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The ‘Clovis Point’—an enabling prehistoric gain-of-function in stone-age tool
technologies which empowered the Paleoindian-Americans to hunt, to strike-
deep, and to kill designated target megafauna more efficiently—was created
biochemically by molecular-genetic bio-engineering. This Biomedical “Clovis
Point” was crafted by adapting a broad-spectrum Pan-Collagen Binding
Domain (Pan-Coll/CBD) found within the immature pre-pro-peptide segment
of Von Willebrand Factor into a constructive series of advanced medical
applications. Developed experimentally, preclinically, and clinically into a
cutting-edge Biotechnology Platform, the Clovis Point is suitable for 1) solid-
state binding of growth factors on collagenous scaffolds for improved orthopedic
wound healing, 2) promoting regeneration of injured/diseased tissues; and 3)
autologous stem cell capture, expansion, and gene-based therapies. Subsequent
adaptations of the high-affinity Pan-Coll/CBD (exposed-collagen-seeking/
surveillance function) for intravenous administration in humans, enabled the
physiological delivery, aka Pathotropic Targeting to diseased tissues via the
modified envelopes of gene vectors; enabling 4) precision tumor-targeting for
cancer gene therapy and 5) adoptive/localized immunotherapies, demonstrating
improved long-term survival value—thus pioneering a proximal and accessible cell
cycle control point for cancer management—empowering modern medical
oncologists to address persistent problems of chemotherapy resistance,
recurrence, and occult progression of metastatic disease. Recent engineering
adaptations have advanced the clinical utility to include the targeted delivery of
small molecule APIs: including taxanes, mAbs, and RNA-based therapeutics.
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1 Introduction

With the advantages of retrospection, we are privileged to reflect on significant clinical
progress and to honor our many colleagues and collaborators who participated in this enduring
epic of gene discovery and biochemical pathway characterization which connects the conceptual
principles of stem cell biology, signal transduction, protein phosphorylation, wound-healing,
inflammation, and co-carcinogenesis to the driving oncogene addictions and the key rate-
limiting growth factors and tumor suppressors governing mammalian cell cycle control. Herein,
in the context of this review, we present the allegory of the ‘Clovis Point’—a prehistoric gain-of-
function in stone-age toolmaking technologies which empowered the Paleoindian-Americans to
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hunt, to strike-deep, and to kill designated target megafauna more
efficiently—as an instructive allegory and an enabling biotechnology
platform. Another useful perspective and unifying concept is a selective
focus on the ‘Proline-Directed Protein Kinases’ (Liu and Kipreos, 2000;
Kannan and Neuwald, 2004) —40 serine/threonine kinases
demonstrating a preference for proline at the P +1 position (Vulliet
et al., 1989; Hall et al., 1990; Zhu et al., 2005)— that is, a selective, sharp
focus on the family of mitogen-activated protein kinases (MAPKs)
which mediate receptor-signaling events (Willams et al., 1993; Gordon
et al., 1996; Hall et al., 1996); and the cyclin-dependent protein kinases
(CDKs), targeted (as heterodimers) by the cognate “cyclin partner” to
specific substrate proteins (Hall et al., 1991; Elledge et al., 1992; Peeper
et al., 1993), and which mediate a myriad of intricate protein-protein
interactions (PPIs) in biochemical pathways that regulate stem cell
growth, proliferative competence, the cell division cycle, sustained
survival, and differentiation processes under physiological
conditions. The characterization of mitogenic signal transduction,
from growth factor receptors to the immediate early events of gene
expression, provides mechanistic understanding and new molecular
tools for both regenerative and interventional medicine.

2 Solid-state binding of bioactive
growth (and survival) factors on
collagenous scaffolds

To facilitate orthopedic wound healing and to promote the
regeneration of injured tissues, a Biomedical “Clovis Point” was

crafted by adapting a broad-spectrum Pan-Collagen-type Binding
Domain (Pan-Coll/CBD) found within the immature pre-pro-
peptide segment of Von Willebrand Factor into a constructive
series for advanced medical applications (Figure 1). The
conceptual bioengineering, expression, purification, and
refolding/renaturation of the first collagen-binding TGF-β (and
related) fusion proteins from microorganisms, enabled high-yield,
cost-effective bioproduction of recombinant human TGF-β/BMP
fusion proteins for preclinical studies: wherein enhanced
osteogenesis was observed, as was the migration, growth, and
differentiation of bone marrow mesenchymal cells (Tuan et al.,
1996; Han et al., 1997; Andrades et al., 1999; Han et al., 2002).
Preclinical studies included a collagen-targeted fibroblast growth
factor (CBD-bFGF) which was shown to be effective in a diabetic
wound healing model (Andrades et al., 2000; Andrades et al.,
2001); and epidermal growth factor (CBD-EGF) which was shown
to be effective in an animal model of experimental colitis (Hall
et al., 2000a). The histological observations of exceedingly
primitive stem cells migrating into growth-factor functionalized
(yet acellular) collagen fiber scaffolds (Andrades et al., 1996),
prompted a series of experiments on human bone marrow,
where the clinical utility of CBD-TGF-β is acting as a “survival
factor,” was used for the selective capture and characterization of a
pre-hematopoietic, premesenchymal stem cell (Hall et al., 2001),
presented clinically as an autologous stem cell platform for
retrovirus-mediated gene therapy, exemplified by cell-based
delivery and engraftment of the missing coagulation factor(s) of
hemophilia (Gordon et al., 1997).

FIGURE 1
Engineering and Potential Clinical Utility of Collagen Binding (CBD) Growth Factors. (A) Concept of “hafting” a Pan-Collagen Binding Domain
(CBD)—a molecular “Clovis Point”—by adaptive bio-engineering of vWF. (B) Chimeric growth factor protein expression in microorganisms, followed by
purification and renaturation of the recombinant fusion polypeptides, (e.g., CBD-BMP3) provided the abundant bioactive materials needed for preclinical
studies and translational research. (C)Graphic figure depicts the capture, expansion, conditioning, and differentiation of bone-marrow derived pre-
hematopoietic, pre-mesenchymal stem cells for cell- and gene-based therapies. (D) Examples of collagen-targeted growth factors, highlighting
advances in the potential utility of the biotechnology platform in the form of preclinical demonstrations.
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We celebrate the advancement of the conceptual platform in its
ongoing translation to the clinic, along with the innovative variety of
chimeric fusion proteins, collagen binding domains, and related
binding motifs, as well as the increasing arrays of functionalized
matrices, bandages, sponges, hydrogels, and membranes that have
since been developed and proven in principle (Addi et al., 2017).
Most notably, in cardiovascular disease: where a myocardial patch
made of collagen membranes loaded with collagen-binding human
vascular endothelial growth factor (CBD-VEGF) was shown to
accelerate healing of the injured rabbit heart (Gao et al., 2011);
and new approaches now include the selection and preconditioning
of autologous mesenchymal stem cells with defined growth factors
to improve the homing ability, engraftment, and survival of both the
implanted cells and the ischemic cardiac tissue (Matta et al., 2022).
Encouraging progress has been made in the translation to neurology
and spinal cord injury: where collagen-based scaffolds and
mesenchymal stem cells are employed with success in the
experimental treatment of spinal cord injuries in humans and in
animal models (Zachariou et al., 2022). Indeed, in traumatic models
involving complete spinal cord transection the application of a linear
collagen scaffold loaded with a collagen-binding fusion construct of
a brain-derived neurotropic factor (CBD-BDNF) i) enhances
functional recovery of a severed spinal cord by facilitating
peripheral nerve infiltration and ingrowth (Han et al., 2014) and
ii) enables neural stem cell capture and growth-factor conditioning
for severe spinal cord injury repair (Li et al., 2016).

3 Going mobile: The pathotropic
targeting of gene therapy vectors to
diseased tissues

At the turn of the century, the promise of tumor-targeted gene
therapies was generally considered a highly desirable yet elusive
clinical goal—(Researchers Get a Dose of Reality as Logistics Stymie
Gene Therapy (Langreth and Moore, WSJ, 27 Oct 1999). Indeed, the
large number and diversity of collagen proteins, which includes
some 28 family members (Ricard-Blum, 2011), make physiological
targeting of a specific type of exposed collagen protein problematic.
This problem is made even more complex with the realization that
both cardiovascular injury and the stroma of invasive metastatic
cancers are associated with high expression of extracellular signaling
molecules, including collagen-triple-helix- containing-protein 1
(Mei et al., 2020): which activates an array of extracellular matrix
metalloproteases that degrade and thereby alter the collagenous
proteins (a proteolytic anaplasia), modifying the extracellular matrix
of the vascular lesion, and creating what amounts to a collagenous
anaplastic “jailbreak” of sorts for transformed cancer stem cells
undergoing epithelial to mesenchymal transition (EMT).
Fortunately, a unique and clinically useful feature of the high-
affinity Pan-Collagen-type CBD-Growth Factor constructs and
chimeric fusion proteins we originally developed for collagenous
bandages, stem cell capture, and wound healing applications, was a
demonstrable and advantageous pan-collagenous protein binding
property (including denatured gelatin), which was adaptively
engineered by experimentation into a high-affinity lesion-
targeting property or gain-of function transposed into the protein
envelopes of various experimental gene therapy vectors (Hall et al.,

2000b; Gordon et al., 2002)— demonstrating the remarkable lesion-
targeting gain-of-function in preclinical studies of vascular
restenosis following balloon injury (Xu et al., 2001), and in
animal models of metastatic cancer (Gordon et al., 2000).

4 A proper genetic payload: Proto-
oncogene discovery and biochemical
pathway characterization

A simplified schematic view of biological signal transduction:
from growth factor receptors, through receptor mediated tyrosine
phosphorylation(s) and characteristic phospholipid effects, is shown
as Figure 2, identifying the levels of organization and executive
protein kinases involved. Our collaborative contributions to the field
of biocybernetics, specifically proline-directed protein
phosphorylation, include the identification and characterization
of the Hera kinase, as a consort of the human EGF-receptor
(Williams et al., 1993). This human-EGF-Receptor-associated
protein kinase, designated p38α MAPK14, plays a major role
regulating EGF-receptor function(s), stress responses, tumor
dormancy, chemo-resistance, and cancer stem cell (CSC) survival
(Martínez-Limón et al., 2020; Kudaravalli et al., 2022).
Biochemical characterization and cloning of the human cyclin-
dependent kinase activating kinase CAK1 (Yee et al., 1995; Yee
et al., 1996), and its obligatory assembly factor, ménage à trois,
MAT1 (Wang et al., 2000), provided additional mechanistic links to
DNA replication and transcription, as well as the executive
enzymology functioning upstream of the Cyclin/Cdk complexes
governing cell cycle control.

The molecular cloning of the first human cyclin G-type gene
(Wu et al., 1994), followed by studies of its overexpression and
survival function in osteosarcoma cells—which lack a functional/
wild type p53 (TP53) tumor suppressor (Wu et al., 1995)—provided
a conceptual missing link in the proximal/initiating/transcriptional
pathways driving the immediate early molecular genetics of
neoplastic transformation and oncogenesis. While Cyclin G1 is a
transcriptional target of p53 (TP53), the major tumor suppressor,
the CCNG1 gene is overexpressed in many cancer cells in the
absence of a functional p53, which led to the hypothesis and
eventually the experimental confirmation that Cyclin G1
(CCNG1) represents a valid, proximal, and transforming proto-
oncogene in its own right. Thus, the Cyclin G1 oncoprotein
represents a singular strategic target and a proximal point of
therapeutic intervention in the clinical management of human
cancers. While antisense constructs of Cyclin G1, antisense
Cyclin D1, and enforced expression of p21, were each found to
be effective as transgenes (payloads) in blocking cancer cell survival
in vitro, Cyclin G1 was selected for clinical development in a series of
truncation experiments, using both point mutations and deletion
mutants, to discern a potent dominant-negative “blocking”
construct of the Cyclin G1 pathway, which was determined to be
essential for the survival and proliferation of cancer cells derived
from each of the three germ layers. Thus, a retroviral expression
vector bearing an inhibitory construct of the Cyclin G1 (CCNG1)
gene was developed (DeltaRex-G) and deployed for clinical gene
therapy trials, where broad-spectrum bioactivity was observed
(Gordon and Hall, 2010).
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5 The pathotropic targeting platform
enables gene therapy/immunotherapy

In terms of pathotropic tumor targeting, the pan-collagen
binding Clovis point represents a powerful and enabling
biotechnology for therapeutic gene delivery by its active and
selective partitioning to injured and/or diseased tissues, including
advanced metastatic cancers via exposed collagen. In terms of
validating the strategic therapeutic ‘payload,’ it was, indeed, the
demonstrated anti-cancer activities of DeltaRex-G
(i.e., dnG1 enforced expression) observed in vivo, in advanced
cases of chemo-resistant metastatic cancers, wherein the first
blessings of remission were observed, following repeated
DeltaRex-G infusions, and the first demonstrations of improved
long-term survival were achieved. Moreover, the versatility of the
gene delivery platform (simple intravenous infusions) enabled the
first clinical demonstrations of localized (tumor-targeted),
i.e., personalized cancer vaccinations in situ—using granulocyte
macrophage colony stimulating factor (GMCSF) as a first
immune-stimulating payload (pulsed, following DeltaRex-G
tumor debulking)—where again, significant improvements in the
survival of end-stage patients were demonstrated (Gordon et al.,
2008; Ignacio et al., 2010). Detailed histological examinations of
immune cell trafficking within the tumor microenvironment of
DeltaRex-G-treated tumors revealed the selective killing
(apoptosis) of cancer cells, tumor-associated stromal elements,
and the proliferative cells of tumor neo-vasculature, while

preserving of a patient’s innate tumor surveillance function
(Stendhal-Dy et al., 2018), which appears favorable for synergies
and combinatorial approaches with available immunotherapy
agents in the clinical management of metastatic disease.

6 A Proximal Oncology: Pioneering a
proximal and accessible locus of cell
cycle control

Discerning the upstream signaling pathways that link cell
growth and DNA replication to cell cycle progression can be a
daunting endeavor in a landscape where the vast numbers of cell
cycle checkpoint regulators and their myriad of protein-protein
interactions (PPIs) reach a zillion (Yasutis and Kozminski, 2013). It
is in this regard, that DeltaRex-G stands alone in defining a single
proximal (gene locus) and a strategic point of cell cycle control
(dnG1 blockade) suitable for broad-spectrum cancer gene therapy.
Thus, the Pivotal Cyclin G1 axis was conferred as a uniquely useful
and accessible point of clinical cell cycle control, with a review of
molecular mechanisms for oncologists (Al-Shihabi et al., 2018;
Gordon et al., 2018)—demonstrating long-term survival benefits
of a Cyclin G1 pathway blocker in a broad spectrum of advanced
cancers, when provided as monotherapy or combined with
adjunctive immunotherapy; empowering modern medical
oncologists to address persistent problems of chemotherapy
resistance, recurrence, and occult progression of metastatic

FIGURE 2
Diagram of site-specific proline-directed protein phosphorylation events governing stem cell activation: Identifying the proximal bio-cybernetics,
driving oncogenes, and executive enzymology at the foundations of stem cell activation, cellular transformation, stem cell survival, sustained
proliferation, and cell cycle control. The diagram highlights the executive regulatory flow of site-specific protein phosphorylation events linking the
activation of major growth factor receptors to a series of mitogenic proline-directed signal transductions cascading through the “Hera kinase” (p38,
human EGF-receptor- associated Mapk14) and DYRK1a, directing immediate early events leading to the activation of the Cyclin G1 (CCNG1) promoter
and expression of the Pivotal Cyclin G1/Cdk2/Myc/Pin1/Mdm2/HDM2/p53 Axis of cell cycle control. Note: Cyclin G1 interacts physically with p18 Hamlet,
a transcriptional activator and target substrate of p38 Hera/Mapk14, which mediates p53-dependent transcriptional responses to DNA damage and
genotoxic stress in proliferative cells. Moreover, p38 Mapk14 and p18 Hamlet are implicated in chromatin-remodeling and transcriptional activation
complexes associated with muscle differentiation. See text for additional details.
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disease. An updated diagram of the key oncogenic drivers of the
Pivotal Cyclin G1 Axis is shown in Figure 3, presenting the Cyclin
G1/Cdk/Myc/Pin1/Mdm2 as a fundamental set of interacting proto-
oncogenes—which acting together create a stabilizing/reinforcing
molecular-genetic flywheel, exhibiting momentum, in terms of
oncoprotein stability—thus, maintaining stem cell competence
and stem cell survival programs: from the beginnings of stem cell
activation from quiescence (Go/G1), through the phases of the cell
division cycle, and further, with mechanistic links extending from
the checkpoint guardians of DNA fidelity to cellular differentiation
and fate. In normal development, p53 tumor suppressor and Cyclin
G1cooperate in mediating genome stability in somatic cells, both
being required for DNA repair, with Cyclin G1 playing a positive
role in the coordination of cell growth and cell proliferation (Faradji
et al., 2011; Bayer et al., 2017). Follow-up studies of archived tumor
samples in a long-term survivor (>12 years) of metastatic pancreatic
cancer following repeated infusions of DeltaRex-G, revealed a p53
(TP53) mutation (G199V) associated with an increased anti-
apoptotic survival function, affirming the therapeutic efficacy of
DeltaRex-G in the background of p53 suppressor mutations (Morse
et al., 2021). Indeed, recent studies have confirmed that the Cyclin
G1 (CCNG1 proto-oncogene) is upregulated by mutations in tumor
protein p53 (TP53), which is associated with both tumorigenesis and
tumor progression (Xu et al., 2019).

The Cyclin G1 proto-oncogene is known to be activated and up-
regulated by mutation and viral subversion, as well as a growing
number of long-noncoding oncogenic RNAs, and mitogenic signal
transduction. Notably, the hepatitis B virus HBx protein deregulates
cell cycle checkpoint controls and enhances hepatoblastoma cell
proliferation, in part, by suppressing miR-122, a predominant
negative regulator of Cyclin G1 (CCNG1) expression, which is

lost in the process of neoplastic transformation and oncogenesis
(Bandopadhyay et al., 2016). Recent, studies of experimental Sendai
virus infection in murine embryo fibroblasts revealed newmolecular
mechanisms by which NF-kB signaling components (p50 and
p65 subunits) are recruited to the cell nucleus (see Figure 2) to
directly activate and up-regulate both Cyclin G1 (CCNG1) and p21
(CDKN1) at the level of gene expression, enhancing the
transcription of both genes upon virus infection (Burns and
Kerppola, 2022). A sharp focus at the level of the human Cyclin
G1/CCNG1 promoter reveals a DNA regulatory cis-element
(tandem TCTCGCGAGA motif) that is, limited to approximately
5% of human genes, particularly those involved in enhanced protein
synthesis and transition phases of the cell division cycle (Wyrwicz
et al., 2007). Remarkably, the Dyrk1a protein kinase was revealed as
a gene-specific RNA Polymerase II kinase (Di Vona et al., 2015),
which selectively recognizes the aforementioned palindromic DNA
motif, which is also clearly present at the level of the human
CCNG1 promoter.

The CCNG1 gene itself is subject to dysregulation by the action
of oncogenic long-noncoding RNAs (Cheng et al., 2018; Li et al.,
2019; Abula et al., 2022); and by direct/activating mutations. A close
examination of the pathogenesis of Burkitt’s lymphoma in a
screening for IG-translocations to non-MYC partners that could
cooperate with MYC in pathogenesis, identified a telltale IGK-
GGNG1 translocation: a chromosomal breakpoint at the
CCNG1 promoter that had apparently occurred earlier (at pre-B
or immature B Cell stage) in the evolution of the tumor, which
suggested that IG-MYC translocations may not always be the initial
genetic event in Burkitt’s lymphoma (López et al., 2019). Focused
studies of IGH rearrangements in myeloid neoplasms identified an
IGH-CCNG1 breakpoint translocation at the cyclin G1 (CCNG1)

FIGURE 3
Blocking the “Cyclin G1 Axis” of Interacting Oncogenes and Tumor Suppressors. (A) DeltaRex-G, encoding a cytocidal ‘dominant negative’, i.e. a
truncated construct (dnG1) of the executive cyclin G1 oncogene (CCNG1), is shown as a molecular-genetic “silver bullet,” blocking the Pivotal Cyclin
G1 Axis of associated oncogenes, which is activated by signal transduction and/or loss of natural tumor suppressors (p53 (TP53); p21, CDKN1A; and p18,
Hamlet). (B) The Cyclin G1 Axis of interacting oncoproteins include Cyclin G1, Myc, Cdk2, Cdk5 or Cdk1, Mdm2, and the proline-directed/
phosphorylation-dependent Pin1 isomerase, which stabilizes the Cyclin G1/Cdk-activated Myc oncoprotein by phosphorylation (at serine 62) and
maintains its transcriptional bioactivity. Note: loss of the natural tumor suppressors—by 1) mutations in p53, 2) loss of regulatory miRNAs, 3) by viral
subversion (e.g., miR-122), or 4) by a growing number of oncogenic-RNAs (e.g., HOTAIR)— “unleashes” the expression and functions of the Cyclin G1 Axis
which lead to stem cell activation, tumorigenesis, error-prone DNA replication, increasing oncogene addictions, EMT/metastasis, and progression of
cancers.
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promoter, which demonstrated overexpression of CCNG1 in the
patient’s bone marrow (Xiao et al., 2020). The patient was diagnosed
with chemotherapy-related acute myeloid leukemia and succumbed
to the disease 2 months later. The authors of the study identified
Delta-Rex-G as a potential intervention, noting its impressive results
regarding long-term cancer-free survival in clinical trials, and
suggesting clinical evaluation of the anti-CCNG1 strategy as a
treatment in such cases with very poor prognosis.

One can now extend the epic of gene discovery from Hera to
Hamlet: that is, from the p38 (MAPK14), kinase that is, at times,
physically associated with the EGF-receptor to p18 Hamlet, a highly
conserved protein ‘sensor,’ partner of both p53 andCyclin G1, and critical
governor of cell fate. The “Hamlet” gene, originally cloned and
characterized by Xu et al. as a novel Cyclin-G1- binding protein:
exhibits both a nuclear targeting motif and a zinc-finger motif
commonly found in transcription factors (Xu et al., 2000). It turns
out that p18 FX3/Hamlet (originally FX3, aka ZNHIT1, aka Hamlet)
is directly phosphorylated and regulated by the p38 stress-related proline-
directed Hera kinase/MAPK14 (Cuadrado et al., 2007). Indeed,
p18 Hamlet interacts with p53, as well as Cyclin G1, and activates
p53-dependent gene promoters. Normally tightly regulated by Cyclin G1,
which induces its degradation, p18 Hamlet accumulates in response to
genotoxic stresses such as UV or cisplatin treatment, and thereby acts as a
sensor which mediates p53-dependent responses to different genotoxic
stresses (Lafarga et al., 2007)—balancing the molecular mechanisms
between cell cycle arrest (and DNA 216 repair) by the p53-dependent
up-regulation of p21Cip1 (CDKN1), or the equally dramatic alternative:
death by apoptosis, via p53-dependent induction of proapoptotic
promoters. In terms of the Proximal Oncology presented herein
(Figure 3), p18 Hamlet physically links p38 Hera/MAPK14 to the
complex regulation and functions of the p53 tumor suppressor
(Vousden and Prives, 2009), thereby defining a prospective tumor
suppressor that is, essentially lost, as is p53, with oncogenic activation
and overexpression of the Pivotal Cyclin G1 (CCNG1) Axis.

Of considerable relevance and conceptual support for this highly
simplified model of the Cyclin G1 Axis are comparative screens
identifying genetic variants in cell cycle and checkpoint control
pathways that confer particular susceptibility to aggressive cancers:
Notably, CCNG1, CDK2, CDK5, and MDM2 were identified among
the Top-7 genes with variants associated with aggressive prostate cancer
(Kibel et al., 2016). Likewise, comparatively high expression of the
mitogen-activated protein kinase kinase 3, MKK3 (see Figure 2),
which activates Myc transcription, is associated with an increased
incidence of triple-negative breast cancer and a worse clinical outcome
(Yang et al., 2020). Armed with the enabling potentiality of tumor-
targeted gene delivery, with a broad spectrum bioactive, in the

embodiment of DeltaRex-G, the challenge remains to match the
precision medicine with the patient’s tumor burden in a timely
manner (Ravicz et al., 2021), with thoughts of cancer control and
improved long-term outcome in mind. In closing, we reflect upon the
development of new Clovis Point platforms for the delivery of future
medicines, including the tumor-targeted delivery small molecules (e.g.,
paclitaxel), monoclonal antibodies, and future RNA-based therapeutics.
Taken together, the concepts of collagen binding growth factors,
autologous stem cell capture, and pathotropic targeting have provided
new insights and molecular-genetic tools for wound healing, tissue
regeneration, and cancer control.
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