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Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in
adults, causing progressive degeneration of motor neurons, which results in muscle
atrophy, respiratory failure and ultimately death of the patients. The pathogenesis of
ALS is complex, and extensive efforts have focused on unravelling the underlying
molecular mechanismswith a large emphasis on the dyingmotor neurons. However,
a recent shift in focus towards the supporting glial population has revealed a large
contribution and influence in ALS, which stresses the need to explore this area in
more detail. Especially studies into astrocytes, the residential homeostatic supporter
cells of neurons, have revealed a remarkable astrocytic dysfunction in ALS, and
therefore could present a target for new and promising therapeutic entry points. In
this review, we provide an overview of general astrocyte function and summarize the
current literature on the role of astrocytes in ALS by categorizing the potentially
underlying molecular mechanisms. We discuss the current efforts in astrocyte-
targeted therapy, and highlight the potential and shortcomings of available models.
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1 Introduction

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disorder in adults.
The annual incidence rate ranges from 0.6–1.8 per 100.000 people, while the annual prevalence
rate is around 4-8 per 100.000 persons with a higher occurrence in males compared to females
(Adamczyk et al., 2021; Agbas et al., 2021). The number of cases varies demographically and a
higher prevalence is predominately found in the Western parts of the world (Adamczyk et al.,
2021). ALS causes selective and progressive loss of upper motor neurons present in the motor
cortex of the brain and lower motor neurons from the brainstem and the ventral horn of the
spinal cord. The loss of the upper motor neurons results in spasticity and hyperreflexia, while
degeneration of lower motor neurons leads to spontaneous muscle twitching or fasciculations
and ultimately to muscle atrophy and weakness (Brown and Al-Chalabi, 2017). Although the
clinical presentation is variable, for the majority of patients symptoms usually start at the
periphery affecting distal limbs such as hands and feet, but will soon spread to include larger
muscle groups, eventually rendering patients wheelchair bound (Adamczyk et al., 2021). The
disorder has a rapid disease progression which limits median survival after symptom onset to
2–5 years mostly due to respiratory failure (Masrori and Van Damme, 2020). ALS is a familial
disease in 10% of cases (Figure 1A) and in the majority of familial ALS (fALS) the causative gene
is known (Renton et al., 2014). The inheritance pattern is usually autosomal dominant, and
mutations in the superoxide dismutase 1 (SOD1) gene, in the TAR DNA binding protein
(TARDBP) gene or in the FUS RNA binding protein (FUS) gene are important genetic causes of

OPEN ACCESS

EDITED BY

Kathrin Meyer,
Nationwide Children’s Hospital,
United States

REVIEWED BY

José Ronaldo Dos Santos,
Federal University of Sergipe, Brazil
Nadine Bakkar,
Barrow Neurological Institute (BNI),
United States

*CORRESPONDENCE

Ludo Van Den Bosch Email,
ludo.vandenbosch@kuleuven.be

SPECIALTY SECTION

This article was submitted to Molecular
Mechanisms of Neurodegeneration,
a section of the journal
Frontiers in Molecular Medicine

RECEIVED 18 September 2022
ACCEPTED 13 January 2023
PUBLISHED 23 January 2023

CITATION

Stoklund Dittlau K and Van Den Bosch L
(2023), Why should we care about
astrocytes in a motor neuron disease?
Front. Mol. Med. 3:1047540.
doi: 10.3389/fmmed.2023.1047540

COPYRIGHT

© 2023 Stoklund Dittlau and Van Den
Bosch. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Molecular Medicine frontiersin.org01

TYPE Review
PUBLISHED 23 January 2023
DOI 10.3389/fmmed.2023.1047540

https://www.frontiersin.org/articles/10.3389/fmmed.2023.1047540/full
https://www.frontiersin.org/articles/10.3389/fmmed.2023.1047540/full
https://www.frontiersin.org/articles/10.3389/fmmed.2023.1047540/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmmed.2023.1047540&domain=pdf&date_stamp=2023-01-23
mailto:ludo.vandenbosch@kuleuven.be
mailto:ludo.vandenbosch@kuleuven.be
https://doi.org/10.3389/fmmed.2023.1047540
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-medicine
https://www.frontiersin.org/journals/molecular-medicine#editorial-board
https://www.frontiersin.org/journals/molecular-medicine#editorial-board
https://doi.org/10.3389/fmmed.2023.1047540


ALS (Al-Chalabi et al., 2012). The more recently discovered
hexanucleotide repeat expansions in the Chromosome 9 open
reading frame 72 (C9orf72) gene are by far the most common
genetic causes of ALS as these repeat expansions instigate 30%–

50% of fALS (DeJesus-Hernandez et al., 2011; Renton et al., 2011;
Van Blitterswijk et al., 2012). In 90% of cases, ALS is a sporadic disease
clinically indistinguishable from familial forms, but without a familial
inheritance pattern. The etiology of sporadic ALS (sALS) remains
elusive, but it is thought to arise from a combination of aging, as well as
largely undetermined genetic and environmental factors (Al-Chalabi
and Hardiman, 2013; Shatunov and Al-Chalabi, 2021). Interestingly,
some risk factors such as history of head trauma, electrocution, lead
expose and smoking have been associated with a higher chance of
developing ALS (Wang et al., 2017; Andrew et al., 2021), but further
research is needed to confirm this. Although ALS is considered an
adult-onset disease with an average age of onset around middle-to-late
50s, ALS presents itself rather heterogeneous in terms of age of disease
onset. As a result, both juvenile and geriatric cases exist (Shang and
Huang, 2016). Currently no effective treatment is available for ALS.
Despite decades of research into the complex pathophysiology of ALS,
dozens of compounds have failed to show any significant impact on
disease during clinical trials despite promising preclinical results.
Three drugs have been approved by the Food and Drug
Administration (FDA); Riluzole, Edaravone and AMX0035 (Petrov
et al., 2017; Paganoni et al., 2020; 2021), while only Riluzole is
approved by the European Medicines Agency (EMA). Of the three
drugs, Riluzole appears to have the strongest albeit limited effect on
survival, and most treatment measures therefore rely on symptomatic
and palliative care in order to improve the quality of life of patients
(Agbas et al., 2021).

Despite being a complex disorder, certain pathological hallmarks
exist (Figure 1B). Apart from the striking motor neuron death evident
in all ALS cases, abnormal protein inclusions are found in the
cytoplasm of surviving motor neurons in the vast majority of ALS
patients. Especially the TDP-43 proteinopathy is one of these
hallmarks, as 97% of all ALS cases present histologically with TDP-
43-positive inclusions independent of TARDBPmutations (Neumann
et al., 2006; Tziortzouda et al., 2021). These inclusions are not limited

to the motor neurons, but are likewise found in glial cells throughout
the brain and spinal cord emphasizing a broader involvement of
different cell types in ALS (Tziortzouda et al., 2021). Additionally,
signs of ALS emerge when connections between lower motor neurons
and muscle fail. Several studies in animal models and patients show
how nerve terminals and neuromuscular junctions (NMJs) are
partially degraded in early stages of the disease, while the motor
neuron cell bodies in the spinal cord are mostly intact (Fischer et al.,
2004; Nair et al., 2010; Walker et al., 2015; Tallon et al., 2016;
Martineau et al., 2018; So et al., 2018; Picchiarelli et al., 2019).
Upon axonal retraction, the motor neuron initially compensates by
sprouting and collateral re-innervation by new axons. However, when
the disease progresses, the motor neuron is no longer able to
continuously compensate for the retracting axons and it finally dies
(Robberecht and Philips, 2013). Symptoms will only occur when large
populations of motor neurons are affected, resulting in weakness of
muscle groups. Recent findings suggest that axonal transport
deficiencies are a common mechanism in ALS as impaired axonal
transport of mitochondria, mRNA and endosomes in motor neurons
harbouring mutations in FUS, TARDBP and C9orf72 has so far been
demonstrated (Alami et al., 2014; Guo, et al., 2017a; Fazal et al., 2021;
Fumagalli et al., 2021). Since motor neurons have very long axons, they
are more susceptible to axonal retraction and axonal transport
dysfunctions than other neurons, further explaining the selective
vulnerability in ALS pathogenesis (Robberecht and Philips, 2013).
Finally, abnormal glial activation (popularly defined as “gliosis”) is
extensively found throughout the brain and spinal cord of both fALS
and sALS cases (Agbas et al., 2021; Rossi and Cozzolino, 2021), and
especially the involvement of astrocytes will be discussed later in this
review.

2 Astrocytes in health—One cell, many
roles

Despite the fact that ALS is considered a motor neuron disorder, it
is increasingly recognized that ALS does not only affect this
subpopulation of neurons, but in fact also has a striking influence

FIGURE 1
The genetics and hallmarks of ALS. (A). In 90% of cases, ALS is a sporadic disease with no family history. The remaining 10% are caused by familial
mutations mainly found in the C9orf72, SOD1, TARDBP, and FUS genes (B). ALS affects the upper and lower motor neurons in the brain and spinal cord.
Currently hallmarks of ALS disease include motor neuron cell death, protein aggregation, distal motor neuron-muscle disconnection/NMJ loss, axonal
transport impairments and reactive gliosis. Figure is created with Biorender.com.
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on other neuronal subtypes as well as on the glial population including
astrocytes. Astrocytes are one of the most abundant glial cell types in
the central nervous system (CNS) as the glial population is composed
of approximately 20%–40% astrocytes (Allen and Lyons, 2018;
Verkhratsky and Nedergaard, 2018). This cell type harbours great
heterogeneity and is typically organized in highly specialized cellular-
level domains, which are focused on the homeostatic needs of its
residing region (Verkhratsky and Nedergaard, 2018). The domain
diameter varies from <100 to >400 μm (Oberheim et al., 2009), and
each astrocytes’ anatomical space is generally non-overlapping,
although some interaction through gap junctions between
neighbouring domain astrocyte processes is documented at the
territorial peripheries (Bushong et al., 2002; 2004). As such, this
domain formation could be a reason why atrophy due to
neurodegeneration is often seen in specific areas of the brain and it
has been hypothesized that neurodegeneration primarily affects
astrocytes, which then causes a subsequent spreading to neurons
through gap junctions (Sica et al., 2016). Whether this is also the
case for ALS is debated.

In order to understand the astrocytic involvement in disease, we
first have to understand their role in health. Although astrocytes have
been recognized for their important roles in the CNS for decades,
research continuously reveals their remarkable functional complexity.
Astrocytes are found to be crucial mediators of neurotrophic support,
neurotransmitter regulation, synapse plasticity and activity
modulation, and for the structural integrity of the brain and spinal
cord (Verkhratsky and Nedergaard, 2018). Besides this, astrocytes
facilitate the maintenance of an optimal CNS environment through
regulation of the blood brain barrier (BBB), water flux, ion and
pH homeostasis, and removal of reactive oxygen species (ROS).
Astrocytes likewise contribute to the inflammatory and immune

response, as they secrete cytokines, phagocytize and facilitate
border formation after injury. In the following section, key
astrocyte functions will be described in detail.

2.1 Astrocyte-neuron network - Synapse
modulation and pruning

Astrocytes modulate neuronal synapse plasticity and function
through numerous mechanisms. In order to engage with the
neuronal network, astrocytes extend their endfeet to form
perisynaptic processes (PAPs), which ensheath neuronal synapses
and form the so-called “tripartite synapse” (Figure 2). The degree
of synapse enwrapping varies between brain regions and depends on
synapse morphology. However, it is estimated that at least half of all
CNS synapses are covered with astrocytic PAPs (Verkhratsky and
Nedergaard, 2018). The astrocytic synapse-enveloping ensures
removal of neurotransmitters such as glutamate from the
interstitial space through receptor modulation, which counteracts
neurotransmitter accumulation and subsequent excitotoxicity
(Allen and Eroglu, 2017).

Another mechanism of synapse modulation is through secretion
of certain molecules, which is especially important during
synaptogenesis. Astrocytes secrete proteins and cytokines such as
hevin (SPARCL1), thrombospondins (THBS1/2), glypicans (GPC4/
6), transforming growth factor β1 (TGF-β1) and brain-derived
neurotrophic factor (BDNF), which through transsynaptic adhesion
proteins or receptor modulations promote the formation and
maturation of excitatory synapses (Vainchtein and Molofsky, 2020;
Liu et al., 2021). TGF-β1 has a dual function as this cytokine likewise
promotes the formation of inhibitory synapses in the CNS (Liu et al.,

FIGURE 2
Astrocyte function in the CNS. Astrocytes are multifaceted cells with various important functions overall ensuring optimal neuronal homeostasis. Figure
created with Biorender.com.
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2021). In addition, tumor necrosis factor-α (TNF-α) secreted from
astrocytes also plays an important role as it increases the α-Amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors on
excitatory synapses, while it downregulates γ-aminobutyric acid
(GABA) receptors on inhibitory synapses, overall increasing
neuronal activity (Allen and Eroglu, 2017). To negatively regulate
synaptogenesis, astrocytes also secrete signals such as SPARC in order
to balance the process (Allen and Lyons, 2018).

Synaptic pruning is dependent on neuronal activity (Liu et al.,
2021), and astrocytes are also involved in this process (Figure 2).
Through direct activation of astrocytic phagocytic receptors Multiple
EGF Like domains 10 (MEGF10) and MER proto-oncogene, tyrosine
kinase (MERTK) on the astrocyte surface, astrocytes can degrade
superfluous synapses in order to improve the precision and efficiency
of neuronal networks (Allen and Lyons, 2018). In addition, astrocytes
can indirectly modulate synapse pruning by secreting interleukin-33
(IL-33) or by activating the classical complement cascade and C1q
expression through TGF-β secretion, which subsequently promotes
selective microglia phagocytosis of the synapses destined for
degradation (Vainchtein et al., 2018; Liu et al., 2021). As a
consequence, astrocytes collaborate with microglia in the dynamic
modulation of neuroplasticity, which is especially important for
learning and memory.

2.2 Ion homeostasis

Astrocytes control the ion homeostasis through multiple ion
channels, which is important for maintaining synapse function
(Figure 2) (Sibille et al., 2014; Allen and Eroglu, 2017). By
regulating the potassium concentration in the extracellular space
through clearance via potassium channels such as the main
Kir4.1 type, astrocytes control whether neurons become depolarized
after an action potential and thereby affects their ability to fire a signal
again (Allen and Lyons, 2018). Especially in the spinal cord, astrocytes
possess a large amount of Kir4.1 channels, which are important to
accommodate the firing rate of large fast motor neurons (Allen and
Lyons, 2018; Kelley et al., 2018). Astrocyte can also collaborate with
other glial cells such as oligodendrocytes in the formation of a glial
syncytium, which controls the potassium concentration and
subsequent neuronal activity (Allen and Lyons, 2018).

2.3 Structural support and water homeostasis

One of the first recognized functions of astrocytes is their
importance in structural support (Figure 2) (Verkhratsky and
Nedergaard, 2018). Astrocytes are considered crucial for the
integrity of the stroma in the CNS and secrete molecules such as
proteoglycans, which are central for the extracellular matrix (ECM)
structure within the synaptic cleft and surrounding synapses
(Figure 2). This ECM structure ensures the capturing of nutrients
and growth factors, as well as buffers the concentration of
neurotransmitters to maintain acceptable levels by acting as a
diffusion barrier (Liu et al., 2021). Astrocytes also form the glia
limitans layer of the pia mater of the CNS through sheets, which
contains aquaporin-4 (AQP4) water channels. Through these
channels, astrocytes are able to regulate influx and efflux of water
within the CNS, and additionally facilitate the glymphatic flow into the

perivascular space, which ensures removal of excess fluid and
metabolic waste products (Figure 2) (Verkhratsky and Nedergaard,
2018).

2.4 Metabolic homeostasis

Neurons consume a vast amount of energy, and therefore rely on
continues supply of energy substrates (Figure 2). In order to
accommodate this need, astrocytes provide neurons with energy
substrates through one of the key mechanisms: the astrocyte-
neuron lactate shuttle. Neurons primarily use oxidative metabolism
of glucose to produce large amounts of adenosine triphosphate (ATP),
while astrocytes predominantly convert glucose to lactate via aerobic
glycolysis resulting in a low ATP production (Verkhratsky and
Nedergaard, 2018). The lactate is transferred to adjacent neurons
via monocarboxylate transporters (Allen and Lyons, 2018), where the
neuronal mitochondria use the lactate in the oxidative cycle for ATP
production (Verkhratsky and Nedergaard, 2018). In addition,
astrocytes can shuttle lactate from the blood stream directly to
neurons (Verkhratsky and Nedergaard, 2018). Astrocytes are also
an important player in the glycolytic pathway, as they are the sole
processors of brain glycogen (Figure 2) (Verkhratsky and Nedergaard,
2018). During sleep, glycogen is stored, while activity causes glycogen
release and metabolism, providing further energy for the cells
(Verkhratsky and Nedergaard, 2018). Additionally, astrocytes are
the main synthesizers and suppliers of apolipoprotein E (ApoE),
and they ensure a sufficient transport of cholesterol to the neurons
in the CNS via ApoE receptors (Liu et al., 2021). Cholesterol is an
important lipid in membranes and is also essential for the function of
glutamatergic neurons as it increases the amount of vesicles and their
release probability in the presynapse (Allen and Eroglu, 2017).

2.5 Blood brain barrier

Astrocytes are the gatekeepers of the CNS as they maintain the
BBB through close interaction with the vasculature (Figure 2). As such,
the capillary endothelial cells, which are wrapped by pericytes and the
basal lamina, are closely surrounded by astrocytic endfeet processes
(Harada et al., 2016). This ability of astrocytes to contact both vessels
and neurons facilitates the shuttle of nutrients from the capillaries to
the neurons and waste product from the neurons back to the blood
stream. Astrocytes are also important in the development of the BBB,
as they aid the alignment of endothelial cells and pericytes (Harada
et al., 2016). Through the calcium-dependent release of vasodilators or
vasoconstrictors such as prostanoids and arachidonic acid, astrocytes
can control the blood flow depending on the neuronal energy demand
(Liddelow and Barres, 2015).

2.6 Communication

In contrast to neurons, astrocytes are not able to project
excitability through electrical action potentials, but rely on calcium
waves to communicate (Liu et al., 2021). Between individual astrocytes
and intracellularly, calcium transients move along processes through
the Soma via calcium-permeable receptors and ion channels.
Although calcium stores within the astrocytes’ endoplasmic
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reticulum account for a large part of the calcium communication,
transport of extracellular calcium into the cells is also mediated by
glutamate channels made of AMPA and N-methyl-D-aspartate
(NMDA) receptors or voltage-gated calcium channels (Liu et al.,
2021). Especially NMDA receptors are important for astrocytic-
neuronal communication, as they are required for synapse
formation and proper dendritic morphogenesis during
development (Harada et al., 2016). In addition, gap junctions
composed of connexin-43 (Cx43), which is the predominant
connexin protein in astrocytes, allow transport of calcium between
adjoining astrocytes (Harada et al., 2016).

Astrocytes express multiple receptors, which are responsive to a
large variety of neurotransmitters. Many of these receptors are G
protein-coupled, which activates an intracellular signal through
calcium (Allen and Lyons, 2018). As such, astrocytes are able to
distinguish between glutamatergic and cholinergic synaptic activity
through the ability of the receptors to evoke a unique calcium
response. Different types of calcium waves exist and the uptake
requirements of extracellular calcium is dependent on the
subpopulation of astrocytes (Clarke et al., 2021). Most transients
are found at the processes, which correlates with the ability of
increased calcium concentrations to release astrocytic transmitters
such as glutamate, D-serine and ATP, which subsequently can regulate
neuronal excitability and synaptic plasticity (Liu et al., 2021).
Astrocytes also secrete GABA and glycine, which act as inhibitory
transmitters in the brain and spinal cord, respectively (Verkhratsky
and Nedergaard, 2018). These “gliotransmitters” are primarily
released via vesicular exocytosis or through specific transporters
and hemichannels.

2.7 Reactive astrocytes

Under physiological conditions, non-activated astrocytes are
primarily tissue embedded and non-motile, firmly devoted to their
catering to neuronal homeostasis within their specific domain
(Vainchtein and Molofsky, 2020). Upon injury, disease or infection,
some astrocytes become hypertrophic, extend their processes and
together with microglia initiate an immune response through
cytokine and interleukin secretion prompting a strong collective
fight against the harmful agent (Figure 2) (Sica et al., 2016). This
inflammatory activation contributes to the remodelling of the BBB,
which can allow influx and guidance of peripheral leukocytes further
enhancing the immune response (Sica et al., 2016). Activated
astrocytes are termed “reactive.” As a consequence, reactive
astrocytes might down-prioritize their homeostatic obligations,
leaving the neurons under less surveillance (Sica et al., 2016). As
such, abnormal and/or chronic astrocyte reactivity observed in
neurodegenerative disorders such as ALS likely plays a central role
in neuronal distress and cell death.

At least two broad subtypes of reactive astrocytes have been
identified, however more are likely present (Sofroniew, 2020).
Upon acute focal injuries such as trauma, ischemia, local infection
or toxic accumulation, one type of barrier-forming reactive astrocytes
will migrate towards the site of injury, proliferate and commence the
formation of a physical barrier encircling and containing the damage
(Sofroniew, 2020; Vainchtein and Molofsky, 2020). The astrocytic
border formation is highly enriched in glial fibrillary acidic protein
(GFAP) and also contains large numbers of activated microglia, which

remove debris through phagocytosis (Vainchtein and Molofsky,
2020). In the past, this barrier has extensively been referred to as a
“glial scar.” However, this nomenclature is now considered somewhat
outdated due to the clear difference from scar tissue formed in other
tissues (Sofroniew, 2020). The second identified subtype of reactive
astrocytes are usually non-proliferative and retain their position and
cellular interaction with the CNS, but still respond locally to injury or
disease through functional and sometimes morphological changes
(Sofroniew, 2020). These cells are shown to undergo hypertrophy
within their individual domains, but still maintain their intercellular
connections with neurons, glia and the vasculature (Sofroniew, 2020).
Emerging studies reveal how this subtype of astrocytes might
modulate synapses or alter their homeostatic support. However,
little is known about their complex functional alterations in
response to injury. Nevertheless, their response is thought to be
context-dependent and modulated based on their current state and
the incoming reactivity triggers (Sofroniew, 2020). Therefore, it is
favourable to discuss both the myriad of potential reactive astrocyte
subtypes, as well as the concept of variable reactive states within each
subtype. This can be influenced by factors like disease type and its
progression over time (Sofroniew, 2020). Importantly, physiologically
adaptive reactive astrocytes should not be confused with disease-
induced dysfunctional astrocytic reactivity, which contributes to
cellular stress and neurodegeneration through cell-autonomous
abnormalities. In contrast, the reactive astrocytes constitute a
physiological response to injury in order to protect neuronal tissue,
re-establish homeostasis and preserve neurological function
(Sofroniew, 2020).

3 Amyotrophic lateral sclerosis is a non-
cell autonomous disease—The role of
astrocytes

In the unravelling of ALS pathogenesis, the primary focus has been
mainly on motor neurons. Although, the motor neurons are
inarguably the most susceptible or vulnerable cell type in motor
neuron disease, hence the name, several studies examining the
contributions of astrocytes have been conducted the last couple of
decades with remarkable results. And the interest is still growing.

Observations of “bizarre,” “abnormal” or reactive astrocytes as
well as “astrocytosis” and “astrogliosis” have been described in several
ALS case reports since the 1970’s (Smith et al., 1975; Ghatak and
Nochlin, 1982; Kamo et al., 1987; Kushner et al., 1991; Murayama
et al., 1991; Nagy et al., 1994; Schiffer et al., 1996). These reports relied
primarily on GFAP expression and described increased astrocyte
numbers and abnormal morphology throughout both brain and
spinal cord tissue. It is now established that astrocyte reactivity is a
prominent hallmark in ALS patients (Haidet-Phillips et al., 2011; Qian
et al., 2017; Guttenplan et al., 2020), and that the number of reactive
astrocytes is shown to correlate with disease progression (Hall et al.,
1998).

Most experimental in vivo results have been obtained using
mutant SOD1 transgenic mouse models (Gurney et al., 1994; Wong
et al., 1995; Bruijn et al., 1997). This model, available since the 1990’s,
shows motor dysfunction and motor neuron loss causing a life
expectancy varying between 5 and 15 months depending on the
copy number and the specific SOD1 mutation. Initially, it was
shown that neither (motor) neuron- nor astrocyte specific
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expression of mutant SOD1 results in motor dysfunction, indicating
an interplay between neurons and non-neuronal cells in the disease
progression (Gong et al., 2000; Pramatarova et al., 2001; Lino et al.,
2002). This interplay was confirmed in chimeric mouse models, where
mutant SOD1-containing motor neurons survived longer when
surrounded by wild type non-neuronal cells (Clement et al., 2003).
A later study reported that neuron-specific expression of human SOD1
did in fact cause degeneration and paralysis in mice, but importantly
only in homozygous transgenic mice (Jaarsma et al., 2008). They too
did not report any pathology mediated by heterozygous mutant SOD1
expression as in the other studies. Interestingly, transplantation of
astrocyte precursor cells harbouring a human SOD1G93A mutation into
wild type rodent spinal cords generated mutant reactive astrocytes,
which were sufficient to induce motor neuron death, forelimb motor
and respiratory dysfunction in addition to reduced glutamate
transporter 1 (GLT-1) expression (Papadeas et al., 2011). These
findings were in line with previous observations, where SOD1-
containing inclusions were extensively found in astrocytes but not
in neurons during the initial stages of the disease and that these
inclusions became more abundant during disease progression, in
addition to increased GFAP expression and loss of GLT-1 (Bruijn
et al., 1997). In transgenic SOD1G93A mice, degeneration of astrocytes
residing around spinal motor neurons was found to precede the motor
symptoms caused by neuronal cell death, while “astrocytosis”
continually progressed during the course of the disease (Rossi
et al., 2008). Astrocyte involvement is not only evident in SOD1-
ALS, as a recent study demonstrated how sALS patient induced
pluripotent stem cell (iPSC)-derived astrocytes caused motor
neuron degeneration, NMJ denervation and motoric deficits, when
transplanted into the spinal cord of immune-deficient mice (Qian
et al., 2017). Oppositely, transplantation of healthy astrocyte
precursors into spinal cords of human SOD1 transgenic rats
resulted in reduced microglial reactivity, extended disease duration
and survival, attenuated motor neuron loss and slowed the decline in
motor and respiratory functions (Lepore et al., 2008). In addition,
astrocyte-specific deletion of mutant SOD1 delayed microglial
activation, slowed down the disease progression in mice
substantially (Yamanaka et al., 2008; Wang et al., 2011) and
restored GLT-1 levels (Wang et al., 2011).

In vitro coculture experiments have likewise confirmed the role of
astrocytes in ALS. Cocultures between murine embryonic stem cell
(ESC)-derived motor neurons harbouring a human SOD1G93A

mutation with primary or ESC-derived SOD1G93A mutant glia, like
astrocytes, showed glial toxicity affecting the motor neuron survival
(Di Giorgio et al., 2007). These effects were also present in the gene
expression changes, supporting the notion that cultured motor
neurons and glia affect each other (Phatnani et al., 2013).
Importantly, the gene expression profiles showed concordance with
in vivo spinal cord tissue, proving the validity of cocultures in
recapitulating important aspects of ALS pathogenesis (Phatnani
et al., 2013). Similarly, healthy murine (m) or human (h) ESC-
derived motor neurons showed survival impairments when directly
cocultured with or receiving conditioned media from primary human
or rodent SOD1-mutant glia (Nagai et al., 2007; Di Giorgio et al., 2008;
Marchetto et al., 2008). These astrocyte-mediated toxic effects were
not only apparent in SOD1-ALS, but were also documented in
cocultures between astrocytes generated from sALS post-mortem
tissue and wild type m- or hESC-derived motor neurons as well as
through sALS astrocyte conditioned media (Haidet-Phillips et al.,

2011; Re et al., 2014). Relatedly, directly reprogrammed fibroblasts
into astrocytes from C9orf72-, SOD1-and sALS patients showed non-
cell autonomous toxicity on wild type mESC-derived motor neurons,
as motor neuron survival was greatly impaired due to the presence of
the ALS astrocytes (Meyer et al., 2014). Despite the multiple overlaps
between fALS and sALS presented above, TDP-43-ALS remains
controversial. Some studies using astrocytic mutant TDP-43
overexpression or TDP-43-ALS (h)iPSC-derived astrocytes did not
report any pathologic effects on motor neurons neither in vitro nor in
vivo (Haidet-Phillips et al., 2013; Serio et al., 2013). In contrast, other
studies did in fact show astrocyte-specific mutant TDP-43-mediated
motor neuron death, muscle denervation, and paralysis in addition to
astrocyte glutamate transport GLT-1 and Glutamate/aspartate
transporter (GLAST) depletion (Tong et al., 2013; Rojas et al.,
2014). These conflicting results suggest that the toxic astrocytic
effects might not apply to all forms of ALS, or that caution must
be implemented when comparing results obtained from different
models. Nevertheless, based on these in vivo and in vitro results, it
is difficult to argue against a role of astrocytes in ALS pathology and
progression. However, the question is; how much do we know so far
about the mechanism(s) involved?

3.1 Loss of support mechanisms

The hypothesis of excitotoxicity being a potential pathologic
hallmark of ALS emerged with the report of increased glutamate
concentrations in sALS patient cerebrospinal fluids in early disease
progression together with the discovery of reduced glutamate
transport a few years later (Van Den Bosch et al., 2006). As
mentioned above, downregulation or loss of GLAST/GLT-
1 transport in astrocytes has been extensively shown in in vivo
models, and is likely correlated with abnormal levels of
extracellular glutamate, causing excessive neuronal firing, abnormal
influx of neuronal calcium and ultimately excitotoxicity (Figure 3)
(Fritz et al., 2013). In addition, SOD1-ALS astrocyte-mediated
dysregulation of the glutamate receptor 2 (GluR2) subunit of
AMPA receptors on motor neurons resulted in increased
excitotoxic vulnerability (Van Damme et al., 2007). As a result,
efforts went into drug development targeting this mechanism and
in 1995 Riluzole was approved for ALS treatment (Bensimon et al.,
1994). Riluzole is an anti-glutamatergic agent with anti-excitotoxic
properties and inhibits postsynaptic NMDA and AMPA receptors to
glutamate as well as its release (Doble, 1996). Life expectancy is
prolonged with several months for ALS patients receiving Riluzole
treatment, while providing no relieve of symptoms (Jaiswal, 2018).
Despite being the only available drug for all ALS patients with a proven
effect on survival, its limited therapeutic influence might indicate that
ALS pathogenesis is driven by more than one mechanism. Abnormal
levels of glutamate clearly have a toxic effect on motor neurons and
this could be due to the higher vulnerability of motor neurons to
excitotoxicity (Van Den Bosch et al., 2006) in combination with the
loss of glutamate transporters and thereby lack of astrocytic support of
the homeostatic environment.

Another line of studies explores a similar support mechanism
within the astrocyte metabolism: the lactate shuttle. In the context of
SOD1-mutations, results from both in vivo, in vitro and ALS patient
material showed a decrease in astrocytic intracellular and extracellular
lactate levels as well as impairment of the astrocyte lactate efflux
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transporter (Figure 3) (Ferraiuolo et al., 2011; Madji Hounoum et al.,
2017). In addition to the apparent lack of lactate shuttling, low lactate
levels could also be caused by a decrease in lactate production due to
impaired aerobic glycolysis induced by the downregulation of
astrocytic nicotinamide adenine dinucleotide (NAD+) (Madji
Hounoum et al., 2017).

Astrocytes have also been shown to harbour mitochondrial
dysfunction and oxidative stress resulting in motor neuron
degeneration (Cassina et al., 2008; Birger et al., 2019).
Mitochondrial dysfunctions including compromised oxygen
consumption and decreased membrane potential were observed in
rat SOD1G93A astrocytes, which caused astrocyte-induced motor
neuron death (Cassina et al., 2008). Interestingly, this toxicity
could be rescued by treatment with mitochondria-targeted
antioxidants suggesting a loss of astrocytic antioxidant secretion
(Figure 3). Similarly, hiPSC-derived astrocytes from C9orf72-ALS
patients showed increased oxidative stress as well as a lower
secretion of antioxidants (Birger et al., 2019) further confirming
this hypothesis. Upon culturing hESC-derived motor neurons in
C9orf72-ALS astrocyte conditioned media, a similar increase in
ROS levels was found in addition to impaired motor neuron
survival. To therapeutically target oxidative stress in ALS,
Edaravone was used as a free radical scavenger. However,
Edaravone shows a limited effect on disease progression and only
in a subset of ALS patients (Cho and Shukla, 2020; Witzel et al., 2022).
This potential loss-of-support mechanism mediated through the
astrocyte secretome correlates with the lack of microRNA
(miRNA)-containing vesicles (Figure 3) (Varcianna et al., 2019;

Gomes et al., 2022). C9orf72-ALS astrocytes were shown to have
impaired extracellular vesicle formation leading to dysregulated levels
of miRNAs (Varcianna et al., 2019). Especially lower levels of secreted
miR-494-3p correlated with improper neurite network maintenance,
and by restoring miR-494-3p levels, neurite length was restored and
motor neuron survival improved (Varcianna et al., 2019). Low levels of
mir-494-3p was also found in sALS post-mortem cortico-spinal tracts
suggesting a more general mechanism in ALS (Varcianna et al., 2019).

3.2 Toxic gain of function mechanisms

Studies using astrocyte-conditioned medium also tested the
hypothesis whether astrocytic release of soluble factors could
mediate toxic gain of function reactions (Nagai et al., 2007; Di
Giorgio et al., 2008; Rojas et al., 2014). Multiple factors were
proposed including the release of cytokines such as TNF-α,
interleukin 6 (IL-6) and interleukin 1β (IL-1β) as well as inorganic
polyphosphate (polyP), miRNA-containing extracellular vesicles,
prostaglandins, nitric oxide (NO), and ROS (Figure 3) (Nagai et al.,
2007; Di Giorgio et al., 2008; Marchetto et al., 2008; Mishra et al., 2016;
Kia et al., 2018; Chen et al., 2019; Varcianna et al., 2019; Lee et al.,
2020; Arredondo et al., 2022; Baofengfeng et al., 2022; Gomes et al.,
2022; Jensen et al., 2022; Stoklund Dittlau et al., 2023). Additionally,
upregulation of inflammatory genes targeting proinflammatory
cytokines, chemokines and components of the complement cascade
have been reported in both fALS and sALS (Di Giorgio et al., 2008;
Marchetto et al., 2008; Haidet-Phillips et al., 2011; Stoklund Dittlau

FIGURE 3
Currently known mechanisms in astrocyte-mediated ALS pathology. Each mechanism is divided into broader categories of gain of toxicity, loss of
support, additional and cell-autonomous mechanisms. Figure is created with Biorender.com.
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et al., 2023) in addition to inflammatory NF-κβ pathway upregulation
in sALS astrocytes (Haidet-Phillips et al., 2011; Gomes et al., 2019).
The involvement of the NF-κβ pathway in astrocyte ALS pathology
supports the notion that not only microglia are implicated in the
neuroinflammatory response. Interestingly, although NF-κβ
upregulation is found in astrocytes, astrocytic inhibition of the
pathway did not rescue motor dysfunction or affect disease
progression in SOD1 mice (Crosio et al., 2011; Frakes et al., 2014),
while having the opposite and beneficial effect on microglia-induced
motor neuron toxicity (Frakes et al., 2014). These results argue that
microglia are highly reactive and toxic through NF-κβ pathway
activation, while astrocytes likely contribute to ALS pathogenesis
through a variety of mechanisms. Interestingly, a follow-up study
showed how specific NF-κβ suppression in microglia, in combination
with SOD1 reduction in motor neurons and astrocytes prolonged the
lifespan and motor function in mice (Frakes et al., 2017). This does not
only confirm the complex interplay between cell types and their
combined influence on ALS pathogenesis, but also the additive
effect of targeting multiple cell types in therapy development. In
line with these results, overexpression of wild type FUS also
provoked an inflammatory response in astrocytes causing motor
neuron toxicity and proinflammatory microglial activation
(Ajmone-Cat et al., 2019). Similarly, astrocytic NF-κβ activation
drove microglial proliferation and leukocyte infiltration in
SOD1G93A-mice (Ouali Alami et al., 2018). In contrast, another
study reported how microglial activation preceded disease onset in
hSOD1G93A mice, while an increase in astrocytic GFAP-expression
appeared later at symptom onset (Gerber et al., 2012). Although these
results were acquired from overexpression models, they target the
ongoing and interesting “chicken and the egg” discussion whether
astrocytes activate microglia or vice versa (Liddelow et al., 2017).

Excitotoxicity might also be mediated through a toxic gain of
function independent of glutamate levels. Recently, it was shown that
astrocyte-secreted polyP mediates motor neuron toxicity in cultures
(Arredondo et al., 2022). PolyP is proposed to act as a gliotransmitter
by regulating neuronal excitability through ion channel modulation
resulting in an increase in action potentials (Stotz et al., 2014). As such,
excessive polyP secretion by ALS astrocytes could be linked to
excessive influx of calcium causing excitotoxicity in motor neurons
(Fritz et al., 2013; Arredondo et al., 2022). Elevated levels of polyP have
been found in glial cells from fALS and sALS patient spinal cord
sections and in cerebrospinal fluid, further confirming its relevance for
ALS (Arredondo et al., 2022).

Astrocyte-induced autophagy impairment has been shown in
several studies (Figure 3) (Madill et al., 2017; Tripathi et al., 2017;
Allen et al., 2019a). One study showed how ALS-patient iPSC-derived
astrocyte conditioned media caused P62 accumulation in
HEK293T cells, suggesting an impairment in autophagic flux
(Madill et al., 2017). Another study reported how primary reactive
mouse astrocytes expressing human SOD1G93A caused the formation of
cytoplasmic protein inclusions of P62, ubiquitin and TDP-43, as well
as axonal phosphorylated neurofilament heavy chain in hESC-derived
motor neurons upon prolonged coculture (Tripathi et al., 2017).
Interestingly, this effect was found to be independent of genotype
but rather relates to reactivity, as traumatic injury-induced reactivity
in wild type astrocytes caused similar motor neuron protein
aggregations. The protein aggregations were correlated with
reactive astrocytic secretion of TGF-β1, which caused a disruption
of motor neuron autophagy through the mTOR-pathway (Figure 3).

TGF-β1 has been reported as a neuronal pro-survival factor and, as
previously mentioned, it is an important astrocytic regulator of
synaptogenesis. However, astrocytic TGF-β1 overexpression or
prolonged exposure to motor neurons might have detrimental
effects. Indeed another study showed how excessive astrocytic
TGF-β1 expression inhibited a neuroprotective microglial
inflammatory response and enhanced the disease progression
(Endo et al., 2015). Overall, the study by Tripathi and colleagues
suggests that the reactive state rather than the SOD1 mutation is
driving the pathology in this context.

Abnormal increases in Cx43 expression both at transcription and
protein level have been documented in various fALS and sALS in vitro
and in vivomodels, as well as in sALS patients (Figure 3) (Almad et al.,
2016; 2022; Gomes et al., 2022). As previously mentioned, Cx43 gap
junctions and hemichannels mitigate calcium waves in addition to
facilitating diffusion of ions, metabolites, miRNAs and various second
messengers (Giaume et al., 2010). As a consequence of
Cx43 upregulation, increases in astrocytic gap junctional coupling
and hemichannel activity led to intracellular and possibly intercellular
calcium hyperactivity causing motor neuron excitotoxicity and cell
death (Almad et al., 2016; 2022). Interestingly, this toxicity could be
counteracted by Cx43 gap junction and hemichannel blockers.

Last but not least, ALS astrocyte-mediated downregulation of the
expression of major histocompatibility complex 1 (MHC1) on motor
neurons was shown to make motor neurons more vulnerable to
astrocyte-induced cell death (Figure 3) (Song et al., 2016).

3.3 Additional mechanisms in amyotrophic
lateral sclerosis astrocyte-mediated motor
neuron pathology

During ALS disease progression, the electrophysiological
properties of motor neurons are influenced (Sareen et al., 2013;
Wainger et al., 2014; Devlin et al., 2015; Naujock et al., 2016; Guo
et al., 2017b), a process also affected by astrocytes (Figure 3). hiPSC-
derived C9orf72-astrocytes compromised the electrophysiological
output of wild type hiPSC-derived motor neurons in a time-
dependent manner, despite having no effect on motor neurons
death (Zhao et al., 2020). Another recent study discovered how
loss of tripartite synapses in SOD1G93A mice occurred following early
onset of motor deficits (Figure 3) (Broadhead et al., 2022). This
tripartite loss was confirmed in C9orf72- but not SOD1-patient
cervical spinal cord post-mortem tissue, and might be linked to a
loss of astrocyte PAPs (Broadhead et al., 2022). Along the same lines,
astrocytes were shown to contribute to the disruption of the BBB,
which causes a disturbance of the homeostatic environment and an
influx of blood leukocytes (Figure 3) (Garbuzova-Davis et al., 2007a;
Garbuzova-Davis et al., 2007b). Additionally, astrocytes were shown
to take up toxic C9orf72 dipeptide repeats (DPRs) from the medium
through endocytosis and redistributing them to motor neurons
in vitro, arguing for possible prion-like protein properties as well
as an astrocyte-mediated spreading of neurodegeneration (Figure 3)
(Marchi et al., 2022). Interestingly, another study showed how TDP-
43 aggregates could propagate from motor neurons to astrocytes,
suggesting heterogeneity in spreading mechanisms across the ALS
mutation spectrum (Smethurst et al., 2020). Further studies are
needed to elaborate on the apparent toxic protein propagation
between cell types in ALS.
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Whether all these effects are due to a loss-of-support or gain-of-
toxicity astrocyte mechanism remains unknown. Recently, we found
that FUS-ALS hiPSC-derived astrocytes impaired hiPSC-derived
motor neuron neurite outgrowth and NMJ formation in a human
microfluidic triculture system (Figure 3) (Stoklund Dittlau et al.,
2023). These findings correlated with the intriguing observation
that mutant astrocytes simultaneously downregulated neuronal
support pathways, in addition to upregulating toxic properties. As
such, our data argue for a synergistic interplay between both loss-of-
support and gain-of-toxicity mechanism in ALS.

3.4 Cell-autonomous effects on astrocytes

Besides the clear influence of ALS astrocytes on motor neuron
pathology, many studies confirm perturbed intracellular mechanisms
in the astrocytes themselves spanning multiple ALSmutations (Figure 3).
In addition to the mechanisms mentioned above, transcriptional
dysregulation were reported in several studies (Figure 3) (Baker et al.,
2015; Sun et al., 2015; Zhao et al., 2020; Taha et al., 2022; StoklundDittlau
et al., 2023). These findings include disease stage-dependent upregulation
of an immune response, lysosomal and phagocytic pathways and
downregulation of ion and cholesterol homeostasis in SOD1G93A mice
astrocytes (Baker et al., 2015; Miller et al., 2018). Similarly, fALS-patient
iPSC-derived astrocytes showed transcriptional dysregulations causing a
cell-autonomous reactive transformation involving activation of
inflammatory pathways, as well as a suppression of homeostatic
support, albeit in a heterogeneous mutation-dependent manner (Taha
et al., 2022; Ziff et al., 2022; Stoklund Dittlau et al., 2023). In addition,
cytoplasmic protein inclusions are present in astrocytes spanning various
mutations (Bruijn et al., 1997; Serio et al., 2013; Barton et al., 2020) and
iPSC-derived C9orf72-ALS astrocytes contain pathogenic nuclear RNA
foci (Figure 3) (Zhao et al., 2020). SOD1-ALS patient iPSC-derived
astrocytes display downregulation of Kir4.1 expression (Kelley et al.,
2018), and murine SOD1-ALS astrocytes were reported to have
abnormal intracellular calcium dynamics (Figure 3) (Kawamata et al.,
2014). Metabolic screenings on directly from fibroblast-reprogrammed
astrocytes of C9orf72 and sALS patients revealed compromisedmetabolic
flexibility under starvation conditions with defects in adenosine, fructose
and glycogen metabolism in addition to impaired mitochondrial
substrate transport (Figure 3) (Allen et al., 2019a). In addition, low
levels of adenosine deaminase hampered astrocyte adenosine metabolism
potentially contributing to motor neuron toxicity (Allen et al., 2019b).
This likely correlates with the mitochondrial dysfunctions previously
mentioned. Finally, cortical organoid-derived astrocytes from C9orf72-
ALS patient iPSCs as well as sALS iPSC-derived astrocytes showed
perturbed autophagy and P62 accumulations (Figure 3) (Szebényi
et al., 2021; Baofengfeng et al., 2022), which argues for a role of
autophagy across multiple cell types. Considering the heterogeneous
nature of the processes currently known, it is highly likely that many
more astrocytic cell-autonomous mechanisms exist in ALS.

3.5 Astrocyte-targeted therapy

Astrocyte-targeted treatment might pose a valid therapeutic
strategy. Prostaglandin inhibition reduced the toxic effects of glia
on motor neuron survival in vitro (Di Giorgio et al., 2008), while
antioxidant treatment decreased the production of ROS from

astrocytes and rescued motor neuron death (Marchetto et al.,
2008). Neutralizing antibodies targeting TNF-α alleviated FUS-ALS
astrocyte-induced motor neuron toxicity (Kia et al., 2018; Jensen et al.,
2022), and activation of GLT-1 expression mediated through ß-lactam
antibiotic administration in SOD1-mice resulted in delayed disease
progression (Rothstein et al., 2005), although this later failed in a
clinical trial. Adeno-associated virus (AAV)-based therapy using
miRNAs to suppress human SOD1 expression in astrocytes was
shown to preserve muscle innervation, prevent muscle atrophy, and
sustain motor performance in SOD1G93A mice, although the most
prominent effects came from SOD1 silencing in either spinal motor
neurons or both cell types with additional rescue of NMJ function,
delaying of disease onset and prolonged survival (Dirren et al., 2015;
Rochat et al., 2022). Recently, synthetic EphA4 agonists were shown to
prevent astrocyte-mediated motor neuron toxicity in astrocyte-motor
neuron cocultures in both a SOD1-ALS and sALS context (Dennys
et al., 2022), while mesenchymal stem cell-derived miRNA-containing
extracellular vesicles as well as transfection with miRNAmimics could
ameliorate the neurotoxic profile of ALS-astrocytes (Provenzano et al.,
2022). Finally, astrocyte replacement strategies with engraftment of
healthy (human) astrocyte progenitors into ALS rodent spinal cords
have also proven successful in retaining their gene-expression
independent of the environment, albeit with conflicting effects on
disease progression (Lepore et al., 2008; 2011; Kondo et al., 2014;
Haidet-Phillips et al., 2015; Izrael et al., 2018). Whether astrocyte
replacement strategies and/or astrocyte-targeted treatments are viable
therapy options for ALS patients is an open question.

4 Discussion

The role of astrocytes in ALS pathogenesis is complex. Even with
the current knowledge, several aspects related to the pathologic
process in ALS are not completely understood. The dynamic
interplay between loss-of-support and gain-of-toxicity astrocyte
functions complements recent findings in Alzheimer’s disease
(Jiwaji et al., 2022), which argue for potential common disease
mechanisms across multiple neurodegenerative disorders. However,
the intricacy of the current knowledge also poses the question whether
we are only just scratching the surface? Astrocytes are impressively
multifaceted; in their morphology, their location and their function,
which likely transfers into a disease context as well.

To dive further into the exact role of astrocytes in ALS and other
neurodegenerative diseases, challenges arise with the available models.
No model system is perfect, and much insight has inarguably been
gained with past and current ALS models. Traditional mice models
have been a corner stone in ALS research for many years and
extensively bridged the gap between in vitro and patient material.
However, we have to tread lightly when it comes to the impulse of
directly transferring rodent results to a human context, as several
reports highlight a clear interspecies variability concerning astrocytes'
morphology and function. The glial-to-neuron ratio increases as we
climb the evolutionary ladder: from ~0.05–0.1 in invertebrates,
0.3–0.4 in rodents, 0.5–1.0 in rhesus monkeys and 1.5->2 in
humans. It is evident that the number of glia grows with the size
of the brain and thus with the higher need for neuronal homeostatic
support (Verkhratsky and Nedergaard, 2018). Additionally, some
subtypes of astrocytes in the human brain are not found in the
rodent brain, which complicates the use of these animal models for
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studies on human physiology and disease (Verkhratsky and
Nedergaard, 2018). Astrocytes also differ greatly in size and
complexity when comparing human and rodent cells, as human
astrocytes are ~2,6-fold larger in diameter and process length and
10-fold more ramified than their rodent counterparts (Oberheim et al.,
2009; Allen and Eroglu, 2017). In addition, human astrocytes have
greater overlap of individual astrocyte domains than rodents,
communicate through faster and stronger calcium waves and show
a different transcriptional output (Oberheim et al., 2009; Zhang et al.,
2016; Li et al., 2021). One astrocyte has contact with
20–120.000 synapses in the mouse brain, whereas a human
astrocyte interacts with up to 2 million synapses (Bushong et al.,
2002; Oberheim et al., 2009). Remarkably, when engrafting human
astrocyte progenitors into immune-deficient mice, human astrocytes
retained their morphology and calcium communication, while
enhancing the synapse plasticity and learning ability of the
chimeric mice. This suggests that species-specificities of astrocytes
play a central role in the human cognitive superiority (Han et al.,
2013). Importantly, many successful results from ALS drug testing in
rodents have failed to translate in clinical trials in humans. One reason
for this translational gap could be the timing of treatment, since ALS-
mutant mice often are treated before the onset of symptoms, while
ALS patients usually receive treatment much later into disease
progression. However, it could also be caused by the important
species differences between mice and man despite an average
genomic overlap of 85% of protein-coding regions and 90% of the
expressed genes in astrocytes (Chandrasekaran et al., 2016).

One solution to this species-variability problem is the use of
patient material. Post-mortem tissue is an obvious and highly
valuable resource, but only provide end-stage insights into ALS.
On the other hand, newer techniques involving stem cell technology
and especially iPSC technology harbour massive potential. From
relying on overexpression of human genes in animals, primary (non-
)neuronal cultures, and end-stage insight from post-mortem tissue, it
became possible to take somatic cell biopsies from patients,
reprogram these cells into iPSCs followed by differentiation into
any desired neuronal or glial cell type in order to model specific
patient pathophysiology. As such, researchers now have a tool to
model fALS and maybe even more importantly sALS, which had
been impossible before. This technique even bypasses the ethical
dilemmas connected to the use of hESCs, which has vastly
accelerated the stem cell field over the last decade. With the
discovery and application of clustered regularly interspaced short
palindromic repeats (CRISPR)/Cas9 gene-editing, genetic variability
between disease and control lines can be diminished. As described in
previous sections, much insight into astrocyte mechanisms in ALS
has been gained using stem cell models, and more will likely come.
However, despite the clear potential of iPSCs, important limitations
remain. These disadvantages include phenotypic variabilities,
insufficient maturational state and aging, as well as lack of
complexity compared to in vivo models (Agbas et al., 2021). To
target these limitations, researchers are exploring the use of
standardized protocols, genetic- or chemical-induced aging or
direct reprogramming, as well as the development of complex
in vitro cocultures through the use of microfluidic devices and
organoids (Meyer et al., 2014; Mertens et al., 2015; Guo et al.,
2017b; Agbas et al., 2021; Stoklund Dittlau et al., 2021a; 2021b;
Gatto et al., 2021; Fathi et al., 2022; Dennys et al., 2023).

Our general understanding of the underlying disease mechanisms
of ALS is derived from years of research using both in vivo and in vitro
models as well as post-mortem tissue. Important insights have been
gained using these approaches, albeit with limited effect on therapeutic
drug development. No cure or effective treatment is currently available
for ALS, and it is increasingly acknowledged that this is due to large
mechanistic complexity, genetic variability and a translational gap
between model and patient. Fortunately, the use of in vitro stem cell
models has made it easier to obtain mechanistic insight in ALS, and
with their growing sophistication, they now propose an important
resource for fundamental research as well as for drug discovery. More
research is needed to gain the full picture of astrocyte involvement in
ALS, but with the increasing interest in the research community and
the ongoing improvement of models, there is clear room for optimism.
Without a doubt, we should care about astrocytes in motor neuron
disease.
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