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Human brain organoids are models derived from human embryonic or induced
pluripotent stem cells that mimic basic cerebral microanatomy and demonstrate
simple functional neuronal networks. Brain organoids have been a rapidly
expanding avenue for biomedical research in general and specifically: neural
development, regeneration, and central nervous system pathophysiology.
However, technology replicating functional aspects of the human brain,
including electrically active neural networks, requires a responsible code of
conduct. In this review, we focus the discussion on intrinsic and extrinsic
ethical factors associated with organoids: intrinsic considerations arise with the
growing complexity of human brain organoids, including human-animal
chimerism, consciousness development, and questions of where these
human-like beings fall in a moral hierarchy. Extrinsic considerations explore
ethics on obtainment, manufacturing, and production of sophisticated human
products. In summary, a thoughtful code of conduct using human brain organoids
towards the advancement of science and medicine is crucial. This article shall
facilitate a structured thought process approaching the moral landscape of
organoid technology.
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Introduction

The human central nervous system (CNS) is highly complex and coordinated,
responsible for perceiving, integrating, and processing information related to the entire
body. (Mansour et al., 2021). Development of the CNS is an intricate process that involves
communication between numerous neural and non-neural cell types and precisely timed
factors that lead to proper migration, spatial differentiation, and functional organization.
(Stiles and Jernigan, 2010; Mansour et al., 2021). Traditional 2D monolayer cultures and
animal models do not fully recapitulate these complex multicellular interactions and thus
limit efforts to further investigate human development and disease in vitro. (Mak et al., 2014;
Mansour et al., 2021). Moreover, preclinical findings in these models often are not successful
in achieving clinical significance. (Mak et al., 2014). However, advancements in stem cell
technology have led to the development of brain organoids, which are self-organizing 3D
models derived from pluripotent stem cells (PSCs). (Sakaguchi et al., 2015; Jo et al., 2016;
Xiang et al., 2019; Mansour et al., 2021). These 3Dmodels better resemble the architecture of
specific brain regions and therefore may provide an improved in vitro framework for a
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variety of research applications. (Sakaguchi et al., 2015; Jo et al.,
2016; Xiang et al., 2019; Mansour et al., 2021).

Numerous studies have utilized developmental signaling factors
such as bone morphogenetic proteins (BMPs), Wnt, and sonic
hedgehog in specific gradients to pattern PSCs into distinct
dorsal, telencephalic (Cederquist et al., 2019; Ben-Reuven and
Reiner, 2020), or mesencephalic fates, including the hippocampus
(Sakaguchi et al., 2015) and midbrain (Jo et al., 2016), with regional
functionality. Moreover, the fusion of these region-specific
organoids allows for even more complexity; Xiang et al. have
fused thalamic- and cortical-like organoids and demonstrated the
development of reciprocal projections that mimic connections
found in vivo. (Xiang et al., 2019). Furthermore, the long-term
culture of organoids can model brain development; 10-month-old
organoids have electroencephalogram signatures resembling
preterm babies. (Trujillo et al., 2019). As these organoids increase
in complexity, they provide opportunities for research in human
brain aging, degeneration, and disease. Organoid models have
already been applied to Parkinson’s disease, (Kim et al., 2019),
amyotrophic lateral sclerosis, (Osaki et al., 2018), Alzheimer’s
disease, (Choi et al., 2014; Gonzalez et al., 2018), traumatic brain
injury, and brain tumors (Bian et al., 2018; Ogawa et al., 2018; da
Silva et al., 2018). These models offer avenues for therapeutic
advancements, such as screening brain tumor organoids for anti-
tumor drugs. (Bian et al., 2018; Linkous et al., 2019). Commercial
and public interest continues to increase as researchers demonstrate
organoids as useful tools for drug screening and therapeutic
targeting. (Chakradhar, 2016; Boers and Bredenoord, 2018;
Choudhury et al., 2020; Hyun et al., 2020; Lensink et al., 2021).

As advancement continues and commercial interests rise, it
becomes critical to consider the ethical issues surrounding the
obtainment, modification, and manufacturing of human
biomaterials. Moreover, as organoids become increasingly
relevant in the study of human diseases, problems arise regarding
patient privacy and benefit-sharing of pertinent clinical results to
patient donors. (Aalto-Setälä et al., 2009; Boers et al., 2015; Boers
and Bredenoord, 2018; Lensink et al., 2021). An examination of the
strengths and limitations of current ethical guidelines for human
biomaterial studies will aid researchers, ethicists, and industry in
navigating the changing moral landscape of organoid research.

Brain organoids present novel concerns that have captured the
interest of several scientists and ethicists. (Lavazza and Massimini,
2018; Shepherd, 2018; Chen et al., 2019; Lavazza, 2021). A recent
panel report from the National Academies of Science, Engineering,
and Medicine found that neural organoids are limited in
complexity, maturity, and size and argued “it is extremely
unlikely that in the foreseeable future they would possess
capacities that, given current understanding, would be
recognized as awareness, consciousness, emotion, or the
experience of pain.” (National Academies of Sciences et al.,
2021). However, as organoids begin to progress in complexity,
some argue the distant future possibility of primitive consciousness
development or self-awareness in organoids or animals implanted
with organoids (Lavazza and Massimini, 2018; Shepherd, 2018;
Lavazza, 2021). These concerns elicit new ethical problems of
moral status, and question what obligations researchers have in
protecting the moral rights of organoids. (Lavazza and Massimini,
2018; Shepherd, 2018; Lavazza, 2021).

Currently, the literature lacks a comprehensive review
containing key ethical concerns for brain organoid research and
proposed solutions. This review seeks to bridge this gap by collating
these concerns into intrinsic and extrinsic considerations. Intrinsic
considerations describe theoretical concerns that may arise with
further organoid advancement, including the ethical creation and
experimentation of human-animal chimeras and the development of
conscious cerebral organoids with the potential for pain and
suffering. Extrinsic considerations include those involved in the
ethical collection of human materials and the downstream
production and commercialization of their products. This
discussion will provide a framework for a thoughtful code of
conduct for ethical organoid research.

Intrinsic ethical considerations

Brain organoid animal
transplantation—Human-animal chimerism

A major limitation in brain organoid development is the lack of
vascularization. (Mansour et al., 2018; Pham et al., 2018). While
recent efforts have demonstrated endothelial cells forming vascular
networks in brain organoids, they have limited functionality. (Pham
et al., 2018; Cakir et al., 2019). Thus, brain organoids are limited to a
size of a few millimeters due to the high metabolic demand of
neurons and their progenitors. (Mansour et al., 2018; Pham et al.,
2018; Cakir et al., 2019). One solution is the transplantation of
organoids into an animal host, which then can perfuse nutrients and
enable further growth and maturation of the organoids. (Mansour
et al., 2018). However, this cross-species transplantation has many
ethical considerations, especially with brain organoids. The
organoids have the potential to integrate into the CNS of the
animal which could allow them to cognitively develop beyond
what is possible for their species. (Chen et al., 2019). This
creation of a “humanized” animal elicits questions about the
moral status of these chimeras relative to their original species
and what limitations we should place on their creation and
experimentation.

Chimeras. The term “chimera” is broadly defined as consisting
of any animal transplanted with human cells. (Chen et al., 2019;
Koplin and Massie, 2020). Thus, organoid transplantation is a sub-
category of chimerism. Neural transplantation has been performed
as early as 1890 (Thompson, 1890), with numerous methodologic
advancements and research interest expanding in the 1970s onward.
(Björklund and Stenevi, 1985). Currently, guidelines for human
chimera research are vague, and ethical oversight for organoid
transplantation research is lacking. The National Academy of
Sciences advises oversight committees for any study that
introduces human PSCs (hPSCs) into non-human primates
(NHP) or embryonic animals that have the potential to create an
adult chimera. (National Research Council (US) and Institute of
Medicine (US) Human Embryonic Stem Cell Research Advisory
Committee, 2010). The International Society of Stem Cell Research
similarly advises oversight to these studies with a specific focus on
the potential for integration of human cells into animal hosts.
(Lovell-Badge et al., 2021). Greene et al. suggested that these
oversight committees specifically consider six factors, including
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the ratio of grafted cells to the host, integration, and development,
host species, brain size, location of graft, and pathology. (Greene
et al., 2005). Overall, there is limited governance in place for
specifically brain organoid transplantation, but more nuanced
approaches like those suggested by Greene et al. would allow for
study-specific consideration of relevant ethical issues. For example,
transplantation of an entire brain organoid into a mouse would
create a brain with, at best, 0.5% the number of cells in an adult
human brain, (Chen et al., 2019), thus it may not be possible for mice
to ever reach the cognitive complexity of humans. Additionally,
while recent work has demonstrated functional integration with
existing structures including the visual cortex, (Wilson et al., 2022),
currently, transplanted organoids into rodent hosts shows low
integration, making this possibility even less likely. (Mansour
et al., 2018; Revah et al., 2022). However, in NHPs with larger
brains and a greater degree of cerebral complexity, it raises the
concern of the “humanization” of NHPs (Chen et al., 2019).
Therefore, more discussions should occur surrounding the ways
in which brain organoid transplantation studies should be
monitored and evaluated to ethically conduct experimentation
without hindering scientific advancement.

Animal Enhancement. Chen et al. argue that in discussions on
chimerism, it is less important to debate the similarity of chimeras
to humans, and instead, emphasize a shift to discussions on what
brain enhancements are possible and which have moral
implications. (Chen et al., 2019). Already, researchers are
demonstrating functional enhancement; for example, one study
demonstrated that transplantation of hPSC-derived neurons into a
stroke cavity showed functional response to sensory stimulation,
(Tornero et al., 2017), and another showed that cerebral organoid
transplantation in rats that had suffered traumatic brain injury
improved their neural motor function and reduced brain damage.
(Wang et al., 2020). Thus, it is important to frame which human-
like enhancements (e.g., experience of pain, suffering, self-
awareness) may render further experimentation morally
unacceptable. Chen et al. proposed a pyramid of enhancements,
with basic neurological functions such as movement or sensation
at the bottom, cognitive functions higher, and self-awareness at the
peak. (Chen et al., 2019). When monitoring the development of
any functional improvements in chimeras, the moral value of the
enhancement and its hierarchical position in the pyramid may
require differential scrutiny. Once it is determined which
enhancements are possible and moral status has been assigned,
it is critical to develop objective measures to test the emergence of
such enhancements in chimeras. Currently, some studies have
investigated the existence of the antecedents of consciousness in
animals, including metacognition, which is the awareness of and
ability to control one’s own cognition, (Smith, 2010), and empathy,
which exists on a continuum of complexity based on the species’
ability to perform higher-order cognitive processes. (de Waal and
Preston, 2017). In future ethical oversight, it may become useful to
incorporate these tests to monitor the emergence of heightened
cognitive ability.

Self-Awareness. The peak of “humanization” is thought to be
self-awareness, which is difficult to test given our lack of
understanding of the neural circuitry and mechanisms that
underlie the concept. (Shepherd, 2018; Chen et al., 2019; Lavazza,
2021). Self-awareness can be defined as diffuse advanced processing

that provides information necessary for meta-cognition, allowing an
organism to consciously control its behavior and recognize
ownership of its experiences of the environment. (Lou et al.,
2017). The current standard for measuring self-awareness among
animals is the mirror test, in which the ability of an animal (or
human) to recognize its own reflection is assessed; (Chen et al.,
2019); only children around 2 years (Amsterdam, 1972),
chimpanzees (Gallup, 1970), bottlenose dolphins (Reiss and
Marino, 2001), Asian elephants (Plotnik et al., 2006), and
magpies (Prior et al., 2008) have successfully passed the test to
date. Although the mirror test is an indirect measure of self-
awareness that potentially offers an observable indication of
human-like mental function in chimera enhancement, this
rudimentary test does not fully capture the concept of
sentience as experienced by humans. Research efforts to better
characterize and comprehensively test self-awareness should be
emphasized.

Moral Status. It is critical to consider the welfare of chimeras
after enhancement. If these animals develop more sophisticated
cognitive behavior, it may be unethical to keep them in
unstimulating environments. (Chen et al., 2019). Within the
realm of neurorights proposed by Lenca and Yuste, mental
integrity is a foundational principle. (Ienca, 2021). A key aspect
of mental integrity is the prevention of psychologic harm, and thus
as conversation for organoid ethical oversight evolves it may become
important to examine how the right to mental integrity applies to
chimeras. Similarly, if the human cells within the animal’s brain
develop their own “detached consciousness,” it may become
important to consider their wellbeing in addition to that of the
animal. The sacrifice of animals for tissue studies may be morally
unacceptable as they develop to become more “human-like,” and
stricter guidelines might be needed for minimizing the pain and
suffering of enhanced animal subjects. If these chimeras develop
self-awareness, and experimentation is considered unethical,
perhaps they could be retired from laboratory settings to animal
sanctuaries. Currently, regulations on animal research do not
consider self-awareness, yet there are advocates for greater
restrictions. (Chen et al., 2019).

Resurrection. Beyond moral obligations to the living, it is now
becoming critical to examine the moral rights of deceased animals
and how organoid transplantation might challenge them. For
instance, a recent study applied a pulsatile perfusion system that
restored and maintained the neurophysiology of a pig brain with
prior circulatory arrest for 4 h. (Vrselja et al., 2019). While not
involving brain organoids, it illustrates the possibility of the
resurrection of brain function and tissue. As organoid technology
further develops, it may be possible to graft new neural tissue into
areas of pathology or damage and restore brain function. In this new
realm of innovation, it is critical to examine the ethical
considerations of this experimentation and determine our moral
obligations to both living and dead animals. (Farahany et al., 2019;
Koplin and Massie, 2020).

Consciousness development

Cerebral organoid research has rapidly advanced in the past
decade, with organoids gaining more sophistication and complexity.
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As organoid technology improves and these systems begin to model
the development and maturation of a human brain in vivo more
closely, the potential of these entities to develop “consciousness”
emerges as a key ethical issue. This is an ethical dilemma unique to
brain organoids, as the brain is considered by most to be the root of
human consciousness; for example, in clinical settings ‘brain death’
is considered an endpoint regardless of the health of the rest of the
organ systems. Thus, in this section, we will explore theories of
consciousness and their applicability to brain organoids, proposed
methods to measure the development of basic ‘consciousness,’ and
discuss how consciousness is linked to moral status and rights of
organoids as entities.

Theories of Consciousness. The precise definition of
“consciousness” is a contested topic with different schools of
thought among researchers, philosophers, theologists, cognitive
neuroscientists, etc. In a clinical context, the term
“consciousness” can be used to refer to the level of arousal as
well as reference the content of human experience. As such, on a
basic scientific level, consciousness could be described as the
activity of a neural network based on the stimulation of a specific
region (e.g., reticular formation), while on the other hand,
consciousness can be conceptualized as a complex, global
integration of cortical and subcortical circuitry to produce
human sentience. (Berlucchi and Marzi, 2019; Hyun et al.,
2020). A popular theory of consciousness in the context of
organoid research is the Integrated Information Theory (IIT),
which details which processes are required to support
consciousness. (Tononi et al., 2016; Lavazza and Massimini,
2018). The IIT postulates that consciousness is dependent on
both differentiation and integration within neural circuits in the
brain. (Tononi et al., 2016; Lavazza and Massimini, 2018).
Specifically, it states that conscious experience is a)
informative, meaning that each experience is unique and b)
integrated, such that conscious experiences cannot be split
into more fundamental parts. (Tononi et al., 2016; Lavazza
and Massimini, 2018). It details that consciousness does not
require the presence of sensory stimuli from an external
environment, intact executive functioning, nor measurable
motor output as long as the entity can integrate information.
(Tononi et al., 2016; Lavazza and Massimini, 2018). Further, the
IIT defines a physical substrate of consciousness, which is the
physical manifestation of experience. (Tononi et al., 2016;
Lavazza and Massimini, 2018). In other words, an experience
occurs, and this changes some observable state within the entity
that defines the conscious awareness and integration of that
experience. This definition provides a framework for measuring
consciousness in a physical manner and is preferred in
discussions of organoid ethics over more philosophical
definitions of consciousness that are too obscure to be measured.

Some researchers and ethicists suggest shifting the focus from
defining consciousness towards understanding the biopsychological
architecture of consciousness. (Shepherd, 2018). These neural
correlates of consciousness (NCCs) seek to explain the physical
brain structures and circuits that are responsible for consciousness
in vivo. (Shepherd, 2018; Lavazza, 2021). From this perspective,
researchers could monitor the development of specific circuitry or
patterns in organoids that would indicate consciousness without
having to precisely define what consciousness is.

Assessing Consciousness. If we accept that it is possible for
brain organoids to gain consciousness, then the question of how
to assess consciousness in an entity that cannot communicate
emerges. The Perturbational Complexity Index (PCI) is based on
the IIT and utilizes indices of neuronal functioning rather than
direct motor or verbal response to determine conscious
awareness. (Lavazza and Massimini, 2018). PCI is calculated
by first applying a transcranial magnetic stimulation to a
patient (or organoid) then measuring the magnitude and
complexity of the electrical response using EEG. (Lavazza and
Massimini, 2018). A low PCI would indicate either a lack of
integration or differentiation and thus, by the IIT, a lack of
consciousness. (Lavazza and Massimini, 2018). If the
stimulation evokes a response that is spatially restricted, then
it would lack ‘integration’ and indicate few interactions between
neural circuits or regions. (Lavazza and Massimini, 2018). If the
evoked response has a large magnitude but is ‘stereotypical’ such
that it is the same across different regions then it lacks
‘differentiation,’ indicating the absence of the complexities of
true in vivo neural communications. (Lavazza and Massimini,
2018). Therefore, PCI is high when a stimulation evokes a large
response across regions that each reacts in a specialized way,
which would suggest consciousness as defined by IIT. (Lavazza
and Massimini, 2018). The PCI was validated in patients in
NREM sleep or under anesthesia, finding that PCI was higher
in those who reported conscious experience or awakening and
lower in those who did not report conscious awareness.
(Casarotto et al., 2016). Therefore, the adaptation of the PCI
for stimulation and recording in organoids may be useful in the
future for assessing consciousness.

Moral Significance of Consciousness The development of
consciousness in organoids would bring more ethical questions;
most importantly, what is the moral significance of consciousness? It
is important to begin discussions on the moral status of organoids to
determine what rights they possess and what obligations we as
researchers have to protect them. These discussions could be guided
by first determining the value that we place on different conscious
experiences. Many consider self-awareness to be the most complex
form of consciousness and what distinguishes humans from other
animals. (Shepherd, 2018; Hyun et al., 2020; Lavazza, 2021).
Currently, there is debate about the ability of organoids to
develop self-awareness; some believe it is possible, while others
suggest that the lack of stimulatory inputs, social environment, and
language acquisition would prohibit any organoid from truly
realizing this potential. (Hyun et al., 2020). As such, organoids
may be placed below living humans on a ‘moral hierarchy,’ but this
does not necessarily exclude them from having rights that should be
protected. Additionally, organoids vary widely in their complexity,
so it becomes important to consider if, and where, different
organoids fall on this continuum of moral significance. For
example, initial neural organoid models contained several
neuronal cell populations from different anatomic regions lacking
sophisticated organization or mature circuits. (Lancaster and
Knoblich, 2014). However, later studies have created primitive
spatially organized cerebral organoids (Ben-Reuven and Reiner,
2020), assembloids (Xiang et al., 2017) -- in which two or more
brain region-specific organoids are co-cultured–and connectoids
(Cullen et al., 2019; Kirihara et al., 2019; Adewole et al., 2021), in
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which region-specific brain organoids are cultured separately but
allowed to form reciprocal axonal connections and shown to develop
more complex neural activity. As such, these more complex
organoids have greater potential to develop primitive awareness
and may be awarded greater moral significance (Figure 1). Also,
these organoids may have increased potential to create chimeras
with enhanced abilities when transplanted, and therefore should be
approached more cautiously. We believe reframing discussion of
consciousness and moral status in organoids from an all-or-none
approach towards a more nuanced perspective with a moral
continuum is beneficial to researchers and regulatory bodies. It
may provide a framework for determining which studies require
more ethical oversight in the future.

Taking a consequentialist perspective suggests weighing
consequences against each other; in the case of organoid research
with the potential to save the lives of many patients, a
consequentialist may recommend that it is morally just to
sacrifice the smaller, simpler life-form. (Lavazza and Massimini,
2018). However, it is also important to consider the potential for
organoids to develop pain and researchers’ ethical obligations to
minimize the suffering of living beings for scientific purposes.
(Lavazza and Massimini, 2018; Lavazza, 2021). Similar to
guidelines that protect research animals from undue pain or
suffering, it may become important to set experimental rules that
protect organoids. This initiative would be challenging due to the
inability to communicate with organoids or visualize physical
responses to pain.

Extrinsic ethical considerations

Ethical obtainment of human biomaterials

Organoid creation begins with the acquisition of human
biomaterials to develop stem cell lines. (Boers and Bredenoord,
2018; Hyun et al., 2020). The ethical collection of biomaterials for
research has traditionally involved two key ideas–obtaining donor
consent or de-identification of samples–yet the evolution of
technology renders these concepts inadequate. (Mostert et al.,
2016; Boers and Bredenoord, 2018; Hyun et al., 2020). The
transformation of simple human tissue into sophisticated
organoid technology gives organoids not only biological and
clinical potential but also moral and commercial value. In this
new realm of innovation, it is important to examine the
limitations of current research ethics and begin a discussion of
better models to protect and balance the interests of donors,
researchers, private industry, and society.

Consent. While it is widely accepted that consent is a necessary
component of human tissue collection, debate ensues on which
consent method is best. Consent methods vary mostly in the extent
of detail provided on the future use of collected samples, ranging
from ‘specific consent,’ that describes each project the tissue will be
used for, to ‘blanket consent,’ in which donors provide samples for
any future use without limitations. (Lowenthal et al., 2012; Boers and
Bredenoord, 2018). The hurdle in this variation is that often donors
do not give explicit consent for the derivation of stem cell lines or

FIGURE 1
The continuum of moral significance in organoid research. Organoids vary widely in their complexity, so it becomes important to consider if, and
where, different organoids fall on this continuum of moral significance. For example, an organoid using a protocol, which generates a cerebral organoid
with varying populations of cells from different brain regions, would likely be lower on the hierarchy than a region-specific organoid, which containsmore
mature organization. Moving up the pyramid, co-culturing region-specific organoids creates reciprocal connections that begin to form primitive
circuits. Connectoids offer even further maturation of function. The addition of more region-specific organoids, non-neural cell types like endothelial
cells or microglia, external perfusion systems, and bioengineering will allow organoids to grow in size, cell number, and synaptic density. This will
continue to increase the complexity and thus the moral significance of such organoids.
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brain organoids from their samples, and as this research could be
ethically controversial, donors may object. (Hyun et al., 2020). This
is especially prevalent in tissue banks; most do not include the
potential for the derivation of brain organoids in the consenting
process and subsequent de-identification of samples makes it
difficult to re-consent in the future. (Hyun et al., 2020). To
address these concerns, some have proposed the concept of
consent for governance, which would be a new paradigm that
shifts the ethical emphasis from the initial consenting process to
ongoing obligations for governance. (Boers and Bredenoord, 2018).
Initial consent would consist of informing participants of any known
future uses along with information on the governance structure that
will be in place. (Boers et al., 2015; Boers and Bredenoord, 2018).
This proposed governance structure includes transparency on
management of data and tissue, identification of potential
commercial uses, details on how clinical benefit will be translated
to the donor, and a plan for longitudinal ethical oversight with
designated committees. (Boers et al., 2015; Boers and Bredenoord,
2018). More research into donor preferences is needed to guide this
debate on fair governance infrastructure. (Boers and Bredenoord,
2018; Hyun et al., 2020).

Protection of Privacy. De-identification of data and donor
confidentiality have also been critical aspects of ethical research,
yet some argue that anonymization is neither possible nor
preferable. (Mostert et al., 2016; Boers and Bredenoord, 2018).
With high-throughput genome sequencing, patient samples can
become identifiable even after they have been anonymized.
(Aalto-Setälä et al., 2009; Mostert et al., 2016; Boers and
Bredenoord, 2018). This issue is emphasized in the perspective of
neurorights, of which the right to privacy, particularly of neural data,
is a conceptual foundation. (Ienca, 2021). Also, anonymization
prevents not only the ability to re-consent donors for future use
but also hinders patient and donor ability to share benefits from
organoids generated from their tissues. (Boers et al., 2016; Boers and
Bredenoord, 2018). This includes sharing findings with potential
clinical benefits for the patient. (Boers et al., 2016; Boers and
Bredenoord, 2018). De-identification also inhibits researchers
from pairing the results from organoid research to clinical
information or from developing precision medicine approaches
to research. (Boers et al., 2016; Boers and Bredenoord, 2018;
Choudhury et al., 2020). New proposed guidelines suggest a shift
in focus from complete de-identification to development of
measures like the ‘professional need to know’ basis of
confidentiality in clinical practice. (Boers and Bredenoord, 2018).
Before samples are obtained, researchers must ensure that privacy
infrastructure is in place to protect patient data and that only
relevant and necessary personal data are included. (Mostert et al.,
2016; Boers and Bredenoord, 2018).

Commercialization of organoids

For many years, animal models were the gold standard for in
vivo experimentation; however, a major issue is the translatability to
humans. (Boers et al., 2016; Choudhury et al., 2020; Hyun et al.,
2020). Often, promising drugs or other therapies in animal studies
ultimately fail in human clinical trials. (Boers et al., 2016;
Choudhury et al., 2020; Hyun et al., 2020). Many believe

organoids may fill this gap, and consequently, the interest in
business and commercialization has surged. (Boers et al., 2016;
Chakradhar, 2016; Choudhury et al., 2020; Hyun et al., 2020;
Lensink et al., 2021). This elicits ethical issues of property rights,
biobanking and manufacturing of human products, and benefit
sharing in the commercialization and translation of organoid
research and discovery.

Property Rights. The foundation of commercialization in
research is the concept of intellectual property rights. (Roberts
et al., 2014). Due to efforts to avoid commercialization of the
human body, typically patients and donors lack property rights
of their tissue. (Boers et al., 2016; Boers et al., 2019). However, with
advancements in genomic techniques, researchers can now obtain
and manipulate cell lines or tissues to produce a more complex
product with the potential for profit that donors lose all rights to.
(Boers et al., 2016). The intersection of human biomaterial research
and intellectual property raises several ethical considerations. First,
to what extent are human biomaterials patentable? The US Supreme
Court decision in the case of Association for Molecular Pathology
et al. v. Myriad Genetics, Inc., et al. ruled that the creation of new
products from human biomaterials, such as the genetic
manipulation of cell lines, alteration of genes, or creation of
entities that are not naturally occurring are patent-eligible.
(Roberts et al., 2014). Therefore, the creation of induced PSC
lines and generation of organoids are legally qualified for patent
claims. However, the field has already started rapid privatization in
the early, preclinical stages of research. (Roberts et al., 2014). This
has tremendous implications for increased costs that both could
impact progress and restrict patients from accessing monetary or
clinical benefits of organoid research. (Roberts et al., 2014).

Biobanking and Benefit Sharing. Organoid technology has
captured the interest of numerous companies dedicated to
different aspects of translation and the use of organoids.
(Choudhury et al., 2020). For example, Organome (Chakradhar,
2016) and Hubrecht Organoid Technology (HUB) aim to create
organoid biobanks, SUN Biosciences and System one Biosciences
seek to improve the manufacturing of organoids with robotic
automation, MIMETAS and Micronit created organoids on a
chip (Thompson et al., 2020), and the American Type Culture
Collection (ATCC) and Human Cancer Model Initiative (HCMI)
intend to focus on cancer organoids for research and discovery.
(Choudhury et al., 2020). These exciting collaborations between
research and industry offer tremendous potential benefit for
patients, yet the current governance framework in place limits
benefit sharing with patients. The HIT cystic fibrosis (CF)
Europe project is a key example. The trial screened the new drug
Kalydeco on organoids derived from patients with CF that had novel
mutations that the drug was not approved for, and a subset of these
organoids responded well to treatment. (Boers et al., 2016;
Choudhury et al., 2020; Hyun et al., 2020). However, the drug
costs around US$275,000 per patient annually, and there was no
plan to provide reimbursement to the original patients. (Boers et al.,
2016). Lengthy negotiations were required that resulted in the
obligation for adequate care to donors. (Boers et al., 2016). This
highlights the importance of discussions surrounding
reimbursement and critical evaluations of what obligations,
ethically, researchers have in sharing benefits with the original
donors of tissue. As organoid technology advances and private
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industry seeks to commercialize organoids for drug discovery and
screening, we can only expect more situations like the CF trial.
Researchers should consider ethical obligations to donors and draft
a plan for benefit sharing prior to the consent process, so donors are
aware of the infrastructure in place. (Boers and Bredenoord, 2018).
Mostajo-Radji proposed the field of neurodiplomacy, which
encourages multinational, interdisciplinary communication,
education, and equitable voices in the development and access to
technologic advances in the realm of neuroscience. This perspective
will continue to increase in importance as organoid technology
expands to ensure ethical scientific endeavors. (Mostajo-Radji, 2022).

Conclusion

In this review, we explore intrinsic and extrinsic ethical
considerations in the realm of human brain organoid research
(Figure 2), including ethical obtainment of human biomaterials,
commercialization, chimera formation, and consciousness
development. While it is possible that brain organoid

implantation into NHPs can result in ‘enhanced’ animals and/or
enhanced organoids, the ability of these chimeras to develop true
self-awareness is questionable. Similarly, the ability of brain
organoids in vitro to acquire consciousness is controversial;
however, researchers are encouraged to study the
biopsychological architecture of consciousness to monitor its
potential development. Moving forward, it is critical to engage
researchers, ethicists, and society in a conversation on what
enhancements in chimeras and organoids are morally
unacceptable. From this starting point, researchers can develop
objective ways to test these enhancements. Moreover, with the
rapid evolution of human tissue biotechnology and the entrance
of organoids into the commercial market, we stress the adoption of
‘consent for governance,’ which shifts the ethical emphasis from a
typical ‘consent or anonymization’ approach to a dedication to
ongoing governance that emphasizes donor privacy and
engagement, benefit-sharing, and ethical oversight. These changes
are best adopted via close ongoing collaboration between
researchers, bioethicists, donors, and companies. In the future,
more research into donor preferences and values can guide the

FIGURE 2
Pictural representation of the division of ethical and moral considerations for cerebral organoid technology into intrinsic and extrinsic factors.
Intrinsic considerations include concerns that arise with the formation of human-animal chimeras and those that are associated with the potential for
organoids to develop consciousness in vitro. Extrinsic considerations can be divided into concerns associatedwith the obtainment of human biomaterials
needed to generate organoids and issues that arise with the growing commercialization of organoids.
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debate on fair governance infrastructure and elucidate donor
interests in maintaining rights to their tissue in later applications.
Organoid technology is an exciting step forward for uncovering
mysteries of the human brain with great potential for clinical benefit.
While it will likely be challenging to obtain consensus on the moral
status of organoids and their downstream applications, we have an
obligation to ensure the pursuit of scientific discovery is balanced
with the careful consideration of ethics and morality.
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