards the
end of postnatal development but increases around the synaptic cleft
as the critical period is ending, when the formation of PNNs is being
finalized (Wilson and Litwa, 2021; Allnoch et al., 2022). This
increase in expression is likely due to the role of HA in
anchoring the PNN structure to astrocytic leaflets at the synapse
via its binding interactions with CD44 (Dzwonek et al., 2004; Carulli
et al., 2006; Kwok et al., 2010; Miyata and Kitagawa, 2017;Wen et al.,
2018b), indicating its importance in the stability of said synapse.
Indeed, overexpression of HAS2 seems to inhibit the occurrence of
spontaneous activity through synaptic HA synthesis (Wilson and
Litwa, 2021), although the mechanism of how the HA is altering this
is unclear. One potential process may involve overproduced HA
anchoring PNN components to leaflets in an overly abundant
manner, going so far as to interfere with normal synaptic function.

Conversely, a mouse knockout of HAS2 is associated with not
only decreased HA levels in the cortex, but also an increase in
epileptic seizures (Arranz et al., 2014; Perkins et al., 2017),
implicating the loss of stable PNNs as epileptogenic. CD44 also
seems to play a role, as HA-CD44 interactions can influence
morphological changes in astrocytes via Rac1 signaling, providing
evidence that ECM-driven alterations circle back to alter astrocytes
(Konopka et al., 2016). Knockdown of CD44 in hippocampal
neurons is associated with altered spine morphology and
decreased functional synapses, as well as significantly decreased
spontaneous excitatory activity (Roszkowska et al., 2016), again
likely enhancing the instability of synapses and the lack of
normal functional synapses via loss of the PNNs as a stabilizing
component.

Notably AMPARs, which mediate excitatory currents, are
restricted and stabilized by the presence of PNNs (Frischknecht
et al., 2009). Alteration and/or destabilization of PNNs could
thereby increase the mobility and exchange of AMPARs, thus
altering activity at the excitatory synapses, not to mention
plasticity and overall network excitability. Wilson and Litwa
(Wilson and Litwa, 2021) further note that overexpression of
CD44 decreases excitatory synapse formation, which aligns well
with the proposed role of PNNs in anchoring AMPARs.
Interestingly, blocking AMPARs after PTZ-induced seizures
ameliorated seizure activity, but also greatly increased the overall
levels of aggrecan, TnR, and neurocan in the brain (Chen, 2016).

8.5 Neuroinflammation-induced PNN
changes affect astrocytes

TnC, which interacts with other cell surface receptors and helps
to regulate cell growth, adhesion, and migration, is upregulated early
in inflammation, either by the pro-inflammatory IL-1 pathway or
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possibly by IL-4, IL-13, or TGF-β, which are considered anti-
inflammatory (Chiquet-Ehrismann and Chiquet, 2003). It is
expressed at high concentrations in disorders characterized by
chronic inflammation, and its production further induces
inflammatory responses, as seen in astrocytes in vitro (Wiese
et al., 2012) and a mouse model of AD, for example (Xie et al.,
2013). TnC further appears to regulate astrocytic maturation during
embryonic development in cortical cells and in the spinal cord
(Karus et al., 2011; Wiese et al., 2012), implicating this ECM
molecule in astrocyte development and providing a potential
feedback loop effect of altered PNNs affecting astrocytes. HA also
interacts with astrocytes at two specific molecular weights (low HA,
10–500 kDa and high HA, >500 kDa), both of which appear to
modulate astrocytic responses to TLR agonists and upregulate IL-10
expression via TLR pathways (Chistyakov et al., 2019).

Taken together, it is clear that the presence of PNNs is well-
associated with astrocytes at the synapse, and that
neuroinflammation can not only alter these interactions but can
be upregulated as a result of these interactions as well.

9 Ion buffering

Astrocytes’ maintenance of potassium (K+) and glutamate
concentrations in the healthy brain is well established, as is their
dysfunction in times of immune challenge, injury, and disease. As
excessive extracellular K+ is associated with increased excitation and/
or hyperexcitability, K+ spatial buffering in the healthy brain serves
as a regulatory and protective necessity. Glutamate regulation by
astrocytes is crucial as well, as excessive extracellular glutamate can
also lead to excitotoxicity and hyperexcitability.

These regulatory processes are not just left to the astrocytes,
however: PNNs also have a role in ionic buffering. One school of
thought is that the strong negative charge of the structures, endowed
by the negatively charged sulfated GAG side chains, enables PNNs to
quickly bind up extracellular K+ to clear the ECS, thus preventing a
buildup of excess positive charges and associated hyperexcitability,
which allows the local neurons to continue firing (Brückner et al.,
1993; Härtig et al., 1999).

Another is that the negative charge of the PNNs has less to
do with quickly clearing the cations, but more about capturing
and holding them as a type of “reservoir” to keep them readily
available for altering the local ionic gradients (Morawski et al.,
2015). In fact, one study proposes that the anionic charges of the
ECM surrounding hippocampal neurons actually change the Cl-

gradient across the membrane, thereby making GABA receptors
excitable (Glykys et al., 2014). It must be further noted that the
acknowledged role of PNNs in maintaining extracellular space
also affects diffusion of molecules within the ECS, with
degradation or reduction of PNN structure contributing to
increased diffusion capabilities (Syková, 2004; Morawski
et al., 2015). Cations released in the somatosensory cortex
and auditory cortex, which have the most dense expression of
PNNs, display a more restrained pattern of diffusion than other
regions, and degradation of ECM restores a more regular
isotropic diffusion of the released charges (Morawski et al.,
2015). The GAGs present in the PNNs and on cell surfaces
additionally interact with chemokines upon inflammatory

stimuli, creating the concentration gradient necessary for
chemokine-induced leukocyte recruitment and migration
(Crijns et al., 2020); this too can alter diffusion in the ECS.

Lastly, the concrete physical presence of the PNNs- which
influences astrocytic leaflet placement, as covered in the synapse
segment previously-can certainly influence the presence of leaflets
and thus their ability to take up excess extracellular ions at the
synapse.

As mentioned above, dysfunctional regulation of K+ and
glutamate in reactive astrocytes is already well associated with
epilepsy and hyperexcitability [see (Robel and Sontheimer, 2016)
for review]. However, we propose that one of the driving forces
behind epileptic activity is neuroinflammation due to astrocyte-
PNN interactions that change how ions are regulated at the synapse
and in the ECS.

9.1 Potassium and glutamate regulation is
altered in epilepsy

9.1.1 Potassium
Dysfunctional transportation or uptake of K+ is an established

finding in reactive and tumor-associated astrocytes (Campbell et al.,
2020), TBI-associated epilepsy (Coulter and Steinhaeuser, 2015),
and MTLE-HS (Thom, 2014; Coulter and Steinhaeuser, 2015), and
has been associated with hyperexcitability and epileptic activity.
Reduced K+ buffering has been found to facilitate EPSPs (David
et al., 2009; Kinboshi, M et al., 2020), which affects not only
individual neuronal firing but can thus alter network excitation.
This alteration is likely due to decreased Kir currents, which has
been observed in many epilepsy models (Inyushin et al., 2010; Das
et al., 2012; Robel et al., 2015; Nwaobi et al., 2016; Kinboshi et al.,
2020; Akyuz et al., 2022). Rodent models in which Kir4.1 is
specifically knocked out exhibit astrocytic membrane
depolarization and subsequently dysregulated K+ and glutamate
homeostasis, contributing to increased seizure susceptibility or
activity (Djukic et al., 2007; Olsen and Sontheimer, 2008;
Inyushin et al., 2010) and further solidifying Kir4.1 as an
essential potassium channel in glial and neuronal homeostasis. A
recent study found that KA-treated rats had an increased
susceptibility to seizures via TNFα-mediated necroptosis altering
BBB integrity, as well as increased levels of K+ and glutamate in the
extracellular space (Huang et al., 2022), which could indicate
dysregulation of glutamate and potassium.

Additionally, although astrocytes can take up albumin that
enters the parenchyma due to damaged or otherwise altered BBB,
that uptake is associated with transcriptional downregulation of
Kir4.1 and Kir2.3 channels. This Kir downregulation can result in
impaired gap junction coupling [associated with local inflammation
(Karpuk et al., 2011)], altered potassium buffering, and
hyperexcitability (David et al., 2009; Aronica et al., 2012; Coulter
and Steinhaeuser, 2015), all of which are established as correlative in
epileptogenesis. Notably, mRNA and protein expression of
Kir4.1 appear to be at least partially regulated by cytokine
activity in both human epileptic patients as well as in rodent
models (Zurolo et al., 2012; Huang et al., 2022), implicating
inflammation (and specifically the cytokine IL-1β) as a
contributing pathway.
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9.1.2 Glutamate
In addition to impaired Kir channels, reactive astrocytes in the

MTLE brain express altered expression of glutamine synthetase
(GS), leading to impaired uptake, metabolism of, and release of
glutamate (Eid et al., 2013).

Dysregulation of glutamate is associated with the breakdown of
normal astrocyte function (Takahashi et al., 2010; Khakh and
Sofroniew, 2015), and excessive glutamate in the ECS is a well-
known feature of and contributor to epilepsy in both human patients
and animal models (Buckingham et al., 2011; Eid et al., 2013; Coulter
and Steinhaeuser, 2015; Robel et al., 2015; Robert et al., 2015) as well
as being associated with neuroinflammation, specifically
inflammatory cytokines such as IL-1β and TNF-α, which have
been found to attenuate astrocytic glutamate uptake (Ye and
Sontheimer, 1996) in turn.

Potassium and glutamate dysregulation are not ubiquitous in
neuroinflammatory states or even in seizure disorders, however. For
example, potassium currents were found to be unimpaired in a KA-
induced TLE rat model which also exhibited increased gap junction
coupling, and surprisingly, a more efficient transport cascade of
glutamate (Takahashi et al., 2010). The authors further noted that
the KA-treated rats that developed epilepsy displayed swifter
synaptic glutamate clearance but no changes in GLT-1 or GLAST
receptors [Notably, dysregulation associated with both upregulation
and downregulation of EAAT1 and EAAT2 has been found in
epilepsy (Coulter and Steinhaeuser, 2015; Hubbard et al., 2016)]. A
potential mechanism could involve the degradation of ECM
allowing for increased ionic diffusion as seen in the study of ECS
diffusion previously mentioned (Syková, 2004). Lastly, Chaunsali
et al. (2021) propose that the negative charge of PNNs plays a
neuroprotective role by repelling negatively charged extracellular
glutamate, thus opening neurons to glutamatergic excitotoxicity and
possibly cell death when PNNs are degraded.

As PNNs are being altered, either within normal or
inflammatory bounds, placement of astrocytes and thus the
expression of EAAT receptors and Kir channels at the synapse
are also changed. If these ECM structures are deficient or completely
absent from the synapses and cannot regulate K+ and glutamate as
per their standard role, the potential excitotoxicity of excess ionic
concentrations in the ECS could easily shift the balance of not only
individual neuronal excitation but overall circuit and brain
excitation as well.

10 Membrane capacitance and intrinsic
neuronal properties

Considering that PNNs preferentially surround PV+,
GABAergic inhibitory interneurons, it is reasonable to
hypothesize that altering the surrounding PNN affects the
functionality or inherent capabilities and characteristics of
these fast-spiking cells (Brückner et al., 1993; Härtig et al.,
1999). In exploring the biophysical properties of PV+ FSNs,
we and others were surprised to find that enzymatic removal
or glioma-associated loss of PNNs altered the characteristics of
the enveloped cells, resulting in decreased excitation as well as a
decrease in cell membrane capacitance (Balmer, 2016; Tewari
et al., 2018). This has resulted in the hypothesis that PNNs act as

an insulator, reducing the specific membrane capacitance of the
cell in a myelin-like manner to enable extremely high firing rates.
A more recent study found that degradation of PNNs disrupts not
only the PV+ cells themselves but also their role of stabilizing
local circuits and network activity in the medial entorhinal cortex
(Christensen et al., 2021). Thus, PNNs appear to be required for
consistent, fast firing of inhibitory neurons, and their
degradation (i.e., by astrocytically-released remodeling agents,
or by changes in the primarily astrocytically-secreted ECM
components such as brevican, neurocan, versican, HAPLNs,
and TnR) can lead to decreased inhibition, resulting in
asynchronized local network activity and overall circuit
hyperexcitability.

Following these surprising findings, further exploration of
the broader applicability of PNNs’ effects on firing properties
and capacitance is required. For one, individual PNN
constituents may have biophysical property-altering effects.
An early mouse model of brevican depletion, for example,
showed minimal abnormalities in PNNs but significant
deficiencies in hippocampal LTP (Brakebusch et al., 2002),
which may be attributed to brevican’s influence on AMPAR
and K+ channel localization (Favuzzi et al., 2017). Altering
brevican in a PV+ cell results in altered electrophysiological
patterns, wherein its presence correlates with higher numbers of
excitatory synaptic inputs, and deletion increases the intrinsic
excitability of the cell by lowering the action potential threshold
and decreasing latency to firing (Favuzzi et al., 2017).
Interestingly, the authors additionally observed that resected
human tissue from TLE patients also expressed decreased
brevican levels in the cortex, further implicating loss of
brevican in altered excitability in TLE.

Degradation of PNNs can alter biophysical cell properties in
more than one way, however. Fragments of CSPGs, as discussed
previously, can trigger immune responses, and one study found that
free CS proteins can also trigger cell depolarization in rat
hippocampal neurons in vitro via AMPA and kainate receptors
(Maroto et al., 2013). The authors posit that injury or pathology-
induced MMP degradation of CSPGs releases free CSs to effectuate
Ca2+ signal via AMPARs in order to facilitate cell migratory or
axonal regrowth.

PNN-enveloped PV+ interneurons thus appear to rely on their
PNN coatings to maintain normal physiological functions including
cell membrane capacitance and firing rate, not to mention ion
channel and receptor localization. As such, we suggest that
abnormal PNN-astrocyte interactions brought about by
neuroinflammation can alter these properties, and may further
induce neuroinflammatory reactions themselves, thus feeding
back into an epileptogenic brain environment.

11 Discussion

Astrocytes and PNNs interact to induce and increase
neuroinflammation, leading to a susceptibility to or increase in
seizures and epilepsy. We have summarized three ways in which
they interact, suggesting that altered synaptic placement, ionic
buffering, and biophysical cellular properties such as capacitance
can influence and be influenced by neuroinflammation, and thus
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contribute to epileptogenesis (Figure 3). This is not a completely
new hypothesis; in fact, it has been proposed that even just the
composition of the ECM determines astrocyte responses to
mechanical and inflammatory stimuli (Johnson et al., 2015).
This is not to say that neuroinflammation in and of itself is
necessary and sufficient to cause epileptic activity, but we
suggest it serves as a key contributor to the process. We further
propose that dysfunctional interactions between PNNs and
astrocytes can serve as a feedback loop, inducing and/or
enhancing neuroinflammation-thus potentially acting as both a
cause and consequence of epilepsy.

11.1 Controversies and fundamental
concepts, issues, and problems

At this point, there appears general agreement that PNNs are
crucial for synaptic function and retention of memory, and that
removal of or otherwise diminished PNNs can be associated with a
variety of brain disorders. Whether PNNs are altered in
neurodegenerative disorders specifically has historically been
controversial. A recent study (Crapser et al., 2020b) has provided
strong evidence for microglial engulfment of PNNs in AD, further
showing that induction of an inflammatory state using LPS
injections induced similar PNN-degrading phenotypes in wild
type mice. There have also been a number of studies looking at
alterations of PNNs in psychiatric disorders in particular [see
(Carceller et al., 2022) for a thorough review].

Due to the inflammation aspect of our hypothesis, although it
was not discussed, other immune cells such as microglia certainly
have their own interactions with astrocytes and PNNs. As
mentioned above, Crapser et al. (2020b) found that activated
microglia are heavily implicated in PNN degradation, whether
directly or indirectly, and another 2020 study (Nguyen et al.,
2020) found that cytokine IL-33 released by hippocampal
neurons induces microglial ECM remodeling. Astrocytically-
released IL-33 has also been found to drive synaptic engulfment
by microglia (Vainchtein et al., 2018) and microglial activation has
been linked to epilepsy in general (Shapiro et al., 2008; Hiragi et al.,
2018) [see (Andoh and Koyama, 2021) for review of microglia and
plasticity]. Another paper looking specifically at depletion of
microglia in Huntington’s disease found that knockout of
microglia resulted in decreased PNN degradation, with denser
PNN expression in all brain regions as well as reduced
astrogliosis (Crapser et al., 2020a).

The time course of all this PNN remodeling may still be up for
debate as well; one study suggests PNN modification occurs during
each sleep cycle, varying with circadian rhythms (Pantazopoulos
et al., 2020). However, such a quick turnaround of PNN degradation
and production would likely have larger implications in multiple
disease states as well as in healthy brains, where again, PNNs appear
to play critical roles in plasticity and stability and are required for the
normal function of the enveloped PV+ FSNs. A more recent study
observed that although PNN expression did not change diurnally, it
does increase in the absence of microglia, which display changes in
ramification during the circadian cycle in mice (Barahona et al.,

FIGURE 3
In the healthy brain (left), astrocytes and ECM interact at multiple levels. The presence of the PNN around the PV+ FSN postsynaptic bouton of the
synapse helps to stabilize the astrocytic leaflets and serves as a highly anionic structure that redistributes and buffers cations released in and around the
synaptic cleft. Glutamate, K+, and Na+ are sufficiently redistributed and taken up. The PNN additionally functions as insulation to the FSN it surrounds. In a
neuroinflammatory state (right), astrocytes and PNNs interact abnormally due to the degradation of PNNs and the reactivity of the astrocytes,
resulting in a variety of both upregulated and downregulated effects (bottom right) that stem from and contribute to the neuroinflammatory state.
Created with Biorender.com.
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2022). If PNN integrity does in fact alter every 24-h cycle, the
question of how normal brain function is maintained-especially with
regards to inhibitory neuronal activity from FSNs-comes to the
forefront.

Lastly, although touched upon earlier, the physiology of reactive
astrocytes and the classification of such has continued to be
controversial. Formerly considered in more binary terms such as
“reactive” versus “nonreactive,” or “neuroprotective” vs.
“neurotoxic,” astrocytes are now more likely to be classified
holistically and along a continuum, categorized by their
morphological, functional, and molecular changes, as well as
taking into consideration their immunoreactivity markers and the
brain regions they are expressed in, amongst others factors (Escartin
et al., 2021).

11.2 Current research gaps and potential
developments in the field

To fully explore this hypothesis, designing experiments to
artificially alter the proposed PNN-astrocyte interactions is the
crucial next step. Although there are enzymes that can be applied
to degrade ECM and PNNs in vitro and in vivo and a viable aggrecan
knockout mouse has been developed (Rowlands et al., 2018), there is
currently no method of artificially inducing ECM growth or PNN
formation. As discussed above, removal of or interfering with
normal microglia function results in more highly condensed,
intense, or concentrated PNNs (Liu et al., 2021; Barahona et al.,
2022), but does not appear to result in de novo synthesis of the
structures. To this end, the advent of a true PNN synthesis method
would be a significant step towards truly confirming and/or
revealing the roles of these structures in healthy and diseased
brains alike.

One of the other stumbling blocks in determining the purposes
and characteristics of PNNs and ECM in general is the fact that so
many molecules comprise these complex structures that it becomes
difficult to study. However, efforts to analyze and replicate its
complexity have resulted in widely used biomaterials like
basement membrane-like matrix (Matrigel) (Benton et al., 2011)
and a variety of ECM-based polymers used for 3D modeling [see
(Vigier, 2016) for a thorough review].

In addition to therapeutically targeting PNNs and the ECM to
treat disorders such as epilepsy and AD, some suggest that
manipulating these structures may be a potential anti-aging
technique (Yang et al., 2021). As discussed previously, removal of
PNNs using ChABC or hyase can restore the plasticity of the brain to
critical period-like levels, implicating careful “editing” of the brain as

a way to potentially mitigate or rewind the effects of age on memory
formation and retention.

12 Summary

Epilepsy is a complex neurodegenerative disorder characterized by
spontaneous, recurrent seizure activity, often expressed differently in
every individual who suffers from it. The understanding of this disorder
and its underlying causes is progressing, but it is inherently intricate and
there are likely untold number of variables that contribute to
epileptogenesis. Although neuroinflammation is only a part of the
whole picture, we propose that astrocyte-PNN interactions both
contribute to and result from neuroinflammation, thus exacerbating
and enhancing epilepsy pathology and providing both a novel
perspective as well as a potential therapeutic direction.
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