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Background: Heat shock protein 60 (HSP60), a potentially homeostatic antigen, is
involved in physiological and non-physiological conditions. Experimental data support
the role of HSP60 in placental and mitochondrial steroidogenesis. Furthermore, HSP60 is
translocated into the endothelial-cell plasma membrane and the extracellular space under
stress conditions, promoting the atherosclerotic process. Therefore, we investigated the
association between HSP60 and endothelial function in postmenopausal women,
considering the possible atherogenic effect of androgenic hormones.

Methods: This study included 123 healthy postmenopausal women. Exclusion criteria
were treated hypertension or dyslipidaemia, menopause hormone therapy during the last
6 months, and previously diagnosed peripheral vascular disease or cardiovascular
disease. Fasting venous blood samples were obtained for biochemical and hormonal
assessment and evaluation of HSP60. Sonographic assessment of flow-mediated dilation
(FMD) occurred immediately after that in one session.

Results: Univariate analysis showed that women with FMD values below median 5.12%
had lower logHSP60 values (low vs. high FMD, HSP60 values: 2.01 ± 1.16 ng/ml vs. 3.22 ±
1.17 ng/ml, p-value = 0.031). Multivariable analysis showed that logHSP60 was
associated with FMD (b-coefficient = 0.171, p-value = 0.046), adjusting for traditional
cardiovascular risk factors (TRFs) and insulin levels. Further adjustment for testosterone
and DHEAS rendered the result non-significant. In the multivariable analysis, FMD was
associated with insulin (b-coefficient = −0.166, p-value = 0.034), testosterone
(b-coefficient = −0.165, p-value = 0.034), DHEAS (b-coefficient = −0.187, p-value =
0.017), adjusting for TRFs.

Discussion: The results of this study indicate that the association between androgens and
endothelial function is possibly mediated by HSP60 molecules, in women with low insulin
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resistance and androgenicity. Further prospective studies are needed to explore the
significance of our findings.

Keywords: heat shock protein 60, flow mediated dilation, testosterone, dehydroepiandrosterone, postmenopause

INTRODUCTION

Heat shock proteins (HSP)s 60 have been considered antigens of
particular immunoregulatory interest in cardiovascular
homeostasis (Coelho and Faria, 2012; Duan et al., 2020). They
have been shown to modify endothelial cell function,
cardiomyocytes and vascular smooth muscle cell activity in
both health and disease (Duan et al., 2020). An increasing
number of diseases, known as chaperonopathies, are linked
with qualitative or quantitative or functional changes of
molecular chaperones, either in excess or defect or express an
incorrect function (Cappello et al., 2014).

A large body of evidence supports a direct link between HSP60
and the function of the cardiovascular system. The intracellular
HSP60 in cardiomyocytes has a protective role in maintaining
mitochondrial integrity and triphosphate adenosine (ATP)
capacity, which is essential for survival and regulation of
reperfusion injury (Duan et al., 2020). In the event of a
disruption of the mitochondrial chain integrity, HSP60
expression is upregulated to control the production of H2O2

and cytochrome c release (Hollander et al., 2003). In endothelial
cells, HSP60 molecules seem to be translocated to the plasma
membrane and the extracellular space under stress conditions
(Duan et al., 2020). Higher levels of extracellular HSP60 have
been shown to induce the proliferation and migration of vascular
smooth muscle cells, further supporting the atherosclerotic
process (Zhao et al., 2015; Deniset et al., 2018). Earlier data
from in vitro studies indicated that extracellular HSP60 might
promote the synthesis of proteolytic enzymes and cytokines like
tumour necrosis factor (TNF), growth factors, interleukin-10 and
adhesion molecules (Moghimpour Bijani et al., 2012).

HSP60 are molecules involved in various aspects of human
reproduction, like modulation of endometrial steroid function
(Neuer et al., 2000). In vitro evidence supports a direct
involvement of HSP60 with human placental steroidogenesis
(Olvera-Sanchez et al., 2011) and mitochondrial progesterone
synthesis (Monreal-Flores et al., 2017). As evident from in vitro
data, maximum values of HSP60 are expressed following regular
ovulation, ensuring endometrial receptivity for possible
implantation, as well as during the pre-and peri-implantation
stages of pregnancy (Neuer et al., 2000). HSP60 proteins are
expressed in human follicular fluid (Neuer et al., 1997) in the
granulosa of primary and secondary atretic ovarian follicles and
more significant amounts in the theca interna of tertiary and
cystic follicles (Garrido et al., 2001).

Endothelial dysfunction is primarily characterized by reduced
nitric oxide availability and is one of the first vascular alterations
observed in the sequel of atherosclerosis, preceding the structural
vascular changes as well as the clinical manifestations of
cardiovascular disease (Moreau et al., 2012; Thijssen et al.,
2019). Flow-mediated dilation (FMD) is the gold-standard

non-invasive ultrasound-based technique for assessing
endothelial function (Thijssen et al., 2019) and has been
previously associated with prognostic value for future CV
events (Inaba et al., 2010; Xu et al., 2014; Thijssen et al.,
2019). We have previously shown that circulating androgens
are predictors of accelerated vascular ageing and blood
pressure increase after the menopausal transition
(Georgiopoulos et al., 2016). Therefore, we aimed to evaluate
the possible association between HSP60 serum levels and
endothelial function via FMD in a sample of apparently
healthy postmenopausal women, considering the possible
hormonal interactions.

MATERIALS AND METHODS

Study Design and Population
This cross-sectional study evaluated healthy postmenopausal
women examined in the Menopause Clinic of Aretaieio
Hospital, 2nd Department of Obstetrics and Gynecology,
National and Kapodistrian University of Athens. This clinic
has been active since 1998, offering advice to all
postmenopausal women seeking help on managing
menopause-related symptoms and primary prevention
practices. All women who visited the clinic for the first time
and had a clinical frailty score of less than 5 (Rockwood et al.,
2005) were invited to participate. The intake of vitamins or food
supplements without phytoestrogens was not a criterion for
exclusion.

Briefly, before their recruitment, all women were subjected to a
routine evaluation program that included breast mammography,
gynaecological examination and Papanicolaou smear, and
evaluation of renal/thyroid/liver function. Exclusion criteria
were: 1) familial hypercholesterolemia, 2) clinically overt or
treated coronary artery disease or cardiovascular disease or
family history of early atherosclerotic cardiovascular disease
(1st-degree male relative < 55 years or 1st-degree female
relative < 65 years), 3) thromboembolism as well as peripheral
artery disease, 4) premature ovarian failure, gynaecological
malignancy, 5) acute or chronic inflammatory disease, 6) use
of antihypertensive, hypolipidemic medication or other
vasoactive medications, 7) known diabetes mellitus or intake
of related medication, 8) intake of hormone replacement
therapy or selective estrogen modulators, 9) menopausal age of
more than 10 years. Absence of menses for at least 12 consecutive
months together with follicle-stimulating hormone > 25 mIU/ml
and levels of estradiol < 50 pg/ml was defined as post-menopause.
All participating women were only consuming alcohol under
social circumstances (i.e., 2-3 glasses of wine per week). Women
with adherence or retention concerns (e.g., alcoholism) were not
included in the study. After applying the exclusion criteria, a total
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of 123 healthy women were selected to participate in this study.
All participants signed informed consent for participation in the
study. Institutional review board approval was obtained by the
Ethics Committee of the “Aretaieio” Hospital.

Biochemical and Hormonal Assays
Total cholesterol in serum was measured by enzymatic assay
(Abbot, Illinois) with a total coefficient of variation ≤ 3% and
sensitivity of 5.0 mg/dl. Triglycerides were assessed using the
enzymatic glycerol phosphate oxidase methodology (Abbott),
with a coefficient of variation ≤ 5% and a sensitivity of
5.0 mg/dl. The Ultra HDL assay (Abbott) was used to measure
levels of High-density (HDL) lipoprotein cholesterol with a total
coefficient of variation ≤ 4% and a sensitivity of 2.5 mg/dl. Low-
density lipoprotein cholesterol (LDL-C) was measured by
elimination methodology (MULTIGENT direct LDL, Abbott,
Illinois). The sensitivity of the assay was ≤ 10 mg/dl, and the
total coefficient of variation was <4%. Serum glucose was
measured by the hexokinase/G-6-PDH methodology (Abbott).
The total coefficient of variation was ≤ 5%, and the sensitivity was
2.5 mg/dl. All the assays as mentioned earlier were performed on
the Architect c 8,000 system (Abbott Diagnostics, Illinois). HSP60
levels were measured using the Human Heat Shock Protein 60
ELISA kit (Cusabio Biotech, Newark, DE), with a sensitivity of
0.39 ng/ml. The intra- and inter-assay precision was reported as <
8% and <10%, respectively.

Levels of serum insulin, follicle-stimulating hormone (FSH),
estradiol, sex hormone-binding globulin (SHBG), testosterone
and dehydroepiandrosterone (DHEAS) were measured as
previously described (Creatsa et al., 2012; Stamatelopoulos
et al., 2015). In addition, homeostasis model assessment of
insulin resistance (HOMA-IR) was calculated as follows:
fasting insulin (μU/mL) x fasting glucose (mmol/L)/22.5.

Flow-Mediated Dilation
FMDwas assessed using high-resolution ultrasound (Vivid 7 Pro,
G.E.) with a attached 7.0- to 14.0-Hz multifrequency linear array
probe. The intraobserver CV was estimated as 8.2%. The right
brachial artery was longitudinally imaged above the antecubital
fossa in a supinated position of the forearm. The examiner placed
a pneumatic cuff around the forearm, and the initial evaluation
took place with the assessment of brachial diameter and flow
velocity. The cuff was rapidly inflated to 250 mmHg for 5 min and
subsequently deflated, causing an increase in the arterial flow
(reactive hyperemia). After that, we monitored the extent of
reactive hyperemia, velocity and changes in diameter for 90 s.
FMD was calculated as the percentage of maximal change of
lumen diameter between rest and reactive hyperemia
(Stamatelopoulos et al., 2011, 2019). The interclass correlation
coefficient for FMDmeasured on two successive mornings by the
same investigator was 0.706.

Statistical Analysis
Statistical analysis was performed by SPSS version 20.0 (SPSS,
Chicago, IL, United States). Qualitative data are expressed as
absolute counts and frequencies. Quantitative data are expressed
as mean values and standard deviation (mean ± S.D.) or median

(inter-quartile range). The normality of distributions was graphically
inspected through histograms and Quantile-Quantile plots.
Logarithmic transformation was used for non-normally
distributed variables, i.e., HSP60 values. Values of HSP60 were
compared with analysis of variance (ANOVA) and analysis of
covariance (ANCOVA), using the median value of FMD as the
cut-off. We performed correlation analysis by Pearson to evaluate
links between markers of endothelial function and central blood
pressure and any of the assessed molecules, as well as possible
hormonal and metabolic determinants.

Moreover, we assessed possible links between values of HSP60
and serum levels of androgenic sex hormones and FSH.
Subsequently, we fitted models of multivariable regression
analysis, including vascular parameters as dependent variables
(in a one-by-one fashion) and the assessed molecules and
significant cardiovascular risk factors as independent
determinants. Statistical significance was set at the level of
p-value < 0.05.

RESULTS

Table 1 presents the results of the descriptive analysis for the n =
123 postmenopausal women in our study.We compared values of

TABLE 1 | Descriptive characteristics for the n = 123 postmenopausal women of
our study.

Mean ± SD or Frequency
(%)

IQR

Anthropometric/demographic parameters
Age (years) 55.5 ± 5.8 52.0–58.0
YSM (years) 7.58 ± 5.9 3.0–10.0
BMI (kg/m2) 25.9 ± 4.3 23.0–28.4
Overweight—obesity (%) 49.7% (79/159)
SBP (mmHg) 119.3 ± 17.4 106.0–130.0
DBP (mmHg) 74.2 ± 9.1 67.8–81.0
Current smoking (%) 29.6% (47/159)

Biochemical parameters
Cholesterol (mg/dl) 230.4 ± 39.1 209.0–256.0
HDL-C (mg/dl) 62.0 ± 17.3 50.0–72.8
Triglycerides (mg/dl) 90.9 ± 39.9 66.0–102.0
LDL-C (mg/dl) 142.4 ± 36.7 114.5–168.0
Glucose (mg/dl) 92.1 ± 8.9 86.0–97.0
Insulin (μIU/ml) 7.1 ± 4.5 4.3–8.5
HOMA-IR 1.7 ± 1.2 0.9–1.9
C-reactive protein (mg/dl) 0.4 ± 0.7 0.1–0.3

Hormonal parameters
FSH (mIU/ml) 76.4 ± 30.6 53.6–98.6
LH (mIU/ml) 37.7 ± 19.3 25.3–46.2
Testosterone (ng/dl) 0.4 ± 0.3 0.3–0.5
SHBG (nmol/L) 66.3 ± 28.4 45.1–86.3
FAI 2.5 ± 1.8 1.3–3.2
DHEAS (ng/dl) 345.2 ± 80.8 85.0–640.0

Endothelial function
Flow mediated dilation (%) 5.4 ± 2.7 3.3–6.8

YSM, years since menopause; SBP, systolic blood pressure; DBP, diastolic blood
pressure; HDL, high density lipoprotein; LDL, low density lipoprotein; HOMA-IR,
homeostasis model assessment of insulin resistance; FSH, follicular stimulating
hormone; LH, luteinizing hormone; SHBG, sex hormone binding globulin; FAI, free
androgen index; SD, standard deviation; IQR, interquartile range.
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HSP60 and cardiovascular risk factors according to FMD
measures, using the median as the cut-off. As presented in
Figure 1, we observed that only HSP60 values differed
significantly between women with low vs. high levels of FMD
(FMD values < 5.12% vs. > 5.12%, comparison of HSP60 values:
2.01 ± 1.16 ng/ml vs. 3.22 ± 1.17 ng/ml, p-value = 0.031, t-test for
independent values).

We continued the analysis evaluating possible significant
correlations between FMD values and hormonal, biochemical,
anthropometric predictors as well as the levels of the assessed
molecules (Table 2). The results indicated that FMD values
correlated negatively with insulin (r-coefficient = −0.181,
p-value = 0.046), DHEAS (r = −0.275, p-value = 0.013),
testosterone (r-coefficient = -0.192, p-value = 0.028) and FAI
levels (r-coefficient = −0.183, p-value = 0.046). We also observed
an almost significant correlation between serum levels of HSP60
and FMD values (r-coefficient = 0.168, p-value = 0.069), as well as
further almost significant correlations between FMD and
HOMA-IR (r = −0.156, p-value0.087) or FSH (r = 0.197,
p-value = 0.084). In addition, we evaluated the partial
continuous correlation between values of HSP60 and the
following parameters: DHEAS (r = 0.015, p-value = 0.908);
testosterone (r = −0.233, p-value = 0.064); FSH (r = 0.255,
p-value = 0.042) after adjustment for age, BMI, smoking and
insulin levels.

We evaluated the possible association between HSP60 values,
stratified according to the median value and hormone levels. As
shown in Figure 2, a significant association was observed only for
FSH and HSP60 values, which persisted even after analysis for
cardiovascular risk factors (<1.98 ng/ml vs. > 1.98 ng/ml, FSH:
66.9 ± 23.6 mIU/ml vs. 83.1 ± 35.6 mIU/ml, F = 0.287, p-value =
0.022, ANCOVA, adjusted for age, BMI, pulse pressure, smoking,
estradiol, HOMA-IR, LDL-cholesterol). No other significant
associations were observed between values of HSP60 and
testosterone, insulin, HOMA-IR or DHEAS.

Table 3 presents the results of the multivariable linear
regression analysis, including FMD values as dependent variable
and HSP60 and significant confounders (i.e., age, pulse pressure,
androgens, insulin). Model 1 shows that values of FMD associated
significantly with HSP60 (b-coefficient = 0.171, 95% CI: 0.043 to
0.358, p-value = 0.046) in a model adjusted for age, pulse pressure,
smoking, LDL-cholesterol, insulin and BMI. This association was
not significant after further adjustment for testosterone or DHEAS
levels (Model 2 and 3); however, there was a trend towards

FIGURE 1 | Mean values of log-transformed heat shock protein 60 for
women with flow-mediated dilation above vs. below the median value of
5.12%. Error bars indicate standard errors.

TABLE 2 | Correlation analysis between flow mediated dilation values and
hormonal—metabolic predictors and heat shock protein 60.

Flow mediated dilation

All women n = 123

r-coefficient p-value

Age (years) −0.098 0.221
YSM (years) 0.011 0.913
BMI (kg/m2) −0.004 0.959
SBP (mmHg) −0.075 0.350
DBP (mmHg) −0.100 0.215
Cholesterol (mg/dl) −0.049 0.558
HDL-C (mg/dl) 0.021 0.800
Triglycerides (mg/dl) −0.054 0.515
LDL-C (mg/dl) −0.021 0.803
Glucose (mg/dl) 0.041 0.625
Insulin (μIU/ml) −0.181 0.046
HOMA-IR −0.156 0.087
FSH (mIU/ml) 0.197 0.084
LH (mIU/ml) 0.056 0.501
DHEAS (ng/dl) −0.275 0.013
Testosterone (ng/dl) −0.192 0.028
SHBG (nmol/L) 0.083 0.357
FAI −0.183 0.046
HSP60 (ng/ml) 0.168 0.069
C reactive protein (mg/dl) −0.061 0.574

R-coefficient was derived from Pearson’s correlation Bold indicates statistical
significance, which was at the level of p-value < 0.05.
YSM, years since menopause; BMI, body mass index; SBP, systolic blood pressure;
DBP = diastolic blood pressure; HDL-C, high density lipoprotein cholesterol; LDL-Cl, low
density lipoprotein cholesterol; HOMA-IR, homeostasis model assessment of insulin
resistance; FSH, follicular stimulating hormone; LH, luteinizing hormone; SHBG, sex
hormone binding globulin; FAI, free androgen index.

FIGURE 2 | Follicle-stimulating hormones according to values of heat
shock protein 60 (HSP60), stratified according to the median value of
1.98 ng/ml.
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significance between values of DHEAS and FMD (b-coefficient,
−0.160, 95% CI: −0.340 to −0.045, p-value = 0.053). Model 4
showed that FMD was associated with levels of insulin
(b-coefficient = −0.166, 95% CI: −0.322 to -0.093, p-value =
0.034), testosterone (b-coefficient = −0.165, 95% CI: −0.395 to
0.038, p-value = 0.034), DHEAS (b-coefficient = −0.187, 95% CI:
−0.362 to −0.093, p-value = 0.017). Further adjustment for FSH in
any of the beforementioned models did not substantially change
the results. The results remained the same, restricting the analysis
in women with FMD values within the laboratory-reference range.

DISCUSSION

The results of this study support a significant positive
association between FMD and HSP60 values after
adjustment for cardiovascular risk factors. However, this
association became non-significant after further adjustment

for androgens and insulin levels, indicating a possible
correlation between testosterone and HSP60. Moreover,
FSH levels seem to be directly associated with levels of
HSP60 after the menopausal transition, independently of
cardiovascular risk factors.

Heat shock proteins (HSP) have a predominant role in
modifying the cellular response to stress-related events (Van
Hinsbergh and Koolwijk, 2008). HSP60 molecules are evident
intracellular (e.g., mitochondria matrix space and cytoplasm) and
in the plasma membrane and extracellular space, and the blood
circulation (Duan et al., 2020). Consequently, the functional role
of HSP60 molecules is related to their localization. It varies from
chaperoning mitochondrial activity to modification of cellular
processes like immune responses, cell proliferation and cell
apoptosis (Henderson et al., 2013).

Recent data suggest a complex role of HSP60, which belong
to the chaperonins of Group I and typically functions inside
the mitochondria. The role of this molecule ranges from a

TABLE 3 | Linear regression analysis included multivariable models fitted with the most significant predictors of flow-mediated dilation.

Model R2 (%) b-coefficient 95% CI p-value

Model 1
Age (years) 5.4 −0.073 −0.238 to −0.064 0.449
Pulse pressure (mmHg) −0.011 −0.321 to 0.038 0.924
Smoking 0.081 0.056 to 0.278 0.401
LDL-C (mg/dl) −0.001 −0.412 to 0.089 0.993
Insulin (μIU/ml) −0.172 −0.368 to −0.063 0.085
BMI (kg/m2) −0.026 −0.378 to 0.032 0.789
HSP60 0.171 0.043 to 0.358 0.046

Model 2
Age (years) 2.5 −0.062 −0.268 to 0.037 0.438
Pulse pressure (mmHg) −0.047 −0.142 to 0.094 0.551
Smoking −0.029 −0.142 to 0.328 0.715
LDL-C (mg/dl) −0.040 −0.418 to 0.275 0.611
Insulin (μIU/ml) −0.146 −0.357 to −0.006 0.064
BMI (kg/m2) 0.005 −0.042 to 0.184 0.953
HSP60 0.128 −0.052 to 0.421 0.105
Testosterone (ng/dl) −0.158 −0.305 to 0.099 0.047

Model 3
Age (years) 3.3 −0.052 −0.326 to 0.048 0.535
Pulse pressure (mmHg) −0.029 −0.328 to 0.121 0.731
Smoking 0.019 −0.094 to 0.211 0.817
LDL-C (mg/dl) −0.036 −0.279 to 0.189 0.668
Insulin (μIU/ml) −0.132 −0.367 to 0.083 0.113
BMI (kg/m2) −0.014 −0.184 to 0.327 0.869
HSP60 0.181 0.048 to 0.466 0.030
DHEAS (ng/dl) −0.160 −0.354 to −0.045 0.053

Model 4
Age (years) 8.0 −0.049 −0.258 to 0.009 0.535
Pulse pressure (mmHg) −0.029 −0.198 to 0.205 0.711
Smoking −0.025 −0.274 to 0.178 0.753
LDL-C (mg/dl) 0.008 −0.047 to 0.149 0.921
Insulin (μIU/ml) −0.166 −0.322 to −0.093 0.034
BMI (kg/m2) 0.096 0.003 to 0.389 0.271
HSP60 0.141 −0.093 to 0.338 0.066
Testosterone −0.165 −0.395 to 0.038 0.034
DHEAS (ng/dl) −0.187 −0.362 to −0.093 0.017

*Adjustment for values of follicle-stimulating hormone did not substantially change the results of the above models. Bold indicates statistical significance, which was defined as p-value
< 0.05.
SBP, systolic blood pressure; LDL-C, low density lipoprotein cholesterol; BMI, body mass index; HSP60, heat shock protein 60; DHEAS, dehydroepiandrosterone; Model 2, Model 1 +
testosterone; Model 3, Model 1 + DHEAS; Model 4, Model 3 + DHEAS.
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proinflammatory biomarker of vascular damage up to an anti-
inflammatory immunomodulator (Caruso Bavisotto et al.,
2020; Krishnan-Sivadoss et al., 2021). The role of HSP60 in
the survival of endothelial cells in vivo, especially in the context
of the hormonal milieu following the menopausal transition,
has received limited attention. The expression and localization
of HSP60 in vascular endothelial cells are regulated by various
insults like inflammation, chemical stress and infectious agents
(Caruso Bavisotto et al., 2020; Duan et al., 2020). Results are
mainly available from in vitro rather than in vivo studies,
highlighting that risk factors for atherogenesis may upregulate
the intracellular expression of HSP60 and induce translocation
of this protein from the mitochondria to the cell surface. The
level of intracellular and especially extracellular HSP60 seems
to be mediating the additional atherogenic risk. HSP60
molecules bind to the membrane ATP-synthase, serving a
protective role against cell apoptosis (Duan et al., 2020).
Overexpression of intra- and extracellular HSP60 has been
reported to promote the production of proteolytic cytokines
and enzymes, like TNF and adhesion molecules, which
possibly induce the proliferation and migration of vascular
smooth muscle cells leading to atherogenesis (Duan et al.,
2020).

In our sample, serum levels of androgenic sex hormones
were not significantly associated with HSP60, but women with
higher FSH values did have higher HSP60 levels, irrespectively
to traditional cardiovascular risk factors. This interesting
association implies that the FSH increase evident around
the time of the menopausal transition and even before
ovarian senescence (Harlow et al., 2012) is linked with
changes in HSP-homeostasis. This finding is in line with
previous in vitro evidence describing maximum HSP60
production after the ovulation, immediately following the
peak of FSH values observed within the menstrual cycle
(Neuer et al., 2000). In line with this observation, a small
interventional study of 90 postmenopausal women reported a
significant reduction in titers of antibodies against HSP60 in
women receiving treatment with hormone replacement as
opposed to control (Rajtar-Ciosek et al., 2015) suggesting a
hormonal regulation of HSP-levels.

We observed a positive association between FMD levels and
serum HSP60 antigen levels in postmenopausal women with
FMD within the reference range. This interaction, however,
became non-significant after further adjustment for insulin
resistance and androgen levels. Earlier research has shown that
HSP60s are involved in mitochondrial steroidogenesis by
regulating cholesterol transport in human placenta cells
(Miller, 2013). In this context, the hypothesis of the
possible mediating effect of serum androgens on the
interaction between HSP60 and FMD seems not irrational.
An earlier study (Wick, 2016) describes the hypothesis of an
atheroprotective immune tolerance, which may be induced by
activating cellular and humoral immune reactions to HSP60
autoantigens. According to our findings, insulin resistance,
defined as HOMA-IR, and levels of androgens mediated the
association between HSP60 and FMD in the multivariable
analysis. The postmenopausal profile of “relative

androgenicity” following ovarian senescence is likely to act
as the trigger to promote athero-protective immune tolerance
to HSP60 molecules (Davis et al., 2015). Data on the link
between HSP60 production in vascular endothelial cells and
androgens remain conflicting. Levels of HSP60 autoantigen
seem to be modulated according to serum levels of circulating
androgens, as reported in a study of human prostate cells,
where autoantigen levels have been reported to increase by 1.7-
fold in androgen-deplete cells but not in androgen-sensitive
cells (Wright et al., 2003). On the other hand, in vitro data in
Sertoli cells, retrieved from mice, demonstrated evidence of
testosterone-induced down-regulation of HSP60, mediated by
the inhibition of the transcription of the heat shock factor-1
(Yang et al., 2014).

This study has certain limitations that should be outlined.
First, the sample size is small. Second, the cross-sectional
nature of the observed associations cannot permit causality
detection. Third, we have not measured HSP60 antibody levels,
which would provide more insight into the possible interaction
between this chaperonin molecule and endothelial function.
Fourth, data on HSP60 levels of premenopausal women were
not available. However, in a previous study (Kim et al., 2009)
report that premenopausal women have lower HSP60 levels in
comparison to postmenopausal women. On the other side, our
study group consists of carefully selected postmenopausal
women with no apparent health problems, enabling us to
minimize the risk of bias in the observed investigations.

In conclusion, we observed that endothelial function in
postmenopausal women is associated positively with HSP60
levels, indicating a possible association irrespectively of
traditional cardiovascular risk factors or insulin. As
expected, endothelial function was negatively associated
with testosterone and insulin. The combined assessment of
the effect of HSP60 levels in addition to other hormonal factors
like testosterone, insulin and DHEAS into the equation results
in losing this balance between HSP60 and FMD, and
subsequent vascular damage. These observations are
implying a possible association between testosterone and
HSP60 levels in postmenopausal women. Further
prospective studies are needed to confirm the significance of
our findings. If the results of this study were proven to be
causal, this would possibly reveal a new pathophysiological
mechanism explaining the effect of androgens on endothelial
cells in this group of women with non-elevated
cardiovascular risk.
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