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The heart has been the center of numerous transcriptomic studies in the past decade.
Even though our knowledge of the key organ in our cardiovascular system has significantly
increased over the last years, it is still not fully understood yet. In recent years, extensive
efforts were made to understand the genetic and transcriptomic contribution to cardiac
function and failure in more detail. The advent of Next Generation Sequencing (NGS)
technologies has brought many discoveries but it is unable to comprehend the finely
orchestrated interactions between and within the various cell types of the heart. With the
emergence of single-cell sequencing more than 10 years ago, researchers gained a
valuable new tool to enable the exploration of new subpopulations of cells, cell-cell
interactions, and integration of multi-omic approaches at a single-cell resolution.
Despite this innovation, it is essential to make an informed choice regarding the
appropriate technique for transcriptomic studies, especially when working with
myocardial tissue. Here, we provide a primer for researchers interested in
transcriptomics using NGS technologies.
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INTRODUCTION

The heart is the first fully functional organ to be formed during embryonic development. In the past
decades, conventional molecular biology studies have revealed important physiological and
pathological mechanisms within the cardiovascular system, however it was unable to
comprehend the finely orchestrated interactions between the various cells and cell types within
the heart. Thus, our understanding of cardiac cell diversity remains limited and cardiovascular
diseases persist as the main cause for morbidity and mortality worldwide.

The functional phenotype of each cellular unity is largely determined by its underlying gene
expression leading to the recent increase in publications addressing the cardiac transcriptome. RNA
is essential to biological processes in cells and cell-cell communication, providing critical information
directly associated with cell phenotypes. Consequently, the transcriptome portrays a representation
of the current biological pathways and processes in the examined material. Next generation
sequencing (NGS) technologies have served as powerful tools to study genomic traits and
provided key insights in various research or clinical fields (Wang et al., 2009; Garraway, 2013).
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To date, the most commonly used technique to decipher the
transcriptional landscape is high-throughput RNA sequencing
(RNA-Seq), which offers a quantitative and open system for
profiling transcriptional expression at genome scale and hence
provides a variety of applications. Several robust RNA-Seq
protocols have since been developed, each with its distinctive
purpose and (dis)advantages and rendering RNA-Seq almost
mandatory for every molecular biology study.

The introduction of single-cell RNA-Seq (scRNA-Seq) has
revolutionized genomic research and is yet another milestone to
add to the list of accomplishments that include the completion of
the Human Genome Project in 2003 (International Human
Genome Sequencing Consortium, 2004). Furthermore, since its
invention more than 10 years ago scRNA-Seq has made
tremendous progress driven by the rapid development of
innovative technologies and computational analysis methods,
and more importantly the in-depth knowledge of biological
processes. Its biggest advantage lies in its capability to look at
the transcriptome of individual cells compared to conventional
bulk techniques, which measure the average gene expression
across cells in a sample. It is therefore not surprising that the
cardiovascular field quickly started to integrate transcriptomic
techniques into their research. The most recent studies already
identified a large heterogeneity among cardiac cell types and
during cellular differentiation, allowing for the discovery of novel
genes involved in the complex connectivity network.

Despite all these innovations, it is essential to make an
informed choice regarding the appropriate technique for the
study of interest, especially considering myocardial tissue.
However, many researchers in the field do not yet have a
complete apprehension of the various technologies and their
benefits and pitfalls. Therefore, here we provide a primer for
researchers interested in transcriptomics using NGS technologies.

SEQUENCING METHODOLOGIES

Bulk RNA Sequencing
For over a decade, researchers all over the world have used the
conventional bulk sequencing methods on RNA extracted from a
population of cells to study gene expression changes in different
tissues (Cloonan et al., 2008; Lister et al., 2008; Mortazavi et al.,
2008; Nagalakshmi et al., 2008; Wilhelm et al., 2008). Since then,
the system has been optimized for different types of RNAs and
qualities of starting material. In general, bulk RNA-Seq refers to
every sequencing approach that relies on averaged gene
expression from a population of cells to reveal RNA presence
as well as quantity in a sample of cells during the time of
measurement. Therefore, bulk-based approaches can identify
differences between sample conditions. Bulk RNA-Seq is not
particularly limited by technical applications to the heart,
nevertheless there are many criteria to consider when choosing
bulk sequencing to ensure high-quality data.

Sample and Library Preparation
Several steps can make a difference on data quality during bulk
RNA-Seq pipelines. For instance, sample and library preparation

will have a direct effect on the outcome of the analysis. Their
workflow can be further subdivided into RNA isolation, RNA
depletion and cDNA synthesis. Unfortunately, their single
stranded nature makes RNA very unstable, and susceptible to
hydrolysis and heat degradation. To ensure the optimal
conditions before sequencing RNA quality must be assessed,
which is commonly done using the RNA Integrity Number
(RIN) with a value between 1 (low quality) and 10 (high
quality) (Schroeder et al., 2006). A RIN value over six is
considered good enough for sequencing (Kukurba and
Montgomery, 2015), confirming the availability of high-quality
RNA. Unfortunately, samples obtained from human biopsies or
paraffin embedded tissues can have an adverse effect on the
quality of RNA retained. Of note, even frozen RNA will lose
quality over the years (Seelenfreund et al., 2014) and therefore,
the RIN should always be assessed right before library
preparation. In general, bulk RNA-Seq requires a minimal
amount of RNA as input, but certain methodologies
require more.

“Bulk” refers to the total source of RNA in a cell population
allowing in depth analysis and therefore all molecules of the
transcriptome can be evaluated using bulk sequencing.
Interestingly, total RNA can be sequenced, or specific types of
RNA can be isolated beforehand from the total RNA pool, which
is composed of ribosomal RNA (rRNA), pre-mRNA and the
different classes of non-coding RNA (ncRNA). Various
methodologies have been developed to selectively deplete or
enrich a specific type of RNA molecule before or during
library preparation (Accerbi et al., 2010). It is recommended
to remove rRNA transcripts before library construction due to its
over presentation in the cell. Otherwise, rRNAs will overwhelm
most sequencing reads and leading to an overall reduction in
sequencing depth and detection of less-abundant RNAs, such as
many ncRNAs (Chu and Corey, 2012). When focusing on
protein-coding RNA molecules, many protocols aim to enrich
for polyadenylated RNA by using poly(T) oligos targeting the
poly(A)-tail of mRNA instead of depleting rRNA. In projects
focusing on ncRNA, rRNA-depletion seems to be a more
appropriate choice, which allows also quantification of pre-
mRNA that has not been post-transcriptionally modified. Of
note, slight differences exist between rRNA-depletion protocols
in terms of rRNA removal efficiency and differential coverage of
small genes, which should be investigated before selecting a
method (Huang et al., 2011).

As mentioned above, selective protocols have been developed
to target specific RNA molecules, such as small RNA, which are
key regulators of gene expression. As small RNAs are lowly
abundant, short in length (15–30 nt) and lacks
polyadenylation, a separate strategy is often preferred to
isolate and profile these RNAs using commercially available
extraction kits similar to total RNA isolation protocols. Most
kits involve isolation of small RNAs by size fractionation using gel
electrophoresis or capture using silica spin columns. After
isolation of small or other preferred RNA species from the
total RNA, the sample is ready for library generation, which is
universal for most RNA-Seq preparations. This step contains by
fragmentation, reverse transcription into double stranded cDNA

Frontiers in Molecular Medicine | www.frontiersin.org February 2022 | Volume 2 | Article 8393382

Hegenbarth et al. RNA Sequencing for Cardiac Transcriptomics

https://www.frontiersin.org/journals/molecular-medicine
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-medicine#articles


and adapter ligation. Even though there might be small
differences in library preparation depending on the used
platform/platform provider, but overall, these steps are
generally applied. The fragmentation of reads, or in simple
terms cutting the total RNA into smaller pieces, can be
achieved by physical (e.g., sonication), enzymatic (e.g., RNAse
II, transposase) or chemical (e.g., heat) means. The subsequent
cDNA synthesis is essential for stability and improves confidence
of base calling, which decreases with read length. Adapter ligation
is necessary for sequencing, but also determines the next step,
single-end or paired-end (PE) sequencing. In brief, single-end
reads will only be sequenced from on end, either 3′ or 5′. PE
sequencing starts to sequence at one end, and after a
predetermined read length (~100 bp), it stops and starts to
read from the opposite end of the fragment, thus generating
two reads per transcript (Cheng et al., 2020). Hence PE keeps
strand information and is therefore more suited for studies of
isoforms (Piskol et al., 2013).

Short fragmented sequencing is the most commonly used
method, but involves a higher false-discovery rate in terms of
reconstruction and read counting. To overcome this, long-read
technologies have been developed to enable sequencing of
entire transcripts from 5 ´end to 3 ´end, thus providing
improved coverage. Companies such as PacBio and Oxford
Nanopore technologies have provided direct sequencing of
RNA platforms that belong to the Third Generation of
sequencing and are capable to generate long-reads of
around 10 kb. These long reads allow coverage of entire
transcripts and improve the identification of new splicing
events and eliminate amplification bias. However, a
downside to these technologies is a lower sensitivity due to
the high number of discarded reads during the pre-processing
step, due to the high RNA degradation rate, which ameliorates
the integrity of the transcripts and jeopardizes the accuracy of
the reads and data analysis. Furthermore, RNA sequencing
lacks the proofreading exonuclease activity as well as strand
directionality information leading to elevated error rates,
which are around 8–10%, compared to <1% of Illumina
sequencers (Kovaka et al., 2019) direct (Levin et al., 2010;
Venkataraman et al., 2018).

Conclusively, there are various sequencing methodologies
available that focus on sequencing specific RNA molecules or
targeted regions. This is further attributed by specialized
computational pipelines focusing on specific RNA classes.
Therefore, prior knowledge of available and current
sequencing technologies as well as study designing with
utmost care, will greatly benefit the impact and quality of
produced results.

Single-Cell Sequencing
In 2013, Nature Methods titled scRNA-Seq as one of the most
anticipated technologies of the year (Method of the Year 2013,
2014) with follow up nomination as technology of the year in
2019 due to its key role in the identification of cell types and
functions, in addition to possible simultaneously multi-omics
approaches in the future, highlighting its extensive role in
genomic research.

Over the last couple of years, scRNA-Seq has had a massive
effect on research. The reason is simple - while bulk RNA-Seq can
measure the average gene expression across cells in a sample,
identify differences between sample conditions and give a
representation of highly regulated pathways, it fails to
demonstrate the individual complexity of each cell and
heterogeneity of tissues. Furthermore, some cell populations
have high degrees of cellular and transcriptomic heterogeneity
due to different cell types or indiscriminate states. The advent of
scRNA-Seq technologies has addressed most of these limitations
by facilitating the analysis of the transcriptome of every cell in
each sample (Shapiro et al., 2013; Islam et al., 2014). This has
enabled the creation of cell atlases (Regev et al., 2017; Cusanovich
et al., 2018; Han et al., 2018; Tabula Muris Consortium., 2018; Cui
et al., 2019; Litviňuková et al., 2020; Suryawanshi et al., 2020) at
unprecedented resolution, the analysis of thousands of cells in
parallel and even allows integration of chromatin status and
multimodal analysis.

As a result, scRNA-Seq has shown to be a helpful technique for
identifying cell subpopulations and elucidating dynamic cellular
transitions during development and differentiation with an
unparalleled level of detail and accuracy (Lafzi et al., 2018;
Potter, 2018).

Several scRNA-Seq methods and technologies have been
developed in recent years, all having different criteria
regarding RNA transcript length, number of captured cells
and read depth per cell (Svensson et al., 2018). Therefore, a
specific scRNA-seq technology may be more beneficial for certain
types of material than others, but all of them share similar
workflows: samples preparation, single-cell capture,
transcription and amplification, library preparation,
sequencing and analysis (Potter, 2018). In general, there are
three main technologies of scRNA-Seq: plate-, microfluidic-
and droplet-based. In this section we will first explain the
basic concepts of these currently used platforms and then their
applications in cardiovascular science.

Single-Cell Dissociation and Capture
Sample preparation, similar to bulk RNA-Seq, is critical to enable
single-cell capture and high-quality data. It starts with
dissociation of material or tissue into a single cell form in
order to extract cellular RNA. The main challenges included
in this step are the fragility of the starting sample, physical stress,
the choice of buffers, the duration of cell dissociation and the
yield of individual and viable cells as most protocols require living
cells (Lafzi et al., 2018; Nguyen et al., 2018). Cell isolation is a
delicate process and obtaining a high-quality sample is of
immense importance for a study to be successful. Therefore,
single-cell dissociation is mostly achieved enzymatically using
optimized protocols to limit cell lysis and loss of valuable RNAs.
However, for all techniques, it is crucial to keep the processing
time to a minimum to avoid cell damage and to prevent the
unnecessary expression of stress-related genes, thereby altering
original cellular transcriptomic profiles. It is noteworthy that cell
isolation and single cell solution creation highly depends on the
tissue in question. Primary samples, particularly when obtained
from patients during an intervention, tend to be snap frozen,
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which is mostly incompatible with downstream analysis such as
scRNA-Seq preparation from live cells. Creating single-cell
solutions from snap frozen samples normally yield a lower
overall number of cells and less viable cells (Reichard and
Asosingh, 2019). Therefore, the most recommended for a
single molecule approach is single nuclei sequencing (more
information below) (Mimpen et al., 2021). Even if fresh
material is available, certain tissue characteristics, e.g., as
observed in disease depended fibrosis or scaring, can severely
affect the digestion procedure. Therefore, we suggest thoughtful
optimization to ensure high-quality scRNA-Seq data from
primary tissue (Litvinukova et al., 2018; Vieira Braga and
Miragaia, 2019).

After successful dissociation, single cells must be captured. As
mentioned above, there are currently multiple techniques, and
the choice largely depends on the sample of interest. However,
capturing a high number of cells in the range of ≥10,000 cells will
ensure significant improvements in data quality. One of the most
critical properties determining the capture method is cell size.
Plate-based methods incorporate either the use of micropipettes
or fluorescence-activated cell sorting (FACS), guiding a single cell
per well of a 96-well or 384-well plate. This method is mostly
unaffected by size and has the option of long-term storage, as each
cell is directly lysed within a well (Gladka et al., 2018; Hwang
et al., 2018). However, since most steps have to be performed per
well, the number of cells that can be processed at once is limited.

Microfluidic-based methods on the other hand separate the
cells using narrow parallel microfluidic channels, where cell
capture, cell lysis, reverse transcription, and multiplexing take
place within an integrated fluidic circuit chip. In addition, a nice
feature of this technique is the possibility to view capture cells
before reverse transcription. An advantage of these methods is the
high recovery/capture rate; however, they do require
homogeneity in cell size. Furthermore, most microfluidic
platforms require an input of >10.000 cells and are limited
due to their restricted number of capture sites per
microfluidic array.

Droplet-based approaches require the encapsulating of single
cells into oil droplets with cell-specific barcoding. Due to its
massive parallelization, ~10.000 cells per sample can be captured
within each run. For instance, 10X Genomics recommends a
starting point of at least ~1,600 cells per reaction for 3’ analyses,
resulting in a recovery of ~1.000 cells, and a multiplet rate of
~0.8% (XGenomics, 2019). However, these platforms are limited
to cell sizes less than 30 μm in diameter, and cells larger than that
will clog the nozzle of the droplet system. Moreover, droplet- and
microfluidic-based approaches have the need for living
populations of single cells as input. Additionally, it is advised
to remove cell aggregates, dead cells, and cell debris, before
capturing to ensure a high percentage of viability among the
selected population.

ICELL8 (Goldstein et al., 2017) is another promising platform,
which is nanowell-based and therefore mostly similar to plate-
based methods but with certain advantages. It utilizes a large-bore
nozzle dispenser to distribute 1,000–1,800 single cells from
diluted cell suspensions into 5.184 nanowells. Nanowell-
specific barcoded are used to track sequencing data to its

originator cell. Furthermore, ICELL8 has an imaging system
visualizing all nanowells and by using fluorescence signals, it
allows the differentiation of viable from dead cells and single-
from multi-cells. A summary of main features of available
scRNA-seq platforms can be found in Table 1.

Sequencing of Single-Cells
Post cell capture, the individual cells/droplets are lysed, converted
into cDNA via reverse transcription and finally sequenced. These
steps depend highly on the capturing method chosen and show
differences on multiple sequencing aspects. In terms of
sequencing, plate-based methods rely on individual reverse
transcription in each well, which can limit throughput and
increase noise in downstream analyses. However, these
methods allow full-length transcript sequencing, preferable for
the identification of isoform splicing. Overall, plate-based
platforms generally have high sensitivity and can reliably
quantify up to 10,000 genes per cell.

Microfluidic-base methods are high in sensitivity and can use
full-length transcript sequencing as well. Automatic systems like
the Fluidigm C1 originally using Smart-Seq (Ramsköld et al.,
2012; Picelli, 2019) before moving on the CEL-Seq method, were
among the first scRNA-Seq platforms, increasing the transcript
sensitivity and gene detection (Hashimshony et al., 2016). Smart-
Seq methods can capture full-length transcripts (Ramsköld et al.,
2012; Picelli et al., 2014) and therefore allowing the possibility to
analysis alternate isoform splicing, which is further developed as a
primary focus in Smart-Seq3 (Hagemann-Jensen et al., 2020).
However, in comparison CEL-seq2 is limited to 3′-end reading
and, therefore, cannot detect alternatively spliced isoforms,
microRNAs or other non-polyadenylated transcripts.

Droplet-based methods have various advantages such as their
massive parallelization, but they are size limited. Some
commercial systems, such as the 10x Genomics Chromium,
enable high-throughput processing by 3′- or 5′-end
sequencing, but unfortunately also show reduced transcript
recovery rates compared to other methods (Papalexi and
Satija, 2018) with a read-depth of 104 to 105 per cell (Hwang
et al., 2018). Even though this seems to be a drawback compared
to the other techniques, droplet-based methods remain sufficient
for the large-scale profiling of complex heterogeneous samples.

The actual sequencing of scRNA-Seq material can be
performed on commonly used machines, and each single cell
platform has particular features and come with individual
recommendations to ensure best sequencing results and
demultiplexing compatibilities (matching single cell tags with
individual cells and their RNA content). However, one current
limitation of high throughput scRNA-Seq, is that it generates
either 3′ or 5′ sequence information via short length sequencing.
This restricts analysis on splicing and sequence heterogeneity for
most of the transcripts. As mentioned briefly above, short read
sequencing involves fragmentation, so originally the transcripts
are indeed full length and could theoretically undergo direct RNA
sequencing using Third Generation Sequencing. i.e., Oxford
Nanopore which is compatible with certain 10x Genomics
protocols. Conversely, protocols for full or long length
sequencing in single cell approaches are basically absent. This
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is largely due to technical and predominantly downstream
analysis hardships, including the high error rate of these
platforms. Nevertheless, there are methods, which attempt to
correct errors and integrate single cell long read sequencing
(Volden et al., 2018; Singh et al., 2019; Lebrigand et al., 2020;
Zhang et al., 2021). For example, the rolling circle to concatemeric
consensus (R2C2) method can produce full-length cDNA
sequences, achieving ~98% (Volden et al., 2018; Cole et al.,
2020; Volden and Christopher, 2021) or Single-cell Nanopore
sequencing with UMIs (ScNaUmi-seq) with ~99.8% accuracy
(Lebrigand et al., 2020), compared to former ~50%. However,
some of these methods require sufficient sequencing coverage to
call consensus reads or high sequencing depth.

Single-Cell Application on Cardiac Tissue
At least 50% of the cells in an adult human heart are
cardiomyocytes (CM), providing the contraction needed to
keep our heart beating. The human adult CM are >100 μm in
diameter along the major axis which can cause problems for
several steps within the creation of single cell data. Options for
overcoming the size limitation are the use of fetal mammalian
CM, which are smaller in size. Another more recent approach
includes the sequencing of human induced pluripotent stem cells
(hiPSCs), which have been differentiated into CM. While the
verdict on their comparability to adult CM due to their
immaturity and heterogeneity (Shi et al., 2017; Paik et al.,
2020) is still out, these cells have the advantage of smaller size
and their non-invasive human origin.

In general, plate-based methods are not particularly limited by
size, making them seem like a preferable platform for CMs.
However, due to their expensive single-cell selection and limit
in number of processed cells at a time, it has to be thoroughly
evaluated. Furthermore, studies performed suggested the use of a
FACS nozzle of 500 μm in diameter (Kannan et al., 2019) rather
than the conventional 70–130 μm (Gladka et al., 2018) to ensure
no terminal damage to the live CM, which may affect laser delays.

Even so, microfluidic- and plate-base systems are also
commonly used for large and fragile cells, such as CMs.
However, microfluidic-based systems would require a prior
sorting via FACS into different cell types due to their
vulnerability to heterogeneity and the difference in cell sizes
within the heart. Furthermore, the elongated shape of CMs, in
addition to unfortunate positioning could cause clogging of the
system.

Unfortunately, droplet-based methods like the 10X Genomics
Chromium, cannot cope with cells in the size range of mature
adult CMs at present. However, as all these systems tend to evolve
very quickly, continued protocol optimization and reductions in
cost are to be expected soon.

Single Nuclei Sequencing
Per definition single-nuclei RNA sequencing (snRNA-Seq) is not
a technique by itself, but more a modification of the scRNA-Seq
methodology. However, due to its unique contributions and
applications to the cardiac field, the technique has earned an
exclusive overview of its own.

Single-cell sequencing is a powerful tool allowing in-depth
characterization of cell populations within complex tissues.
However, as discussed in the previous sub-section, scRNA-Seq
has two major limitations when applied to cardiovascular tissues:
dissociation of material and cell size. ScRNA-Seq systems require
dissociation of tissue material and especially gaining high-quality
single-cell resolution of the adult mammalian heart is rather
difficult. Secondly, technical limitations regarding capturing
techniques, leading to an under representation of individual
cell types (i.e., CM) due to their large cell size and irregular
shape (Ackers-Johnson et al., 2018). There are few platforms for
sequencing individual adult CMs and given that all of them are
plate-based systems, the number of cells they can analyze is
limited.

As the name suggests, snRNA-Seq utilizes only the nuclear
component of single cells as input material, which is most

TABLE 1 | Main features of available single-cell methodologies.

Method SmartSeq/C1 SmartSeq/
C2

CEL-seq/C1 Drop-seq MARS-seq SCRB-seq 10X genomics Wafergen/
ICELL8

Cell Input ≥ 10,000 no limitation ≥ 10,000 ≥ 10,000 ≥ 10,000 no limitation ≥ 20,000 no limitation
UMI length (bp) No No 6 8 8 10 10 10
#Genes/Cell ** *** ** * * ** *** ***
Accuracy ** **** * *** * ** ** **
cDNA coverage Full Length Full Length 3′ counting 3′ counting 3′ counting 3′ counting 3′ counting and 5′

counting
Full Length

Target Depth
(per cell)

1.00E+06 1.00E+06 1.00E+04-
1.00E+05

1.00E+04-
1.00E+05

1.00E+04-
1.00E+05

1.00E+04 1.00E+04-
1.00E+05

1.00E+06

Amplification
Type

PCR PCR IVT PCR IVT PCR PCR PCR

Cost/Cell **** *** *** ** *** *** * ***
Cell Size homogenous

(5–25 μm)
indepent homogenous

(5–25 μm)
homogenous
(<25 μm)

indepent indepent homogenous
(<30 μm)

homogenous
(<5–100 µm)

Year 2012 2013 2014 2015 2014 2014 2017 2017
References Ramsköld et al.

(2012)
Picelli et al.

(2014)
Grün et al. (2014) Jaitin et al.

(2014)
Macosko

et al. (2015)
Soumillon
et al. (2014)

Zheng et al. (2017) Goldstein et al.
(2017)

Abbreviations; scRNA-Seq single cell RNA, sequencing; Smart-Seq novel full-transcriptomemRNA-sequencing protocol; CEL-Seq cell expression by linear amplification and sequencing;
Drop-Seq droplet sequencing; IVT, in vitro transcription; UMI, unique molecular modifier; MARS-Seq massive parallel RNA, single cell sequencing framework.

Frontiers in Molecular Medicine | www.frontiersin.org February 2022 | Volume 2 | Article 8393385

Hegenbarth et al. RNA Sequencing for Cardiac Transcriptomics

https://www.frontiersin.org/journals/molecular-medicine
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-medicine#articles


appropriate when viable intact cells cannot be harvested from
fresh tissue. Furthermore, there are other advantages of snRNA-
Seq, when scRNA-Seq capturing methodologies cannot be
applied. For instance, it allows the extraction of nuclei from
frozen samples, which is extremely valuable for rare materials like
the heart. Moreover, scRNA-Seq involves a dissociation step,
which might damage sensitive cells while failing to release cells
more tightly bound or those surrounded by a matrix. Although
sampling a much larger number of cells can partially overcome
this limitation, it may not always be financially feasible.
Additionally, as mentioned before current enzymatic and
mechanical methods for single-cell dissociation tend to
introduce stress-induced transcriptional artefacts. Even with
commercial nuclei extraction kits, the solution should be
examined to ensure no big cells are present anymore.
Afterwards, single-nuclei can be prepared to be captured with
any of the above-described methodologies.

Nevertheless, there are some strategic limitations to be
considered. While some studies have shown similar
comparable transcriptomic results acquired from sc- and
snRNA-Seq (Bakken et al., 2018), by utilizing RNA from
within the nucleus only, a fair amount of the total RNA is
excluded from the analysis, which could constitute a limiting
factor in identifying dynamic cellular states.

Furthermore, taking single nuclei from frozen samples might
result in false transcriptomic representation due to RNA
degradation by freezing. Interestingly, CM can have a diploid
or even polyploid as well as multinucleate nature (Landim-Vieira
et al., 2020), which is not fully understood yet and therefore very
valuable for future studies. In addition, extracting the nuclei
removes the highly abundant mitochondria in CMs leading to
possible alterations in gene expression or missing information
when looking into network-based approaches.

Integrational Approaches
While scRNA-Seq is currently the most widespread RNA-Seq
technology, its prowess in deciphering the individual make-up of
a single cell is just beginning to evolve. In recent years, many
suppliers were able to integrate multi-omic approaches on the
single cell level. Immunological studies have benefitted from
paired B-cell or T-cell receptors, surface protein expression
together with gene expression from a single cell (DeBerge
et al., 2021). Single nuclei sequencing can be combined with
ATAC (Assay for Transposase Accessible Chromatin) allowing
for the analysis of chromatin accessibility at the single cell level,
thus providing insights into cell types and states, and deeper
understanding of gene regulatory mechanisms (Zhang et al.,
2021). Further applications include proteomics (Cheung et al.,
2021) and DNA methylation (Galvão and Kelsey, 2021).
However, as most of these are still in their early stages
including protocol optimization and integrational data analysis
tools, it needs to be individually assessed whether specific
research questions can be answered using these approaches
(Jansen et al., 2019; Argelaguet et al., 2020). On the other side,
computational approaches tried to leverage cell-type specific gene
expression profiles from multiple scRNA-seq reference datasets
to bulk RNA-Seq with the intention to apply cell compositions

even to bulk RNA-Seq data. To date, multiple tools have been
suggested, such as DESCEND (Wang et al., 2018), SCDC (Dong
et al., 2021) and some others, but to our knowledge not one has
been yet considered to be “state-of-art”.

Spatial Transcriptomics
Identifying gene expression profiles at single-cell resolution has
revolutionized the field of transcriptomics. Using single-cell or
single-nuclei based approaches has made it possible to look at
individual cells within complex tissues, gaining valuable
biological insights into rare cellular properties, cell-to-cell
variability, and tissue identity. Despite such advantages, these
approaches are limited by technical criteria to a certain degree. In
this review, it has already been demonstrated how dissociating
tissue can be a difficulty. In addition, this process causes the loss
of information regarding the spatial organization of cells and cell
populations throughout a tissue causing limited or incomplete
interpretation. In in vivo situations though, spatial-specific
expression has an enormous impact on biological networks.
Gaining knowledge of spatial information in addition to
timing, and level of developmental gene expression allows the
description of interactive biological networks, where each
element is influenced by its surrounding microenvironment
(Zheng et al., 2017). Therefore, the persevation of spatial
information holds promising approaches of combining
genomic, transcriptomic, and proteomic features while
retaining positional information.

Various scRNA-Seq methodologies have been discussed in the
section above, but spatial approaches also have made
extraordinary progress in the recent years (Ståhl et al., 2016;
Qian et al., 2020) and gained increasing popularity. In general,
spatial techniques vary from in situ hybridization (e.g., smFISH,
seqFISH) over in situ sequencing (e.g., BaristaSeq, STARmap) to
in situ capturing technologies (e.g., ST, Slide-Seq). All of them
have their designated place in research, in situ spatial
methodologies hold the prospect of possible combination with
scRNA-Seq technologies. While some of these technologies and
their drawbacks and advantages have been reviewed before (Asp
et al., 2020), this review will highlight a few of the spatial
methodologies and their applicability to cardiovascular research.

In situ Capturing Technologies
The idea behind in situ capturing technologies is to capture RNA
in situ and then perform sequencing ex situ, avoiding typical
limitations of direct visualization (e.g., limited marker amount,
fluorescence exposure) as well as allowing an unbiased analysis of
the complete transcriptome. The first of such technology to be
developed was the Spatial Transcriptomics (ST), published 2016
(Ståhl et al., 2016), which was the basis for all following
techniques. The basic idea behind this technology is
transferring thin tissue section onto glass slides coated with
positional molecular barcodes and synthesized cDNA and
therefore able to capture mRNA while still maintaining
positional representation. In detail, these slides are coded with
the barcoded RT primers which the tissue is fixed, stained, imaged
and permeabilized upon. The mRNA molecules diffuse down to
the slide surface during the permeabilization phase and hybridize
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locally to the RT primers. Afterwards, the tissue is removed, the
RNA is captured and retrotranscribed in situ and the cDNA-
mRNA complexes are used for library preparation in the
following ex situ NGS. By overlaying the different images, the
barcoded reads are superimposed back onto the tissue image.

This approach provided spatial information on the
transcriptome of the tissue, but the barcoded regions were only
10 μm in diameter. Depending on the tissue or cells of interest,
this could be enough to reach a single-cell resolution. To tackle
this, 10X Genomics acquired ST and started to further develop it
into “10X Visium” by the end of 2018 (Tirado-Lee, 2020). 10X
achieved further improvements in terms of resolution (55 μm in
diameter and smaller distance between barcoded regions) and
protocol running time. In addition, 10X has further expanded by
adding Visium Gateway slides to their Visium repertoire (Tirado-
Lee, 2020). Interestingly, 10X Genomics announced a new update
“Visium HD”, which supposedly offers visibility 400 times higher
than the current Visium solution with improvements addressing
RNA degradation problems during formalin fixed paraffin
embeddings.

Another method using a similar approach, Slide-Seq, was
introduced in 2019 (Rodriques et al., 2019), promising a
higher spatial-resolution technique by using smaller barcoded
beads (Vickovic et al., 2019). Recently, Stickels et al. (2020b)
published Slide-SeqV2, combining improvements in library
generation, bead synthesis and array indexing resulting ~10-
fold greater RNA capture rate than its predecessor.

In March 2019, NanoString announced the commercial
launch of their GeoMx Digital Spatial Profiling instrument
(NanoString). In contrast, to previously mentioned platforms,
GeoMx is capable of the highly multiplexed detection of mRNA
targets in FFPE tissues (Merritt et al., 2020). Using multiple
sections of a sample will help to acquire not only the spatial
transcriptomic profiles but in addition also the spatial protein
profiles. GeoMx can utilize regions in the range of 10–600 μm in
diameter, which have to be selected manually. After selecting the
regions of interest, fluorescence labeled antibodies used as
morphology markers are then excited with UV light, triggering
the release of either RNA target probes or antibodies for protein
targeting, coupled with barcoded tags. Conveniently, using the
NanoString’s nCounter instrument will assist to collect and
quantify the tags from the regions of interest, resulting in a
digital quantification of RNA expression with spatial context
(Merritt et al., 2020). The workflow of selecting regions of interest
makes it possible to analyze almost whole tissue sections, but the
selection is still manual and therefore a biased process. However,
despite increased advances leading to capture sensitivity and
efficiency (Stickels et al., 2020a), scRNA-Seq data is still
required to help mapping of cell types.

Data Analysis and Computational
Approaches
All above mentioned procedures have a tremendous effect on
data quality. However, in order to draw meaningful (biological)
conclusions, downstream data procession and analysis is
necessary. In fact, data analysis should be taken into

consideration when designing a study in the first place, to
allow for a qualitative interpretation of the data. Therefore,
here we discuss the basic steps of data processing, analysis and
opportunities for downstream analysis (Figure 1). Of note, this
section will not be separated into bulk and single-cell sequencing
as both follow similar pipelines. In addition, many single-cell
advances are actually adapted from existing bulk approaches. At
this stage, we would like to refer to other publications addressing
data analysis steps and challenges (Koch et al., 2018; Dal Molin
and Di Camillo, 2019; Lähnemann et al., 2020) in single cell vs.
bulk RNA approaches.

After sequencing the libraries, the raw files need to be pre-
processed. This step includes demultiplexing, quality control,
trimming and alignment/de novo assembly. Even though
existing in both bulk and single cell analysis, demultiplexing
refers to slightly different processes. In bulk RNA-Seq, a
sequencing lane typically will contain a pool of barcoded
samples, which therefore require demultiplexing. In scRNA-

FIGURE 1 | Data Processing and Analysis pipeline. After sequencing
files need to be pre-, processed and analysis (individually colored) in order to
interpret the data and put it into biological context. These steps are very similar
for single-cell (left) and bulk (right) RNA-Seq approaches. Italics
represent most common used tools for the specific tasks.
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Seq, each cell is considered a sample and, in most protocols,
defined by a cell-specific barcode tag to each read. Therefore, each
library normally contains multiple cell barcodes, which need to be
distinguished as a sample. This process is called demultiplexing
and gives each cell in each sample its specific RNA content. From
here on, the steps of processing are in common between
approaches, which are meant to cut off primer/adapters or
poor-quality nucleotides, alignment of reads to a reference
genome and counting reads per region/gene, creating a gene
count matrix. Due to the overall high input amount for bulk
sequencing, a high coverage can be achieved, but unfortunately
scRNA-Seq normally deals with to the low concentration of input
RNA and results in a high number of zero reads counts. However,
these “false” zero counts, such as dropout events or sparsity, may
mask the biological zero counts due to the non-expression of a
group of genes in specific cells (Eraslan et al., 2019). Moreover,
this high number of zero read counts in the gene expression
matrix ultimately results in the reconstruction of an incomplete
transcriptome, which renders the study of the different cellular
phenotypes very challenging (Wang J. et al., 2019). Sparsity can
impede downstream analysis and remains a challenge. To
overcome this loss of information, computational imputation
or denoising was developed, i.e., MAGIC and scIMPUTE (Lafzi
et al., 2018; van Dijk et al., 2018). The last step is normalization.
There are different approaches to normalization depending on
the software used, but most of them are equally accepted and their
individual usage mostly depends on the intented downstream
analysis. However, the methods developed for bulk RNA-Seq
such as RPKM, FPKM and TMM were not able to successfully
remove the effects of different sampling from scRNA-Seq
datasets, due to the considerable technical noise present in
such data. Therefore, new normalization methods, which are
able to handle noisy data and take advantage of the presence of
UMIs were developed (Townes and Irizarry, 2020).

Afterwards, the data can be processed in various ways.
Dimensional reduction is one of the most commonly used
features and helps to visualize data and to identify relevant
genes. For bulk-based studies, principal component analysis
(PCA) is the most common used feature. Although this also
applies to single cell approaches, because of the high
dimensionality of the data other methodologies, such as t-SNE
and UMAP, are superior to PCA. Other limitations include errors
introduced by the inevitable technical variability during sample
processing steps, sequencing depth or pipetting accuracy, also
known as batch effect.

These are not unique to one methodology and can be found in
the datasets generated by both, bulk and scRNA-Seq. However,
these confounding factors are more amplified in scRNA-Seq,
which may lead to a mix of technical variations with biological
variables. In bulk RNA-Seq, instead, these batch effects are
smaller and do not result as systematic errors, as bigger
sample sizes usually lead to large-scale sample preparation and
sequencing in parallel. Therefore, batch effect correction in
scRNA-Seq requires other features capable of handling these
variations, for example nearest neighbor integration. Further
typical analyses include clustering and differential expression
gene (DEG) detection. Unsupervised clustering further helps

to identify groups and subgroups within single cell datasets
and to pinpoint relevant cell groups for further analysis. DEG
analysis has been established as a powerful tool to discover
different regulation between groups, which can reveal
regulatory effects. Although DEG can be also used to make
between-sample comparisons, it is usually applied to identify
transcriptome signatures that differentiate between cell groups.
However, cell group assignment is still constrained by
ambiguities, which could mask biological differences.
Therefore, an improved reference set for cell type assignment
is necessary to make DEG analysis in single-cells more reliable.

However, scRNA-Seq also provided new bioinformatics tools,
with RNA velocity and trajectory analysis being the most
prominent features. Both aim to describe the dynamic changes
among captured cell signatures. RNA Velocity takes advantage of
the ratio between spliced and unspliced RNA to develop
dynamical patterns with possible cell fate prediction, while the
trajectory attempts to predict a path that certain cells undergo
during specific conditions (i.e., differentiation). Especially,
deconvolution of RNA seq data has gained increased
recognition in the last year (Baron et al., 2016; Wang X. et al.,
2019; Newman et al., 2019). Deconvolution attempts to use single
cell datasets to deconvolute bulk datasets by leveraging cell-type
specific gene expression profiles from multiple scRNA-seq
reference datasets, and thus synergistically combines specific
information gained from both, bulk and single cell datasets.

SEQUENCING THE HEART

Bulk Sequencing in Cardiovascular
Research
While extracting RNA from heart tissue has no particular limiting
factor, human heart samples are highly valuable due to the many
ethical restrictions, making them hard to obtain. Many cardiac
studies are therefore performed using other mammalian models
such as mice or human tissue-derived cell lines. Nevertheless,
patients with heart disease can undergo surgery, allowing for
ascertainment of cardiac biopsies, but the amount of tissue
retrieved can be insufficient or compromised. However,
healthy individuals normally do not usually tend to undergo
biopsy, rendering the collection of healthy living heart tissue as
controls close to impossible.

Nevertheless, RNA-based studies have provided important
insights to cardiac research, especially helping to decipher
ncRNA and their potential role as regulators of numerous
cellular processes in the progression of cardiovascular diseases
Transcriptomic studies using NGS enabled clear distinguishment
between various cardiac cell types, such as CMs, endothelial cells,
fibroblasts, and immune cells. Arguably one of the first studies
that compared accuracy and speed of NGS with microarray
analyses demonstrated that in the Gαq transgenic mouse
cardiomyopathy model RNA sequencing was accurate and
sensitive enough to detect abundant and even rare cardiac
transcripts (Matkovich et al., 2010). Subsequent studies
highlighted that even atrial and ventricular cells show clear
significant differences in their transcriptomic profiles (Sehnert
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et al., 2002; Ng et al., 2010). While atrial CM are mostly described
withMyh4/ALC1 andMyh6/αMHC, the ventricle expresses more
Myh3/ELC, Myh7/βMHC and Myl2 myosin genes (Ng et al.,
2010). In depth reports of the current knowledge on the different
molecules in cardiac cell subtypes have been reviewed before
(Zhou et al., 2018; Colpaert and Calore, 2019; Siasos et al., 2020).
NGS was essential to reveal that >80% of the genome is
transcribed in various classes of RNA with protein-coding
transcripts only accounting for max. 3% of the genome, and
the remainder of transcripts lacking coding ability (Dunham
et al., 2012). Many of these noncoding transcripts are
functionally active RNA molecules that can be subdivided into
small noncoding RNAs (<200 nt), such as microRNAs (miRs),
and longer noncoding RNAs (>200 nt) that include ribosomal
RNAs, natural antisense transcripts and long noncoding RNAs
(lncRNAs) (Engreitz et al., 2016). NGS has helped to discover
cardiac microRNAs (Matkovich et al., 2010; Leptidis et al., 2013)
and lncRNAs (Matkovich et al., 2014; Yang et al., 2014) in the
developing and diseased human heart and how they can
potentially function as therapeutic target molecules. While
these studies contributed significantly to our current
understanding of cardiac (patho)physiology, they failed to
address the importance of cardiac cellular heterogeneity and
cell-cell interactions.

Single-Molecule Sequencing and
Cardiovascular Research
ScRNA-Seq is able to look at cell compositions in an unbiased
fashion. In 2016, two labs first reported the use of scRNA-Seq on
embryonic mouse hearts by investigating lineage-specific gene
programs underling early cardiac development (DeLaughter
et al., 2016; Li et al., 2016). To date, multiple researchers have
used scRNA-based techniques on various cardiac materials
allowing to look at cell populations at a single-cell resolution,
and started a new age of transcriptomics including the generation
of transcriptomic and epigenetic cell atlases of adult mice
(Cusanovich et al., 2018; Han et al., 2018; Tabula Muris
Consortium, 2018) and humans (Regev et al., 2017; Cui et al.,
2019; Litviňuková et al., 2020; Suryawanshi et al., 2020).
Investigations deciphering the heterogeneity and
subpopulations of cell types define region- or disease-specific
gene expression profiles not only benefit cell atlases but also help
to identify novel molecular mechanisms relevant for cardiac
disease and new therapies. For instance, Li et al. (2019)
investigated cardiac endothelial cells following ischemic injury
and were able to show clonal proliferation of resident endothelial
cells post-myocardial infarction.

Single-cell approaches, however, do not stop here. The heart is
a multi-cellular organ and the interaction between cell of ligands
and receptors on target gene expression is not yet fully
understood. Browaeys et al. recently developed a tool for
modelling intercellular communication on the single-cell level
by linking ligands to target genes. This as well as other promising
tools enable investigation of possible signaling mediators in
addition to gene interaction by expression profiling (Browaeys
et al., 2020; Cang and Nie, 2020; Efremova et al., 2020; Gladka,

2020; Jin et al., 2021). Furthermore, network and trajectory
analyses on single-cell data led to the identification of
fibroblasts as a critical constituent in promoting
cardiomyocyte maturity (See et al., 2017) and regulatory
interactions between transcription factors and target genes
(Jackson et al., 2020). Another recent study by Litviňuková
et al. (2020) provided comprehensive transcriptomic data on
six distinct cardiac regions of the adult human heart using both
sc- and snRNA-Seq technologies. Similar to other reports, they
observed the cellular heterogeneity of cardiomyocytes, pericytes,
and fibroblasts, and additionally, they analyzed cell-to-cell
interactions suggesting a direct interaction through NOTCH2.
Another study using microfluidics approaches in healthy human
donors was able to identify and study the cellular and
transcriptional diversity in a healthy heart (Tucker et al.,
2020). The ICELL8 platforms claims to be able to deal with a
wide range of sizes, while still making high throughput
sequencing possible. Wang et al. used this platform on 21,422
single cells-including CMs and non-CMs from normal, failed and
partially recovered adult human hearts to reveal inter- and intra-
compartmental heterogeneity in response to stress as well as CM
contractility and metabolism as the source of changes in heart
function (Wang et al., 2020).

Taken together, an increasing number of studies have used
methodologies on single cell level to shed light on the roles of
various cell populations within in the mammalian heart helping
future cardiac research and advances with their findings.

Spatial Transcriptomics in Cardiovascular
Research
Interpreting single-cell properties can be difficult (Asp et al.,
2020; Stickels et al., 2020a), but by adding spatial context to the
transcriptome it will greatly benefit the current understanding of
many biological networks. However, the main hurdle for these
spatial methods is restricted RNA capture efficiency, which
becomes increasingly more challenging with higher resolution.
Even though spatial transcriptomics has proved to be a valuable
source of transcriptomic information, spatial transcriptomics in
the heart, cardiac development, and regional changes in gene
expression during heart maturation are strong areas of great
interest for the future.

Two studies utilized spatial transcription offered by 10X
Genomics and subsequently combined spatial transcriptomic
data with scRNA-Seq through computational deconvolution
methods in order to reconstitute detailed spatial
transcriptomic maps of human myocardial infarction (Kuppe
et al., 2020) and the development of the human heart (Asp et al.,
2019). In 2017 the group of Asp et al. (2017) already used the ST
method to study fetal markers and their localization within adult
human cardiac biopsies and later on created a spatiotemporal
atlas of the developing human heart in the first trimester (Asp
et al., 2019) by combining scRNA-seq data with spatial
transcriptomics and in situ sequencing. In 2020, Asp et al.
(2020) used their approach of combing scRNA-Seq along with
ST and in situ sequencing to uncover novel cell types, such as
clusters of fibrosis-associated fibroblast-like cells and a
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subpopulation of cardiac muscle cells. Furthermore, they also
visualized their result by integrating the spatial information into
3D transcriptional maps. A major caveat of this combined
approach is that it maximizes the efficiency of using data
information by providing both cell-type and regional
information from tissues, e.g., human embryo tissue, that are
not easily obtained.

CONCLUSION

Over the last decades, studying the transcriptome became standard
when investigating biological processes of physiological and
pathological mechanisms. The increased interest in studying the
RNA and its properties led to development of more advanced
technology, which started from whole tissue, to cell population
and finally reached single-cell level.

Sequencing techniques evolved quickly and increased our
understanding of molecular signaling, intercellular
communication networks and rare cell sub-populations.
However, there is no one-size fits all approach; each technique
has method-specific advantages and limitations. Hence

researchers need to design their study with utmost care and
choose a technique that aligns with their desired goals and sample
availability. This furthermore includes the evaluation of multiple
factors such as sample availability, sample preparation, platform
advantages and disadvantages and sequencing attributes. This
especially holds true for applications in cardiovascular research
(Figure 2). Regardless, single-cell analysis has revolutionized our
understanding of cardiovascular development and disease. The
applications and insights that single-cell analysis enable in the
investigation of cell subpopulation variants and differentiation in
cardiovascular disease and heart development are invaluable to
both basic and medical research. Furthermore, numerous cardiac
single-cell atlases have been developed in multiple organisms and
in multiple contexts including genetic variation, biological sex,
and cardiac injury, all of which will provide useful resources for
future work. Considering the deluge of recent advances in single
cell analysis, it is becoming essential to develop and optimize
methods for the integration of data of different types and from
different sources. For instance, the development of antibody-
based cell hashing, enabling multiplexing by indexing samples,
holds future prospects, by lowering costs and allowing more
complex experimental designs. In addition, multi-omic

FIGURE 2 | Schematic figure of single cell sequencing workflow on cardiac tissue. A summary of the main steps during scRNA-Seq experiments (Dissociation,
Capture, Sequencing and Data Analysis). The main cell capturing techniques, FACS-based (left), Microfluidic (middle) and droplet-based (right), are schematically
displayed including a comparison of their main advantages and disadvantages. Created with BioRender.com.
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approaches trying to combine epigenetics, transcriptomic and
proteomic aspects on single-cell level hold promising future
innovations. Ultimately, scRNA-Seq technologies are expected
to continue to develop rapidly with continuous improvement of
experimental and analytical methods.

Taken together, single-cell analysis of the heart has revealed
previously underappreciated cellular heterogeneity and the
importance of intercellular communication. This diversity of
cardiac cell types (and cell subtypes) acting together likely
contributes to the homeostatic maintenance of cardiac tissue
and is integral in the complex biological processes driving cell
differentiation, cardiovascular development, disease, and
regeneration. Finally, the use of single-cell level analytics will
enable the definition of a healthy cardiac cell system and thereby
better equip therapeutic pursuit toward the maintenance of this
healthy cell system during physiological stress.
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