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Editorial on the Research Topic
Machine learning in computer-aided drug design
s

Theworld population is growing.TheUnitedNations estimates it will reach almost 10 billion
by 2050 and 11 billion by the end of the century when the population curve will reach its
maximum (UnitedNations Department of Economic and Social Affairs, 2018; Rosling et al.,
2018). The increase in size will not come from the rise in the population of young people
but from the rise in the population of adults and the elderly. This shift in demographics
will highlight existing population health problems and bring new health-related challenges
to the fore, with age-dependent cancer, neurodegenerative, cardiovascular, and chronic
diseases continuing to be the dominant health issues. To address these problems, new drug
development strategies will need to be devised that benefit both patients-by prolonging their
comparable quality of life and reducing healthcare costs-and pharmaceutical developers
by introducing more efficient, rapid, and cost-effective drug discovery and development
techniques.

Drug discovery is a long and arduous process with a high risk of failure (Wong et al.,
2019, Dowden andMunro, 2019). It takesmore than a decade andmore than a billion dollars
to bring a single drug to market (which means that the total cost to pharma companies
is even larger when accounting for failed drugs). The chance of a compound entering the
preclinical stage and eventually being FDA-approved has been 1 in 20,000 to 30,000 over
the last couple of decades (Yamaguchi et al., 2021).The cost and complexity of drug research
have led major pharmaceutical companies to decrease their involvement in certain disease
categories, such as cardiovascular and neurological diseases (Dowden andMunro, 2019), or
to abandon early research and rely on acquisitions of smaller biotech companies that have
drugs in preclinical or early clinical stages of development.

All these challenges have forced the pharmaceutical industry to accept in silicomethods
as a means of reducing costs and expediting development. Classical tools, such as molecular
dynamics (MD), although offering a high level of accuracy and detailed insights into the
behavior of proteins, are too expensive for high-throughput studies and are thus used
only for evaluating targets and a small number of compounds. Those limitations opened
a space for applying machine learning (ML) in drug development. While it has been used
in academia for decades, with occasional excursions in the industry, ML came into the
spotlight in recent years with the advancements in large language models (LLMs) and
denoising diffusion probabilistic models and their use in computational structural biology.
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The successes of the AlphaFold and RosettaFold models, along with
the subsequent Nobel Prize award to Demis Hassabis and John
M. Jumper for protein fold prediction and to David Baker for
computational protein design, led many to believe that the majority
of structural biology and, relatedly, drug design problems would
be easily solved. Those were high hopes because ML, although
powerful, has limitations. One of the most significant limitations
of ML models is their poor generalization outside of training
space, making them strongly dependent on the compositions of
the training set. An additional issue is, paradoxically, the simplicity
with which it is now possible to implement ML models. Modern,
advanced ML libraries (PyTorch and TensorFlow) enable the easy
deployment of ML models, often without delving into the details
of biological phenomena being analyzed. This can lead to a
superficial understanding of the results obtained with anMLmodel.
Furthermore, the “black-box” nature of ML models often creates
challenges for their adaptation in medical applications, and drug
discovery. To bridge the gap between computational power and
complex biological systems, interpretable models are needed.

With all this in mind, we conceptualize this Research
Topic with the idea of presenting research that utilizes ML
protocols/architectures but offers a detailed and comprehensive
interpretation of observed phenomena.

The first paper in this Research Topic, by Chen et al., deals with
the detection of peptides that can bind major histocompatibility
complex (MHC) class-I proteins. The authors designed two
Convolutional Neural Network-based methods, ConvM and
SpConvM, to tackle the binding prediction problem and conducted
a thorough bioinformatics study of the results. They show that
their method outperforms the current state-of-the-art, allele-
specific method in prioritizing and identifying the most likely
binding peptides.

Huang et al. addressed the detection of hydration sites in
proteins and the prediction of water molecule positions using ML.
This is an important issue in drug design as the analysis conducted
prior indicates that the majority of ligand binding sites in protein-
ligand structures contain at least one bridging water molecule at
the interface. The authors’ two-component (scoring and sampling)
model outperformed alternative approaches by a large margin.

The next paper also deals with peptide classification. Khabaz
et al., developed a hierarchical machine-learning model for
classifying peptides with antimicrobial activity against S. aureus.
Their two-level model first classifies peptides into Anti-Microbial
Peptides (AMPs) and non-AMPs. The second level then classifies
AMPs as active and inactive against S. aureus. The model uses
linguistic and physicochemical properties, which were selected
through cross-validation-based feature selection to identify the
most important features. The model can be used in drug discovery,
peptide design, and functional annotation of peptides.

Faris et al., developed a method for discovering selective
inhibitors against JAK1 and JAK3. The method uses QSAR
models optimized with multiple linear regression and artificial
neural networks (ANN). It enabled the identification of optimal
compounds exhibiting both favorable affinity and stability during
a 100 ns molecular dynamics trajectory. This approach, developed
with the help of ANNs, has demonstrated its capability to predict
biological activity and stability.

Chomicz et al., used clustering and machine learning protocols
to develop a method for antibody grouping using clonotype,
sequence, paratope prediction, structure prediction, and embedding
information. The authors used advanced methods for fast sequence
clustering and language models to cluster paratopes. For structure
clustering, they applied an adaptation of AlphaFold2 to model
antibodies and a fast greedy algorithm-based tool for similarity
estimation. The last layer in their architecture is a self-supervised
embedding-based language model. They use it to cluster antibody
sequences in the latent space. Their results indicate that novel, ML-
based methods offer no advantage over standard sequence-based
tools for probe-based binder mining. However, they noticed that the
advancedMLmethodsareuseful for epitopebinning.Thus theauthors
concludethatadvancedmethodsarebettersuitedforseparatingagiven
dataset, rather than to perform data-mining experiments.

Ahmadi et al. developed a machine-learning protocol that
uses pharmacophore features to separate true binding ligands
from decoys for four protein targets. They first used molecular
dynamics simulation to generate pharmacophore feature sets from
protein-ligand complex conformations. Then, they applied AI/ML
algorithms to reduce the whole set of those features to a much
smaller set.They showed that this protocol is effective for true binder
prediction while remaining medicinal-chemistry friendly.

The papers published in this Research Topic focus on leveraging
machine learning to analyze biological models, predict molecular
behaviors, and aid in drug discovery. They incorporate ML into
diverse applications, such as peptide-MHC binding prediction,
protein-ligand interaction prediction, antimicrobial peptide
classification, and antibody clustering. While also demonstrating
how these protocols can identify both small-molecule and antibody
binders, providing meaningful biological insights.
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