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Background: Breast cancer (BRCA) is a significant threat to women’s
health worldwide, and its progression is closely associated with the tumor
microenvironment and gene regulation. Lactylation modification, as a key
epigenetic mechanism in cancer biology, has not yet been fully elucidated
in the context of BRCA. This study examines the regulatory mechanisms
of lactylation-related genes (LRGs), specifically PRDX1, and their prognostic
significance in BRCA.

Methods: We integrated data from multiple databases, including Genome-
Wide Association Study (GWAS) summary statistics, single-cell RNA sequencing,
spatial transcriptomics, and bulk RNA sequencing data from The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases.
Using Summary-based Mendelian Randomization (SMR) analysis, we identified
LRGs associated with BRCA and comprehensively analysed the expression
patterns of PRDX1, cell-cell communication networks, and spatial heterogeneity.
Furthermore, we constructed and validated a prognostic model based on the
gene expression profile of PRDX1-positivemonocytes, evaluating it through Cox
regression and LASSO regression analyses.

Results: PRDX1 was identified as a key LRG significantly associated with
BRCA risk (p_SMR = 0.0026). Single-cell RNA sequencing analysis revealed a
significant upregulation of PRDX1 expression in monocytes, with enhanced
cell-cell communication between PRDX1-positive monocytes and fibroblasts.
Spatial transcriptomics analysis uncovered heterogeneous expression of
PRDX1 in the tumor nest regions, highlighting the spatial interaction
between PRDX1-positive monocytes and fibroblasts. The prognostic model
constructed based on the gene expression profile of PRDX1-positive
monocytes demonstrated high accuracy in predicting patient survival
in both the training and validation cohorts. High-risk patients exhibited
immune-suppressive microenvironment characteristics, including reduced
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immune cell infiltration and upregulation of immune checkpoint gene
expression.

Conclusion: This study reveals the key role of PRDX1 in BRCA progression,
mainly through the regulation of the tumor microenvironment and immune
escape mechanisms. The survival prediction model based on PRDX1
shows robust prognostic potential, and future research should focus on
integrating PRDX1 with other biomarkers to enhance the precision of
personalised medicine.
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1 Introduction

Breast cancer (BRCA) is the most common malignancy among
women worldwide, with both incidence and mortality rates rising
annually. According to theWorld Health Organization’s 2022 cancer
statistics, BRCA ranks second in incidence among all cancer
types, with 2,308,897 new cases reported. It is the leading cause
of cancer-related deaths in women, with 665,684 new deaths
attributed to BRCA (Bray et al., 2024; Giaquinto et al., 2024),
significantly impacting women’s health and quality of life. Despite
the increasing standardisation and personalisation of treatments,
including thewidespread use of early screening and the combination
of surgery, radiotherapy, chemotherapy, targeted therapies, and
immunotherapy, which have improved overall treatment outcomes
(Gradishar et al., 2024; His et al., 2024; Wheeler et al., 2024), the
complexity and heterogeneity of BRCA make its prognosis still
concerning. In recent years, the tumor microenvironment (TME)
of BRCA has become a research hotspot, with its impact on tumor
initiation, progression, and therapeutic response being increasingly
elucidated. The TME of BRCA consists of tumor cells, immune
cells (such as tumor-associated macrophages, CD8+ T cells, and
regulatory T cells), fibroblasts, and various cytokines and metabolic
products. Studies have shown that BRCA can achieve immune
evasion through multiple mechanisms, including the upregulation
of immune checkpoint molecules (such as PD-L1 and CTLA-4),
alteration of antigen presentation capabilities, and reprogramming
of tumor-associated macrophage (TAM) phenotypes (Zhang et al.,
2024). Therefore, investigating the dynamic changes in the BRCA
immune microenvironment and understanding how metabolic
regulation influences immune evasion mechanisms are crucial for
optimising immunotherapy strategies.

Lactylation modification is a novel post-translational
modification (PTM) that has garnered significant attention in
recent years (Zhang et al., 2019). The discovery of this modification
challenges the traditional understanding of lactate’s function,
which was once considered merely a byproduct of glycolysis.
Increasing evidence suggests that lactate, as a metabolic feedback
regulator and a unique signalling molecule, participates in various
biological processes, including regulating energy metabolism,
immune responses, memory formation, wound healing, and tumor
development (Chen et al., 2021; Li et al., 2022; Yu et al., 2024). It is
critical in cellular metabolism and gene expression regulation (Izzo
and Wellen, 2019). Lactate-mediated lactylation can be categorised
into histone lactylation and non-histone lactylation. Histone

lactylation emphasises the cross-regulation between metabolism
and epigenetics. In contrast, non-histone lactylation is more directly
involved in regulating metabolic pathways and signalling, which are
closely associated with tumor initiation and progression (Li et al.,
2024; Chen et al., 2025). In ocular melanoma, histone lactylation
accelerates tumor progression by promoting the expression of
the m6A reader protein YTHDF2 (Yu et al., 2021). Gao et al.
found that non-histone lactylation is prevalent in hepatitis B
virus-related hepatocellular carcinoma (HCC) and may promote
HCC progression (Yang et al., 2023). Colorectal cancer (CRC)
also exhibits a close relationship between lactylation modification
and tumor metabolic reprogramming. Under hypoxic conditions,
lactate accumulation promotes the lactylation of key metabolic
enzymes and signalling pathway proteins, thereby enhancing tumor
cell survival ability (Xie et al., 2024). In BRCA, tumor cells and
cancer-associated fibroblasts (CAFs) enhance glycolysis, leading to
a significant increase in extracellular lactate concentration (up to
10–40 mM) (Zhang Y. et al., 2023). The lactate produced by tumors
can trigger lactylation of histone H3K18 at the c-Myc promoter
region, remodelling the epigenetic regulatory network to promote
BRCA growth and proliferation (Pandkar et al., 2023). Lactylation
modification offers a new perspective for cancer treatment
strategies and has been proposed as a novel therapeutic target
in oncology (Dai et al., 2022). However, although the regulatory
role of lactylation in BRCA has been preliminarily explored, the
diagnostic value of its key effector genes, underlying molecular
mechanisms, and interactions with the tumor microenvironment
remain insufficiently elucidated and require further investigation.

Summary-based Mendelian Randomization (SMR) is a method
of Mendelian randomisation analysis based on summary data
used to assess whether there is a causal relationship between
gene expression and complex diseases. This approach combines
genetic instrumental variables for gene expression with Genome-
Wide Association Study (GWAS) data for diseases, using statistical
analysis to infer whether gene expression has a causal impact on
the disease (Evans and Davey Smith, 2015). Single-cell sequencing
is a high-throughput technology that allows the analysis of genomic,
transcriptomic, or epigenomic information at the single-cell level.
Unlike traditional bulk sequencing, it reveals cellular heterogeneity,
identifies rare cell subpopulations, and analyzes dynamic changes
in cell development trajectories and functional states (Haque et al.,
2017). Spatial transcriptomics is a high-throughput sequencing
technology that combines gene expression with spatial location
information. It can retain the tissue’s original spatial structure
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while analysing gene expression profiles of cells in different regions,
revealing the relationship between gene activity and the cellular
microenvironment (Marx, 2021).

In the process of screening and validating biomarkers for
BRCA, confounding factors such as sample selection bias, intra-
/inter-tumor heterogeneity, dynamic fluctuations in the lactate
microenvironment, and platform-specific biases in epigenetic
analyses can significantly impact the accuracy of research
conclusions and their clinical translation potential. Therefore,
identifying and analysing lactylation-related genes (LRGs) through
multi-omics approaches are critical for optimising molecular
subtyping and developing targeted treatment strategies for
BRCA. This study combined Mendelian randomisation, single-cell
sequencing, and spatial transcriptomics to identify and analyse the
BRCA-associated LRGPRDX1, unveiling its regulatorymechanisms
and prognostic value. This provides a theoretical foundation
and practical guidance for the early diagnosis and personalised
treatment of BRCA.

2 Materials and methods

2.1 Data collection and preprocessing

The GWAS summary data for BRCA were obtained from
the Integrative Epidemiology Unit (IEU) Open GWAS Database
(https://gwas.ac.uk/), with a study population of European ancestry
and GWAS ID “ieu-a-1126” (Zhang and Tang, 2025). Based
on previous studies on lactylation modification, we compiled
and selected 327 genes associated with lactylation modification
(Liu H. et al., 2025; Xu et al., 2025). The single-cell transcriptomic
data used in this study were sourced from the Gene Expression
Omnibus (GEO) database, specifically the GSE161529 dataset
(https://www.ncbi.nlm.nih.gov/geo/), which comprises 16 samples.
This dataset includes a single-cell transcriptomic map for nearly
120,000 cells. The spatial transcriptomic sample data were obtained
from the “Human Breast Cancer: Visium Fresh Frozen, Whole
Transcriptome” dataset provided by 10x Genomics (https://
www.10xgenomics.com/) (Bock et al., 2025). The TCGA-BRCA
transcriptome data (TPM) and clinical information were retrieved
from the UCSC Xena platform (http://xena.ucsc.edu/), including
1,118 BRCA and 113 standard breast tissue samples. The GSE42568
dataset was downloaded using the GEOquery package in R,
containing gene expression matrices and clinical information
for 104 BRCA patients and 17 standard breast tissue samples.
We merged the downloaded expression matrices by column and
applied normalisation and log2 transformation to improve the data
distribution characteristics (Zhao et al., 2024). Additionally, we used
annotation files to convert probe IDs to gene symbols, averaging
values for probes corresponding to the same gene to ensure data
consistency.

2.2 Colocalization exploration of BRCA
pathogenic genes and LRGs

We utilised SMR software version 1.3.1 for Mendelian
randomisation analysis to explore causal relationships between

gene expression and disease (Duan et al., 2024). The study was
based on the quality-controlled 1000 Genomes Project European
genetic data, with a minimum allele frequency (MAF) of 1% and
a differential allele frequency of 99%. To precisely select genes, we
retained those with p-values less than 0.05 to ensure statistical
significance. Next, we further selected all genes annotated as
“protein_coding.” To explore the role of lactylation modification
in BRCA, we performed an intersection analysis between these
protein-coding genes and a known set of LRGs, identifying LRGs
associated with BRCA (Yang et al., 2025).

2.3 Cell type and communication feature
analysis of BRCA 10x gene expression data

We performed a multi-step analysis of the BRCA 10x gene
expression data to explore cell type and communication features.
First, we performed quality control using the subset function to
filter low-quality cells. We retained cells with gene counts between
200 and 2,500 to exclude empty droplets and multiplets. Cells
with over 20% mitochondrial gene expression were removed
to eliminate dying or stressed cells, and those with more than
5% haemoglobin gene expression were excluded to avoid red
blood cell contamination. Next, we normalised the data using
NormalizeData to ensure comparability of gene expression across
different cells. We then selected 3,000 highly variable genes
using the variance-stabilizing transformation (VST) method,
implemented in the FindVariableFeatures function of the Seurat
package, aiming to capture sufficient biological variation for cell
population analysis while avoiding over-complexity. Principal
component analysis (PCA) was conducted, and the optimal number
of principal components was determined using the ElbowPlot
method to extract the main components, thereby providing a
low-dimensional representation for subsequent cell clustering
analysis (Zhang P. et al., 2023). We performed cell clustering using
FindNeighbors and FindClusters, identifying cell populations with
similar gene expression profiles, which laid the foundation for cell
type annotation and communication analysis (Yao et al., 2025).
Cell types were annotated using the SingleR method, based on
comparisons with a reference dataset (Human Primary Cell Atlas) to
infer each cell type. To analyse cell-cell communication, we used the
CellChat package to construct ligand-receptor interaction networks,
assess communication probabilities, and identify significant
communication pathways (Bai et al., 2025). Finally, to study the
dynamic changes in monocytes at different states, we conducted
pseudotime analysis using Principal Component Analysis (PCA)
and Uniform Manifold Approximation and Projection (UMAP)
for dimensionality reduction. We applied the Harmony package
to correct for batch effects, thereby ensuring the reliability of
the results.

2.4 Cell population analysis and spatial
interaction pattern exploration of BRCA
spatial transcriptomic data

First, we used the Seurat package to load and preprocess the
BRCA spatial transcriptomic data, extracting tissue coordinates
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and performing quality control (Bai et al., 2025). We filtered out
data points outside the tissue and removed low-quality spots,
such as those with mitochondrial or ribosomal gene expression
and fewer than 10 genes. The data were then normalised and
subjected to dimensionality reduction (PCA and UMAP) to prepare
for further cell population analysis and visualisation. Next, we
performed a deconvolution analysis of the BRCA spatial data
using the RCTD method, integrating spatial data with single-
cell RNA reference data to infer the cellular composition at each
spatial location (Zhang W. et al., 2025). The results were stored in
a deconvolution matrix and used for the quantitative analysis of
cell types.

Using this foundation, we employed the mistyR package
to infer the spatial interactions between cells and analysed
the spatial interaction patterns between different cell types. We
systematically revealed the spatial relationships between cell types by
combining spatial transcriptomic data and deconvolution analysis.
Initially, we performed a kNN analysis to calculate the six
nearest neighbours for each spot and selected spots that were
positive for PRDX1 in monocytic cells. Based on these spots,
we constructed a spatial network. We calculated the degree of
each spot, generating a homotypic cell interaction network that
visually demonstrated the spatial distribution and interrelations
of PRDX1-positive monocytic cells. Furthermore, we generated
a heterotypic cell interaction network for PRDX1-positive and
negativemonocytic cells interactingwith fibroblasts.These networks
display the spatial distribution of various cell types and reveal
their intricate interrelationships, offering crucial insights into
the spatial interactions between cells. Finally, we performed
neighbourhood enrichment analysis, calculated the enrichment
of cell types among neighbours, and visualised and standardised
the results (Salié et al., 2025).

2.5 Construction and validation of a
survival prediction model for BRCA

In the filtered single-cell data, we used the FindMarkers function
to identify differentially expressed genes (logfc = 0.6) associated
with PRDX1-positive monocytic cells. We selected the TCGA
dataset (n = 1,231) as the training set due to its large sample
size and comprehensive molecular characteristics, while the GEO
dataset (n = 121) was used as an external validation set. To
eliminate batch effects, we applied the SVM method for correction.
Subsequently, univariate Cox regression analysis was performed
to evaluate the association between genes and survival prognosis.
To further identify key genes, we employed Lasso regression,
using L1 regularisation to reduce multicollinearity and enhance
model stability. 10-fold cross-validation was used to determine
the optimal lambda value, minimising error and improving model
generalizability (Gómez et al., 2025). A multivariate Cox regression
model was further constructed to identify the best feature genes.
The Cox regression model derived from the training set was applied
to survival prediction in the validation set. Finally, Kaplan-Meier
survival curves were generated using the survival package, and time-
dependent receiver operating characteristic (tROC) curves were
plotted using the timeROC package to assess the model’s accuracy
in predicting patient survival.

2.6 Cox regression analysis of survival
factors in BRCA patients

We performed univariate and multivariate Cox regression
analyses to evaluate the influence of various clinical factors on
the survival of BRCA patients. These analyses encompassed age, T
stage, N stage, M stage, and risk score (Pei et al., 2023). The results
of the regression analyses were visually presented through forest
plots, which depicted the hazard ratios (HRs) and corresponding
confidence intervals for each variable. Additionally, Kaplan-Meier
survival curves were used to compare the survival outcomes among
different risk groups. We also conducted subgroup analyses to
examine the impact of specific clinical factors on survival. The
significance of all findings was determined using p-values and
confidence intervals.

2.7 Comprehensive analysis of immune
microenvironment and biological pathways
in BRCA

To investigate the immune landscape in BRCA, we utilised
the MCPcounter method to quantify the relative abundance of
various immune cell types within the tumor microenvironment.
Boxplots and density plots illustrated the disparities in immune cell
infiltration between high-risk and low-risk groups. Additionally,
we employed the Estimate method to compute immune scores
and tumor purity, which facilitated a deeper understanding
of how the immune microenvironment influences patient
survival outcomes (Ye et al., 2025). Furthermore, Single-sample
Gene Set Enrichment Analysis (ssGSEA) was conducted to assess
the activation levels of diverse biological pathways in BRCA
samples, highlighting the significance of immune-related pathways
in survival prognosis. Lastly, we identified key checkpoint genes
and utilised boxplots and density plots to elucidate the expression
differences of these genes between high-risk and low-risk cohorts.

2.8 Cell transfection

The Cell Resource Center of Shanghai Life Sciences Institute
provided the MDA-MB-231 and HCC1806 cell lines. The
primers used in this study were designed and synthesised by
Qingdao Biotechnology, located in Beijing, China. Additionally,
the PRDX1-targeting siRNA and its corresponding negative
control (Si-NC) were provided by RiboBio, based in Guangzhou,
China. Detailed sequences of the primers and siRNA are
provided in Supplementary Table S1.

2.9 Healing

For the wound-healing assay, transfected cells were cultured
in 6-well plates until they nearly reached 95% confluence.
Scratches were created in each well using a sterile 200 μL plastic
pipette tip, and the wells were then washed twice with PBS
to remove floating cells and debris. Serum-free medium was
subsequently added. Images of the scratches were taken at 0 h
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and after 48 h, and the width of the scratches was measured using
ImageJ software.

2.10 Transwell

In the Transwell assay, 4 × 104 transfected cells were placed
in the upper chamber of a 24-well plate and incubated for 48 h.
The plate’s bottom was either treated with Matrigel solution (BD
Biosciences, USA) or left untreated to assess the cells’ potential
for invasion and migration. Once the medium was removed, the
cells were washed twice with PBS, fixed at room temperature for
30 min in 4% paraformaldehyde, and then washed again with PBS.
Next, 0.1% crystal violet (Solarbio, China) was added for a one-
hour staining period. Afterwards, the cells were rinsed until the
background was transparent, and any cells on the top surface of the
pores were carefully removed using cotton swabs. Finally, ImageJ
software is used to count.

2.11 Statistical analysis

In this study, data were standardised using log transformation
and batch correction. All analyses and visualisationswere conducted
with R software (version 4.3.3). A predictive model was developed
through a series of statistical methods, including univariate,
Lasso, and multivariate Cox regression analyses. For statistical
comparisons, t-tests were used to assess differences between two
groups, while one-way ANOVA was applied to evaluate differences
among multiple groups. The Wilcoxon test was explicitly used to
compare high- and low-risk groups. Statistical significance was
defined as a p-value of less than 0.05, with significance levels denoted
as follows:∗(p < 0.05),∗∗(p < 0.01), and∗∗∗(p < 0.001).

3 Results

3.1 Interaction and relationship analysis
between BRCA and LRGs

In this study, we systematically identified a set of LRGs
associated with BRCA, including DDX5, DHX16, LPPRC,
MPHOSPH6, NSUN2, NUP50, PRDX1, RPL13, RPS23, and SRP14.
Through rigorous statistical filtering, the PRDX1 gene exhibited
significant results in SMR analysis (p_SMR = 0.002595542), while
the HEIDI (Heterogeneity in Dependent Instrumental Variables)
test revealed no considerable heterogeneity (p_HEIDI = 0.7630237).
This important finding suggests that PRDX1 may play a critical role
in the pathogenesis of BRCA. Therefore, we selected PRDX1 as
the key gene for further analysis. Using the regional association
plot generated by SMR analysis, we closely examined the genetic
association of specific genes on chromosome one within the million
base pair (Mb) region. The plot shows three genes on chromosome
1: ENSG00000117450 (PRDX1), ENSG00000126088 (UROD), and
ENSG00000234329 (RP11-767N6.2), along with their association
with expression quantitative trait loci (eQTL) (Figure 1A). In the
correlation plot, the eQTL effect size of PRDX1 (i.e., the impact of
genetic variation on gene expression) showed a positive correlation

with the GWAS effect size (i.e., the impact of genetic variation on
BRCA risk) (Figure 1B). Our findings suggest that PRDX1 may
influence the development and progression of BRCA by regulating
lactylation modification processes.

3.2 Expression and intercellular
communication analysis of PRDX1 in BRCA
single-cell RNA sequencing data

We obtained a BRCA single-cell RNA sequencing dataset
from the GEO database and selected gene expression data from
16 BRCA samples for in-depth analysis. We filtered the data
during the initial quality control step and ultimately selected 3,000
highly variable genes for further analysis. PCA visualised the
distribution of BRCA and triple-negative breast cancer (TNBC)
samples (Figure 2A). The clustering analysis successfully identified
27 cell populations (Figure 2B). Upon further analysis of each cell
population, we identified several distinct cell types, including B
cells, endothelial cells, epithelial cells, fibroblasts, monocytes, T
cells, and tissue stem cells (Figure 2C). Notably, the expression of
PRDX1was significantly increased inmonocytes and epithelial cells,
with an exceptionally high average expression level in monocytes
(Figure 2D). Feature expression and density plots further visualised
the same results (Figures 2E, F).

To further explore the function of PRDX1 and its role in
intercellular communication, we classified monocytes into two
groups based on PRDX1 expression: PRDX1-positive and PRDX1-
negative. The intercellular communication significance heatmap
analysis showed that PRDX1-positivemonocytes exhibited significant
communication activity with various cell types, suggesting their
potential key role in the intercellular communication network.
Furthermore, significant differences in communication patterns were
observed between PRDX1-positive and PRDX1-negative monocytes,
particularly in their interactions with fibroblasts and B cells. The
heatmap indicated that the communication between PRDX1-positive
monocytes and fibroblasts was the most significant (Figure 2G). By
constructing an intercellular communication network, we further
evaluated the communication probabilities between different cell
populations, identifying key communication pairs and discovering
potential specific communication pathways between PRDX1-positive
monocytes and fibroblasts or B cells (Figures 2H, I). These pathways
may be activated in specific physiological or pathological states,
especially in tumor immune evasion, chronic inflammation, or
immune diseases. Lactylated PRDX1-positive monocytes may
promote the formation of an immune-suppressive environment
through metabolic regulation, thereby enhancing their specific
interactions with fibroblasts and B cells.

We then selected monocyte subpopulations and visualised
the expression pattern of PRDX1 using UMAP dimensionality
reduction and clustering analysis (Figures 2J–M). Using pseudotime
analysis, we explored the dynamic trends of monocytes. Directional
arrows visually represented the evolutionary trajectory ofmonocytes
during disease progression (Figure 2N). This analysis not only
enhanced our understanding of the role of monocytes in
development, immune response, and disease progression but also
opened up new research directions for exploring dynamic changes
in cell fate determination and biological processes.
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FIGURE 1
The causal relationship between LRGs and breast cancer, as determined by SMR analysis. (A) Displays three genes (PRDX1, UROD, and RP11-767N6.2)
on chromosome 1 and their genetic association with eQTL. (B) Shows the positive correlation between the effect size of the PRDX1 gene’s eQTL and
GWAS effect size.

3.3 Spatial heterogeneity of PRDX1 gene
expression and its intercellular
communication patterns

The spatial gene expression distribution map shows the
expression pattern of the PRDX1 gene in BRCA tissue sections
(Figure 3A). The expression of PRDX1 exhibits significant spatial
heterogeneity, with a higher concentration in the tumor nest region

and relatively lower expression in the stromal region. This finding
suggests that PRDX1 may play a more critical role in the BRCA
microenvironment, with its expression closely associated with the
biological behaviour of tumor cells. In contrast, its role in non-
tumor regions may be more minor or distinct. To enhance the
accuracy and reliability of subsequent analyses, we identified and
excluded low-quality points (Figure 3B). After standardisation and
dimensionality reduction, the spatial distribution map of PRDX1
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FIGURE 2
Single-cell analysis of BRCA patients. (A) PCA reveals differences in gene expression data distribution between BRCA and TNBC samples. (B) t-SNE
clustering analysis identifies 27 distinct cell clusters. (C) Further analysis of the cell populations reveals seven cell types. (D) Bubble plot showing PRDX1
gene expression in different cell types. (E, F) Feature expression and density plots visualising the expression of the PRDX1 gene. (G) Cell-to-cell
communication heatmap showing the communication activity between different cell types. (H) Cell communication network analysis indicates a
potential specific communication pathway between PRDX1-positive monocytes and fibroblasts. (I) Cell communication network analysis indicates
potential specific communication pathways between PRDX1-positive monocytes, fibroblasts, and B cells. (J) PCA plot of BRCA and TNBC samples after
filtering for Monocyte cell subpopulations. (K) UMAP plot showing the distribution of cell clusters. (L, M) Visualisation of PRDX1 gene expression
patterns in Monocyte cell subpopulations. (N) Pseudo-time analysis reveals the dynamic trajectory of Monocytes in the BRCA process.

gene expression was visualised (Figure 3C). Further clustering
analysis revealed different cell populations and the distribution
of cells within the tissue sections was visualised using UMAP
(Figure 3D). We successfully integrated single-cell RNA sequencing
data with spatial transcriptomic data by applying deconvolution

analysis. Subsequently, we visualised the distribution of different cell
types (PRDX1-positive monocytes, PRDX1-negative monocytes,
fibroblasts, and B cells) within the tissue sections (Figures 3E–H).
These visualisations clearly show that the distribution of
fibroblasts closely matches that of PRDX1-positive monocytes
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in the tissue sections. This finding is consistent with previous
single-cell transcriptomic analysis results. This integrated
analysis method confirmed the consistency of intercellular
communication patterns and highlighted the crucial value of
spatial transcriptomic data in understanding complex intercellular
interactions.

To further investigate intercellular communication, we applied
MISTY analysis to quantify the intensity of communication
between different cell types. The heatmap highlights significant
communication pairs, showing stronger interactions between
PRDX1-positive monocytes and the two cell types, fibroblasts and T
cells (Figure 3L). Different spatial communication modes (intra,
juxta, and para) also revealed that PRDX1-positive monocytes
were near fibroblasts, T cells, and epithelial cells (Figures 3I–K).
The homotypic cell network diagram revealed the distribution
and spatial proximity relationships of PRDX1-positive monocytes
within tissue sections, providing a clear view of intercellular
interactions and tissue structure (Figure 3M). The heterotypic cell
network diagram illustrated the spatial distribution of PRDX1-
positive and negative monocytes and fibroblasts within the tissue
(Figures 3N, O). The enrichment maps demonstrated the spatial
enrichment of PRDX1-positive and negative monocytes and
fibroblasts, with different colours representing varying degrees
of enrichment (Figures 3P, Q). Through adjacency analysis, we
found that PRDX1-positive monocytes tend to be adjacent
to fibroblasts.

Previous studies have shown that fibroblasts, particularly cancer-
associated fibroblasts (CAFs), can promote tumor invasion and
immune evasion by remodelling the extracellular matrix (ECM)
and secreting pro-tumorigenic factors (Zhang P. et al., 2025).
Our findings indicate that PRDX1-positive monocytes tend to be
located adjacent to fibroblasts, suggesting their potential role in
tumor-stroma interactions. This close spatial association implies
that PRDX1-positive monocytes and fibroblasts may shape the
tumor microenvironment through reciprocal signalling, thereby
influencing tumor progression.

3.4 Construction and validation of a BRCA
survival prediction model based on
PRDX1-positive monocyte gene expression

We selected genes upregulated in PRDX1-positive monocytes
relative to other cell populations, requiring a log2 fold change
(logFC) of at least 0.6 (i.e., a 1.5-fold change). First, we selected
1231 BRCA samples from the TCGA database as the training
set to identify disease-related gene expression patterns and their
association with survival. We then chose 121 independent BRCA
samples from the GEO database as the test set to verify whether
our findings were widely applicable and had predictive power. The
first batch effect of the two datasets was corrected (Figure 4A).
We then performed univariate Cox regression analysis to identify
genes associated with BRCA survival that were significant. We
used a LASSO regression model for gene selection, optimising
the regularisation parameter (lambda) through cross-validation
(Figures 4B–D). Next, we conducted a multivariate Cox regression
analysis to further enhance the model’s predictive performance. By
calculating risk scores for BRCA patients, we classified patients into

high-risk and low-risk groups. Ultimately, we identified C8orf76,
IDNK, JRKL, TOR1B, TAPBPL, CYP27A1, FUCA2, S100B, and
IGKC as core genes for predicting the survival of BRCA patients.
The expression levels of these genes have a significant impact on
the survival risk of patients and may be key factors in determining
the prognosis of BRCA. We evaluated the model’s predictive
performance in training and test sets. Kaplan-Meier survival analysis
revealed that high-risk BRCA patients had significantly shorter
overall survival (OS) in both cohorts (Figures 4E, F). Receiver
operating characteristic curve (ROC) curves showed that the
area under the curve (AUC) values for 1-year, 3-year, and 5-
year survival were as follows: training set (0.681, 0.748, 0.700)
and test set (0.696, 0.696, 0.739), demonstrating good predictive
performance (Figures 4G, H). These results suggest that our model
has high accuracy in predicting the 1-year, 3-year, and 5-year
survival of BRCA patients.

3.5 Validation of risk score based on model
genes for predicting BRCA survival

We conducted a thorough univariate Cox regression analysis in
the training set to identify significant associations between survival
time and various clinical features, including age, T stage, M stage, N
stage, and risk score.These associationswere visualised using a forest
plot (Figure 5A). The analysis revealed that age, T stage, M stage,
N stage, and risk score were significantly correlated with survival
time. Further multivariate Cox regression analysis confirmed that
age, M stage, N stage, and risk score were independent predictors of
survival time (Figure 5B). This indicates that the risk score, derived
from the nine model genes, is a robust predictor of BRCA patient
survival. Subsequently, we performed subgroup analyses stratified
by different clinical features to evaluate survival differences within
specific groups. Kaplan-Meier curves were used to compare the
survival outcomes of low-risk and high-risk patient groups, stratified
by age, gender, stage, and TNM classification (Figures 5C–K). The
survival curve illustrates the groups where a significant survival
difference was observed between the high-risk and low-risk groups
(p < 0.05). These findings collectively validate the reliability and
effectiveness of the risk score in predicting survival outcomes for
patients with BRCA.

3.6 Immune suppressive
microenvironment characteristics in
high-risk groups

Box plots revealed that the infiltration scores of T cells,
CD8 T cells, cytotoxic lymphocytes, NK cells, myeloid dendritic
cells, endothelial cells, and fibroblasts were significantly lower in
the high-risk group compared to the low-risk group (Figure 6A),
indicating an immune-suppressive phenomenon in the tumor
microenvironment of the high-risk group. This suggests a marked
inhibition of immune cell infiltration and function. The Matrix
and immune scores, ESTIMATE composite scores, and tumor
purity showed significant differences between the low- and high-
risk groups (Figure 6B). Specifically, the high-risk group exhibited
higher matrix scores, reflecting increased stromal cell infiltration.
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FIGURE 3
Spatial transcriptomics analysis of BRCA patients. (A) Expression pattern of PRDX1 gene in BRCA tissue sections. (B) Data quality filtering process for
PRDX1 gene expression. (C) Spatial distribution of PRDX1 gene expression after normalisation and dimensionality reduction. (D) UMAP-based clustering
results of cell populations. (E–H) Deconvolution analysis showing the distribution of PRDX1-positive monocytes, PRDX1-negative monocytes,
fibroblasts, and B cells in tissue sections. (I–K) Communication relationships between different cell types under various communication modes (intra,
juxta, para). (L) Heatmap of intercellular communication pairs, revealing significant communication pairs and network structure between cell
populations. (M) Network diagram showing the homotypic cell network of PRDX1-positive monocytes in tissue sections. (N, O) Heterotypic cell
network diagram between PRDX1-positive/negative monocytes and fibroblasts. (P, Q) Enrichment plot showing the interaction between
PRDX1-positive/negative monocytes and fibroblasts.

In contrast, lower immune and ESTIMATE composite scores
indicated suppressed immune cell infiltration and function. Higher
tumor purity in the high-risk group also suggested a more

significant proportion of tumor cells and a relative decrease in
stromal and immune cells. Scores for various steps in the Tumor-
Infiltrating Immune Cells (TIICs) pathway were also lower in
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FIGURE 4
Prognostic model construction for BRCA patients. (A) Batch effect correction plot for BRCA samples from TCGA training set and GEO testing set. (B)
Univariate Cox regression analysis identifies significant genes associated with BRCA survival. (C, D) LASSO regression model plot and cross-validation
are used to select the optimal regularisation parameter (lambda). (E, F) Kaplan-Meier survival analysis curves for different risk groups of BRCA patients in
the training and testing sets. (G, H) ROC curves for training and testing sets for 1-year, 3-year, and 5-year survival rates.

the high-risk group, including cancer cell antigen presentation,
immune cell activation and migration, immune cell infiltration
into the tumor, T cell recognition of cancer cells, and cancer
cell killing (Figures 6C, E). This implies that key steps of the
immune response in the tumor microenvironment are significantly
inhibited in the high-risk group. Moreover, the expression levels
of several immune checkpoint genes were significantly higher in

the high-risk group, including VTCN1, SIRPA, BTNL9, CD47,
CD276, and others (Figures 6D, F). The elevated expression of
these genes may suppress immune cell activity, promoting tumor
progression and potentially reflecting immune evasion mechanisms
employed by tumor cells. These differences may serve as potential
prognostic markers to predict disease progression and patient
survival outcomes.
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FIGURE 5
Risk score is highly correlated with clinical variables. (A) Forest plot of univariate Cox regression analysis. (B) Multivariate Cox regression analysis results.
(C–K) Kaplan-Meier survival curves for different risk groups of BRCA patients stratified by age, gender, stage, T stage, M stage, and N stage.

3.7 Experimental validation of PRDX1

We conducted gene knockdown experiments in two cell
lines. Using the Transwell assay, we found that MDA-MB-231
and HCC1806 cells with PRDX1 knockout exhibited markedly
decreased proliferation rates when compared to their control
counterparts (Figures 7A–C). Subsequently, we investigated the
effect of PRDX1 on BRCA cell migration and invasion using wound
healing assays. The findings revealed a substantial reduction in
both migratory and invasive capabilities of BRCA cells following
PRDX1 knockout (Figures 7D, E).

4 Discussion

This study comprehensively explores the regulatory
mechanisms and prognostic value of LRG PRDX1 in BRCA
through multi-omics analysis (Xie et al., 2023). Our findings
highlight the significant role of PRDX1 in the initiation,
progression, and involvement of BRCA in the immune
microenvironment. Based on the gene expression profile of
PRDX1-positive monocytes, we developed a survival prediction
model, offering a new perspective for assessing BRCA
prognosis.
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FIGURE 6
Significant differences in immune characteristics between different risk groups. (A) Box plot showing the difference in immune cell infiltration levels
between high-risk and low-risk groups. (B) Box plot and peak plot showing significant differences in the stromal score, immune score, ESTIMATE score,
and tumor purity between high-risk and low-risk groups. (C, E) Differences in immune-related pathway scores between high-risk and low-risk groups.
(D, F) Differences in the expression of immune checkpoint genes between high-risk and low-risk groups.

We focused on the role of LRGs in BRCA, with a particular
emphasis on PRDX1. Using the SMR method, we identified
PRDX1 as a key LRG in BRCA. We discovered that it may
play a crucial role in the genetic variation and regulation
of gene expression related to BRCA risk. The expression of

PRDX1 was significantly elevated in BRCA tissues, particularly
in monocytes, indicating that PRDX1 may play a pivotal role in
the BRCA-associated immune microenvironment (De Leo et al.,
2024). PRDX1 is known to neutralise intracellular hydrogen
peroxide, helping tumor cells survive under oxidative stress
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FIGURE 7
Function of PRDX1 in BRCA cells. (A–C) Transwell assays demonstrated the role of PRDX1 in cell migration and invasion. (D, E) Wound healing assays
were performed at 0 and 24 h on HCC1806 and MDA-MB-231 cells to assess the role of PRDX1 in cell motility.

conditions. In the BRCA tumor microenvironment, PRDX1 is
considered to play an essential role in immune cell regulation
(He et al., 2025; Li et al., 2025). Further analysis revealed
that the significant cell communication between PRDX1-positive
monocytes and fibroblasts could potentially promote the immune
evasion mechanism and immune suppression within the tumor
microenvironment. Studies have shown that PRDX1 expression
in monocytes, macrophages, and fibroblasts is closely related to
the BRCA immune microenvironment, possibly regulating TAM
function and contributing to immune evasion (Gao et al., 2022).

PRDX1’s role in various cancers is mainly associated with
its antioxidant activity and immune regulation. In lung cancer
(LC), PRDX1 protects cancer cells from damage by reducing
oxidative stress and plays a significant role in chemotherapy
resistance (Bai et al., 2023). Additionally, PRDX1 regulates the
function of immune cells, promoting tumor immune evasion and
influencing patient prognosis. In colorectal cancer (CRC), high
PRDX1 expression correlates with tumor invasiveness, metastasis,
and chemotherapy resistance, and its role in immune evasion and
chemotherapy resistance makes it a potential therapeutic target
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(Song et al., 2024). In liver cancer (HCC), PRDX1 promotes cancer
cell survival by reducing ROS accumulation and may exacerbate
tumor progression by influencing immune evasion mechanisms
(Hu et al., 2025). PRDX1 is also associated with tumor invasiveness,
metastasis, and chemotherapy resistance in gastric cancer (GC)
and other cancers such as pancreatic cancer (PC), ovarian cancer
(OC), and prostate cancer (PCa), emphasising its essential biological
function across various malignancies (Lai et al., 2024). Overall,
PRDX1 plays a crucial role in tumor cell survival, metastasis,
immune evasion, and chemotherapy resistance,making it a potential
target for cancer treatment and immunotherapy.

Further spatial transcriptomic analysis revealed the spatial
heterogeneity of PRDX1 gene expression, with high expression
concentrated in the tumor nest region and lower expression in
the stroma. This spatial distribution pattern may be closely linked
to the biological behaviours of tumor cells, such as invasion and
metastasis. Additionally, the spatial proximity between PRDX1-
positive monocytes and fibroblasts suggests a close interaction
between them (Wang et al., 2024). This interaction could influence
the immune status of the tumor microenvironment and the
remodelling of the extracellular matrix, thus promoting tumor
progression.

Using the gene expression profile of PRDX1-positivemonocytes,
we constructed a survival prediction model for BRCA and
validated it using TCGA and GEO datasets. The core genes of
the model, such as C8orf76, IDNK, and JRKL, among others,
demonstrated high accuracy in predicting survival outcomes for
BRCA patients (Liu D. et al., 2025). This result confirms the
importance of PRDX1-positive monocytes in BRCA prognosis
and provides potential biomarkers for individualised prognostic
assessment in clinical practice. Moreover, high-risk group patients
displayed significant immune-suppressive microenvironment
features, including reduced immune cell infiltration, high expression
of immune checkpoint genes, and suppression of key immune
response steps. These features suggest that PRDX1-positive
monocytes may influence BRCA progression and prognosis by
modulating the immune microenvironment.

However, several limitations remain in this study. First, the
regulatory mechanisms of PRDX1 have not been fully elucidated,
and its specific function in BRCA requires further validation
through in vitro and in vivo experiments. Second, although
the survival prediction model demonstrated good predictive
performance in both the training and testing datasets, its
applicability across different ethnic groups and clinical contexts
requires further evaluation. Additionally, the spatial transcriptomic
analysis was based on a limited sample size; future studies should
expand the sample size to enhance the reliability of the results.

5 Conclusion

Through multi-omics analysis, this study reveals the regulatory
mechanisms and prognostic value of the LRG PRDX1 in BRCA.
PRDX1-positive monocytes exhibit significant intercellular
communication activity and immune regulatory functions in the
tumor microenvironment, and their gene expression profile can
be used to construct an effective survival prediction model for
BRCA. These findings provide a new theoretical basis and potential

application directions for assessing BRCA prognosis and developing
therapeutic targets.
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