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How to quantify magic spots - a
brief overview of (p)ppGpp
detection and quantitation
methods

Filip Gąsior† , Wiktoria Klasa† and Katarzyna Potrykus*

Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdansk, Gdańsk, Poland

Guanosine tetra- and penta-phosphates, collectively known as (p)ppGpp,
are well-known second messengers of cellular stress responses in bacteria
and plants. Their intracellular concentration is tightly regulated and can vary
widely–from undetectable levels under optimal growth conditions, through
intermediate concentrations, to extremely high levels thatmatch or even exceed
GTP concentrations when cells are exposed to severe stress. Importantly, the
effects exerted by (p)ppGpp are often concentration-dependent, making their
quantitative analysis a crucial aspect of studying cellular responses to stress.
To gain a deeper understanding of the regulatory mechanisms associated
with (p)ppGpp, it is essential to monitor its accumulation in vivo and conduct
detailed molecular studies in vitro. Various methods have been developed for
detecting and quantifying (p)ppGpp, enabling researchers to track its levels in
living cells and analyse its function under controlled laboratory conditions. In
this work, we provide an overview of the available techniques for (p)ppGpp
detection and quantification. We present their advantages, limitations, and
potential applications in research on metabolic regulation and cellular stress
responses.
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1 Introduction

All living organisms are exposed to stress, caused by biotic or abiotic conditions, and
in order to survive they must quickly adjust their metabolism which is often correlated
with rapid changes in gene expression. Among different modes of response to stress, one
of the best known is the stringent response in bacteria, characterized by rapid synthesis of
guanosine nucleotide derivatives, namely, guanosine penta- and tetraphosphate (ppGpp and
pppGpp, jointly abbreviated as (p)ppGpp). These nucleotides were initially called “magic
spots”, and are often referred to as alarmones, because they alarm the cell about changing
environmental conditions. Under stress their levels can rise about 100-fold above basal
level (reviewed in Steinchen et al., 2020). In Escherichia coli this means reaching equimolar
concentration to GTP (Potrykus and Cashel, 2016), while in Bacillus subtilis (p)ppGpp
concentration was shown to exceed that of GTP, which drops dramatically upon alarmone
production (Lopez et al., 1981; Krásný and Gourse, 2004; Kriel et al., 2012). In addition to
ppGpp and pppGpp, another guanosine derivative – pGpp, was shown to exist in Firmicutes
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(Bacillota) and other Gram-positive bacteria, and its role in bacterial
cells is intensely investigated (Gaca et al., 2015; Yang et al., 2020).

All in all, the (p)ppGpp alarmones are responsible for
prokaryotic cell survival under such stresses as amino acid
starvation, nitrogen-, iron-, fatty acid-, phosphate- and carbon-
limitation, acidic shock, and they were also shown to be required for
bacterial pathogenicity (Potrykus andCashel, 2008; Dalebroux et al.,
2010; Irving et al., 2021; Urwin et al., 2024). In addition, (p)ppGpp
has been shown to exist in plants and it seems to enhance plant
survival under increased salinity, as well as to play a role in
photosynthesis (Mehrez et al., 2023). Intriguingly, a (p)ppGpp
degrading enzyme (called Mesh1) was discovered to exist in
metazoa, such as fruit flies, mice and humans (Sun et al., 2010),
although it was later shown to also possess a NADPH hydrolysis
activity and thus play a role in ferroptosis (Ding et al., 2020; Chi
and Zhou, 2023). No (p)ppGpp synthetase has been discovered
in metazoa to date, however, there is one report where ppGpp
was detected in germ-free Drosophila melanogaster and several
eukaryotic cell lines (Ito et al., 2020).

Overall, the (p)ppGpp level reflects on cellular physiology
and its elevation signifies the cells undergo some kind of
stress, although the alarmone levels may not necessarily need to
reach the maximum concentration in order to exert regulatory
effects (see Steinchen et al., 2020). Thus dissecting specific
mechanisms of action necessitates (p)ppGpp detection and precise
quantitation, and this is true not only for prokaryotic but also for
eukaryotic cells (e.g., plants). Besides in vivo studies that give a
generalized glimpse at cell physiology, (p)ppGpp in vitro studies are
also important since they are pivotal to determinemolecular basis of
alarmone metabolism, such as their synthesis and degradation. This
is especially important in the era of increased bacterial antibiotic
resistance, as using novel drugs to disrupt such processes is an
attractive possibility. Hence, here we present a comprehensive mini-
reviewondifferent approaches to determining (p)ppGpp levels, both
for in vitro and in vivo applications.

2 (p)ppGpp detection and quantitation

As mentioned above, detection and quantitation of (p)ppGpp
alarmones is essential for understanding their roles in stress
responses, yet the task is methodologically challenging due to
the dynamic nature of their metabolism and sometimes low
intracellular concentrations. The chemical properties of (p)ppGpp,
such as multiple phosphate groups and its structural similarity to
other abundant nucleotides, e.g., ATP and GTP, also significantly
complicate its analysis. These aspects necessitate the use of highly
specific detection methods to prevent misidentification. Below we
present the most common techniques used for (p)ppGpp detection
and quantitation.

2.1 Thin layer chromatography (TLC)

Thin-layer chromatography (TLC) is a versatile analytical
technique used to separate compounds based on their differing
affinities to a stationary phase and a mobile phase solvent, and
enables both qualitative and quantitative analysis. In addition,

it offers such advantages as low cost, simplicity, and minimal
sample preparation, making it a popular choice in biochemical
and molecular biology studies. For separating nucleotides,
plates coated with polyethyleneimine-cellulose (PEI-cellulose)
are employed (Randerath and Randerath, 1964).

The TLC method of detection was initially used by Drs. Cashel
and Gallant when they first discovered (p)ppGpp, which they
called “magic spots” at that time because their chemical nature was
unknown (Cashel and Gallant, 1969). In that seminal paper, in vivo
labeling with inorganic P32-phosphate was employed, followed by
nucleotide extraction with formic acid and sample resolution in
two dimensions (with LiCl step gradient in the first dimension,
and sodium formate step gradient in the second dimension).
This method was later improved by employing different buffer
systems, e.g., formate gradient in the first dimension, followed by
0.85 M KH2PO4 (pH 3.4) in the second dimension (Cashel et al.,
1969) or 4 M formic acid combined with 1 M LiCl in the first
dimension, followed by 1.5 M KH2PO4 (with no pH adjustment)
in the second dimension (Nishino et al., 1979). These conditions
allow for efficient separation of all NTPs and dNTPs, as well as
(p)ppGpp and (p)ppApp (adenosine derivatives homologous to
(p)ppGpp which were first discovered in B. subtilis (Rhaese et al.,
1977) and are lately gaining much attention (e.g., Sobala et al., 2019;
Anderson et al., 2021; Ahmad et al., 2023)).

Over the years, the TLC protocol for (p)ppGpp detection and
quantification has been simplified to be run only in one direction,
very often with 1 M or 1.5 M KH2PO4 (pH 3.4) as the solvent (e.g.,
Kuroda et al., 1997; Bruhn-Olszewska et al., 2018; Sobala et al.,
2019). It should be stressed, however, that under these conditions
ppGpp comigrates with pppApp, and similarly ppApp comigrates
with GDP (Sobala et al., 2019) and thus care should be taken if its
suspected that both (p)ppGpp and (p)ppApp may be present in a
given sample. In such a case, two-dimensional TLC is recommended
(Sobala et al., 2019). On the other hand, to separate pGpp fromGTP,
0.75 MKH2PO4 (pH 3.4) was shown toworkwell (Gaca et al., 2015).

How to visualize and quantify (p)ppGpp on TLC plates? It
depends on the approach used. If in vivo labeling is employed as in
the original studies (with P32- or P33-orthophosphate), the plates are
run and autoradiograms are developed either by exposure with X-
ray film or phosphor-storage screens, and followed by densitometry
(see e.g., Mechold et al., 2013 for details). If in vitro methods are
employed, i.e., pure (p)ppGpp nucleotides are investigated, then
the alarmones can be detected under UV light (λ = 254nm; e.g.,
Sobala et al., 2019). Alternatively, if labelled alarmones are examined
in vitro, detection can be carried out either by autoradiography (if
P32- or P33- labeled; e.g., Mechold et al., 2013; Sobala et al., 2019)
or by cutting out relevant spots from TLC plates after the run is
complete and using liquid scintillation counting (if labeling with
H3, e.g., Manav et al., 2018).

2.2 High-performance liquid
chromatography (HPLC) with or without
mass spectrometry

The use of high performance liquid chromatography (HPLC) to
separate nucleosides and nucleotides from in vitro obtained samples
dates back to the 1940s with cation-exchange chromatography
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(Elmore, 1948; Cohn, 1949). However, in order to analyse nucleotide
pools in bacterial cells, this approach has been later improved
by using strong anion-exchange (SAX) chromatography (Payne
and Ames, 1982). This method had originally allowed to separate
and assess nucleotide levels, including ppGpp and pppGpp, in
Salmonella typhimurium LT7 cell extracts, although it required a
rapid extraction process, which indirectly determined the amount
of components in the analysed sample (Payne and Ames, 1982;
Fisher et al., 1982). Later on, this method was also shown to work for
detecting (p)ppApp in Pseudomonas aeruginosa extracts, however,
pppApp could not be separated from ppGpp (Ahmad et al., 2019).
Thus, care should be taken if both types of nucleotides are expected
in a given sample.

On the other hand, in comparison to SAX-HPLC, the ion-pair
reverse phase (IPRP) chromatography was shown to significantly
improve resolution of different nucleotides in a given sample (Payne
and Ames, 1982). Also, the C18 columns were used successfully
not just for resolving nucleotide mixtures but also for detecting
ppGpp in bacterial extracts, e.g., E. coli (Vinella et al., 1992), and
Vibrio sp. (Flärdh et al., 1994). However, it is suggested that since
SAX better resolves ppGpp and pppGpp, while IPRP is better for
resolving all other nucleotides (IPRP is inefficient in detecting
pppGpp), both approaches should be used in parallel to obtain
a full picture of the nucleotide and alarmone pools in the cell
(Buckstein et al., 2008; Varik et al., 2017).

Despite the many advantages of anion-exchange and ion-pair
reverse phase chromatography in the separation of nucleotides,
these techniques are not ideal and have their limitations. In the
case of IPRP, the reagents used may potentially damage the column,
while for SAX it is contamination of the system with high salt
concentrations which can lead to time consuming equilibration
of the system after analysis is complete (Jin et al., 2018). One of
the alternatives is hydrophilic interaction liquid chromatography
(HILIC), in which elution is based on the competition between the
phosphate groups of nucleotides and phosphate salts in the running
buffer for binding to the amide groups on the column (Jin et al.,
2018). This approach allowed for successful quantitation of ppGpp
in the Hameatococcus pluvialis alga (Jin et al., 2018).

Combining HPLC with mas spectrometry (MS) may yield
even better quantitative results. Due to the high content of
organic substances used in the HILIC mobile phase, known to
improve electrospray evaporation, the MS signal of evaluated
nucleotides is greatly enhanced when compared to MS following
other HPLC techniques (Zborníková et al., 2019). The combination
of HILIC with MS was shown to successfully separate ppGpp
from pppGpp in E. coli K12 cell extracts (Zborníková et al.,
2019), or ppApp from pppApp for P. aeruginosa extracts
(Ahmad et al., 2019). On the other hand, the IPRP technique
coupled with MS was shown to be successful in detection and
quantification of (p)ppGpp, (p)ppApp, and other nucleotides from
B. subtilis (Fung et al., 2020). However, it is important to follow a
specific protocol of nucleotide extraction from bacterial samples
(Fung et al., 2020).

The above described HPLC methods work well for bacteria
and algae, however, in the case of plants where the (p)ppGpp
level is lower, it was necessary to introduce modifications of the
sample analysis technique to enable its detection without the
need to extract it from large amounts of plant tissue. Initially,

studies conducted to analyse the (p)ppGpp level in plants were
based on nucleotide solid-phase extraction (SPE) on a cellulose
column, followed by SAX chromatography, thanks to which the
presence of this alarmone in plants was shown for the first time
(Takahashi et al., 2004). However, the minimum plant material
allowing for such detection was rather large (∼20 g). The solution
to this problem was the use of SPE with a combination of two
resins mixed together: a weak-basic anion-exchange resin (to bind
ppGpp as an anion) and a reversed-phase mixed-mode resin (to
allow separation of ppGpp based on its hydrophobicity) (Ihara et al.,
2015).Thiswas followed by IPRP coupledwith a tandemquadrupole
mass spectrometry (UPLC-ESI-qMS/MS), and allowed for ppGpp
detection in Arabidopsis thaliana in as little as 100 mg of plant
tissue (Ihara et al., 2015). Still, to be accurate, the UPLC-ESI-
qMS/MS method requires that the investigated sample be divided
into two parts assayed in parallel, and a (p)ppGpp standard
should be added to one of them in order to assess for the losses
incurred during the procedure, e.g., during nucleotide extraction
(Ihara et al., 2015). A solution to this problem is to introduce stable
isotope-labelled standards, 13C-GTP and 13C-ppGpp, enabling
compensation for nucleotide losses from plant tissues by measuring
the concentrations of these standards before and after the extraction
process in undivided sample (Bartoli et al., 2020). A similar
approach was employed to detect ppGpp in metazoan cells, except
that EDTA was added to the SPE buffer in order to enhance
ppGpp concentration in samples applied to UPLC-ESI-qMS/MS
(Ito et al., 2020).

2.3 Capillary electrophoresis (CE)

Capillary electrophoresis coupled with MS, commonly used in
metabolomic approaches to study bacterial extracts, has been also
successful in detecting ppGpp (Ooga et al., 2009; Takeuchi et al.,
2012). However, pppGpp levels were below detection in these
assays. On the other hand CE coupled with UV detection has led
to detection of ppGpp, pppGpp, ppApp and pppApp, in defined
nucleotide mixes containing all of these nucleotide derivates at
once (Haas et al., 2020). Yet, for quantitative purposes the CE-
MS method has been further improved to employ fully N15-
labeled (p)ppGpp standards serving as internal references, which
was successfully used to quantify ppGpp in as little as 150 mg of the
plant material (Qiu et al., 2023).

2.4 Fluorescent and colorimetric detection
techniques

One of the first approaches to determine (p)ppGpp
concentrations by non-chromatography techniques employed
PyDPA, a fluorescent chemosensor based on pyrene (pyrene-
bis(Zn2+-dipicolylamine); Rhee et al., 2008). This dye was shown
to produce fluorescence upon selective binding to (p)ppGpp’s
pyrophosphate groups. The report concerning this technique was
focused on in vitro ppGpp accumulation assessment (Rhee et al.,
2008), but whether this method would be applicable to cellular
extracts is unknown. In addition, although ppGpp yielded higher
fluorescence signal than pppGpp, it would not be possible to
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TABLE 1 Advantages and limitations of methods commonly applied for (p)ppGpp detection and quantitation. HPLC–high performance liquid
chromatography, LC–liquid chromatography.

Technique Advantages Limitations

Thin-layer chromatography (TLC) - Qualitative and quantitative determination of
(p)ppGpp and (p)ppApp from in vitro and in vivo
obtained samples (Cashel et al., 1969; Nishino et al.,
1979; Kuroda et al., 1997; Mechold et al., 2013;
Sobala et al., 2019)
- No specialized equipment required

- Care should be taken to optimize resolution of
nucleotides investigated (Cashel et al., 1969;
Mechold et al., 2013; Sobala et al., 2019)
- Access to radioisotope laboratory is required if
assaying radiolabeled (p)ppGpp samples

Isocratic strong anion exchange - HPLC (SAX - HPLC) - (p)ppGpp quantification in in vitro and in vivo
obtained samples (Payne and Ames, 1982; Fisher et al.,
1982)

- Limited resolution for other nucleotides when
assessing in vivo samples (Payne and Ames, 1982;
Varik et al., 2017)
- Specialized equipment required
- High salt concentrations used may require long
system recalibration times (Jin et al., 2018)

Ion-Pair with C18 Reverse-Phase HPLC (IPRP -
HPLC)

- ppGpp quantification in in vitro and in vivo obtained
samples (Vinella et al., 1992; Flärdh et al., 1994)
- Good resolution of other nucleotides even for in vivo
samples (Varik et al., 2017)

- Limited resolution for pppGpp in vivo samples
(Varik et al., 2017)
- Specialized equipment required
- Reagents used may lead to system and column
damage, and may require long system recalibration
times (Jin et al., 2018)

Hydrophilic Interaction LC (HILIC) - Rapid detection of nucleotides, quantification of even
small amounts of ppGpp for in vivo samples (Jin et al.,
2018)

- Different columns have different retention times and
even retention order for the same nucleotides
(Jin et al., 2018)
- Specialized equipment required

Liquid chromatography followed by mass
spectrometry (LC-MS)

- Quantification of (p)ppGpp and (p)ppApp in in vitro
and in vivo samples (Fung et al., 2020)

-There may be extraction challenges for in vivo
samples (Fung et al., 2020; Zborníková et al., 2019)
- Specialized equipment required

Ultra-performance LC coupled with a tandem
quadrupole mass spectrometer (UPLC-ESI-qMS/MS)

- Quantification of ppGpp in plants (Ihara et al., 2015;
Bartoli et al., 2020)

- Requires isotope-labelled standards for precise
quantification of ppGpp (Bartoli et al., 2020)
- Specialized equipment required

Capillary Electrophoresis (CE) - Detection of (p)ppGpp and (p)ppApp in complex
nucleotide mixes in one run (Haas et al., 2020)
- Quantification of ppGpp in plants (Qiu et al., 2023)

- Requires isotope-labelled standards for precise
quantification of ppGpp (Qiu et al., 2023)
- Specialized equipment required

Pyrene-based chemosensor (PyDPA) assay - Real-time in vitro detection of (p)ppGpp (Rhee et al.,
2008)
- No specialized equipment required

- Does not differentiate between pppGpp and ppGpp
(Rhee et al., 2008)
- Decrease in fluorescence at (p)ppGpp concentrations
above a certain threshold (Rhee et al., 2008)

RNA-based live-cell imaging (RNA Fluorescent
Sensor)

- In vivo real-time imaging (Sun et al., 2021) - Different variants of RNA sensors have different
detection ranges and response rates (Sun et al., 2021)

Malachite Green (MG) assay - Quantification of (p)ppGpp from in vitro samples
(Schicketanz et al., 2024)
- No specialized equipment required

- Not appropriate for in vivo samples
(Schicketanz et al., 2024)
- Does not differentiate between pppGpp, ppGpp and
their analogues, nor free phosphate (Itaya and Ui,
1966; Schicketanz et al., 2024)

distinguish between two of them in a mixture. Also, even though it
could be suspected that (p)ppApp would also interact with PyDPA,
such studies have not been conducted to date.

Another examples of non-chromatographic technique for
(p)ppGpp detection is the use of RNA-based fluorescent sensors
which is an innovative solution for real-time imaging of alarmones
within living cells. This technique, described by (Sun et al., 2021),
relies on an aptamer whose proper folding depends on (p)ppGpp.
In turn, this incurs a proper folding of a fluorogenic RNA, which
is located between the aptamer domains. Expression of such an

aptamer - fluorogenic RNA fusion was then induced in E. coli
cells, where in the presence of a specific dye (DFHBI-1T), the
fluorescence signal was shown to be emitted in a (p)ppGpp dose-
dependent manner. Although very attractive, the aptamer used
could not differentiate between ppGpp and pppGpp (Sun et al.,
2021). However, this technique is very promising, as bioinformatics
analyses suggest that over one hundred aptamers could potentially
bind (p)ppGpp across diverse bacterial species (Sherlock et al.,
2018), and in fact there is a class of aptamers that distinguish between
the two alarmones (Jagodnik et al., 2023).

Frontiers in Molecular Biosciences 04 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1574135
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Gąsior et al. 10.3389/fmolb.2025.1574135

More recently, it has been demonstrated that (p)ppGpp and
its analogues (pGpp and ppGp) can be directly detected in vitro
by using malachite green (MG) assay (Schicketanz et al., 2024).
This assay has been originally devised to assess free orthophosphate
concentrations (Itaya and Ui, 1966) and readings can be simply
taken with a use of spectrophotometer. Thus, this technique offers
simplicity combined with cost-effectiveness, although it cannot be
used to differentiate between (p)ppGpp and its analogues in a
mixture or be used to detect them in biological samples because MG
may interact with other cellular components. Still, it has been used
to successfully screen for SpoT (a (p)ppGpp synthesizing enzyme)
inhibitors in vitro (Schicketanz et al., 2024) and may be imagined
to work well for other in vitro applications, such as determination
of enzyme kinetics for proteins involved in (p)ppGpp metabolism.
Quite interestingly, the MG assay has been also used to detect
NADPH hydrolysis by MESH1 (Ding et al., 2020).

3 Discussion

The techniques described above are examples of the methods
most commonly used for (p)ppGpp detection and quantitation. We
hope this brief overviewwill provide a useful starting point for those
looking to quantify (p)ppGpp alarmone levels, whether in vitro or
in vivo.

Each of the methods described has their advantages and
limitations (summarized in Table 1). For example, even though
TLC seems the simplest and the most robust for assessing many
samples at once, not everyone may have access to a radioisotope
laboratory or a phosphorimager, if in vivo analysis is required.
The same is true for HPLC, CE and MS techniques, that require
specialized equipment while do not always offer the expected
alarmone separation. On the other hand, such techniques as
the colorimetric MG assay do not require expensive equipment,
however, the major limitation here is that pure alarmone preps
must be employed since this method will also detect (p)ppGpp
analogs, such as ppGp (Schicketanz et al., 2024), which is a common
product of ppGpp’s spontaneous hydrolysis.Thus, even though it is a
simple method, it should be in the good laboratory practice that the
chemical nature of the alarmone under investigation be verified at
the beginning of the experiment by a complementary method, such
as non-radiolabeled TLC or HPLC. This is true for all methods that
cannot differentiate between ppGpp, pppGpp and their analogues in
a solution.

It should be also noted that all of these methods require
(p)ppGpp standards to be run in parallel with the samples analyzed.
These can be obtained by in-house biochemical synthesis (e.g.,
Mechold et al., 2013; Bruhn-Olszewska et al., 2018; Fung et al., 2020),
or are available commercially (e.g., Ihara et al., 2015; Scholtysek et al.,
2024). Regardless of their origin, rigorous verification of purity and
structural integrity is essential to ensure accurate and reproducible
results. Impurities or degradation products can significantly
impact detection efficiency, interfere with quantification, and
lead to misleading conclusions, particularly in sensitive analytical
techniques.

In summary, while chromatography and mass spectrometry-
based approaches remain the gold standard for (p)ppGpp detection
due to their sensitivity and quantitative capabilities, newer

fluorescence-based and real-timedetectionmethods offer promising
advancements. Besides those described above, for example, a
method employing Eu-MoS2 quantum dots relying on energy
transfer effect was described to detect ppGpp (Rong et al., 2020).
However, these methods require further optimization to overcome
specificity and application constraints. As these novel approaches
continue to evolve, they hold great potential to complement
traditional techniques and drive further discoveries in bacterial
signaling and adaptation mechanisms.
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