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LT-YOLO: long-term temporal
enhanced YOLO for stenosis
detection on invasive coronary
angiography
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1School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, China, 2College of Mining
Engineering, University of Science and Technology Liaoning, Anshan, China

Coronary artery stenosis detection by invasive coronary angiography plays
a pivotal role in computer-aided diagnosis and treatment. However, it
faces the challenge of stenotic morphology confusion stemming from
coronary-background similarity, varied morphology, and small-area stenoses.
Furthermore, existing automated methods ignore long-temporal information
mining. To address these limitations, this paper proposes a long-term temporal
enhanced YouOnly LookOnce (YOLO)method for automatic stenosis detection
and assessment in invasive coronary angiography. Our approach integrates
long-term temporal information and spatial information for stenosis detection
with state-space models and YOLOv8. First, a spatial-aware backbone based
on a dynamic Transformer and C2f Convolution of YOLOv8 combines the
local and global feature extraction to distinguish the coronary regions from the
background. Second, a spatial–temporal multi-level fusion neck integrates the
long-term temporal and spatial features to handle varied stenotic morphology.
Third, a detail-aware detection head leverages low-level information for
accurate identification of small stenoses. Extensive experiments on 350 invasive
coronary angiography (ICA) video sequences demonstrate the model’s superior
performance over seven state-of-the-art methods, particularly in detecting
small stenoses (<50%), which were previously underexplored.
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1 Introduction

Invasive coronary angiography is collected with the X-ray cardiovascular angiography
equipment. Coronary artery stenosis detection is a crucial task in computer-aided
diagnosis and coronary artery disease (CAD) treatment. CAD, resulting from the
accumulation of the inner wall’s atherosclerotic plaque of the coronary artery (Lu et al.,
2021), is a leading cause of death worldwide (Tsao et al., 2023). In high-income
countries, it accounts for approximately one-third of total deaths (Bauersachs et al.,
2019). The stenosis severity provides a basis for appropriate clinical treatment
strategies for CAD. Invasive coronary angiography (ICA) has been utilized to
assess stenosis severity (Garrone et al., 2009). It displays the coronary arteries with
X-ray cardiovascular angiography equipment, allowing clinicians to evaluate and
determine whether coronary stenosis is present. However, traditional visual assessment

Frontiers in Molecular Biosciences 01 frontiersin.org

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2025.1558495
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2025.1558495&domain=pdf&date_stamp=2025-04-02
mailto:wangxs@smail.sut.edu.cn
mailto:wangxs@smail.sut.edu.cn
https://doi.org/10.3389/fmolb.2025.1558495
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1558495/full
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1558495/full
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1558495/full
https://www.frontiersin.org/articles/10.3389/fmolb.2025.1558495/full
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Li et al. 10.3389/fmolb.2025.1558495

of the degree of stenosis relies on experienced clinicians.This process
is time-consuming and subjective (Wu et al., 2020). Furthermore,
the visual assessment tends to focus on severe stenoses and
ignores stenoses of less than 50%, which are also meaningful for a
CADdiagnosis (Jiménez-Partinen et al., 2024).Therefore, automatic
detection of stenoses in ICA images is of utmost importance in the
diagnosis and treatment of CAD. The stenosis detection process is
shown in Figure 1A.

Stenotic morphology confusion poses challenges to stenosis
detection in the ICA images. Figure 1B visually illustrates these
challenges. First, the contrast between the coronary artery and the
background is low. The low contrast is caused by an insufficient
amount of contrast agent and the limited power in the X-ray
(Li et al., 2024). It leads to confusing the coronary artery with the
background. This confusion hinders stenosis detection and stenosis
severity assessment. Second, the stenotic morphology is varied. The
different views and the heartbeat movements result in different
stenotic morphology (Pang et al., 2021). These factors lead to the
misdetection of the stenosis. Third, the area of the stenosis is small
with respect to the whole image.The small area makes it easy to lose
the details of the stenosis and hinders the assessment of the stenosis
severity, especially when the stenosis percentage is less than 50%.

Current stenosis detection methods can be categorized into
two types: one focusing on single-frame images (Compas et al.,
2014; Mohan and Vishnukumar, 2016; Wan et al., 2018; Kishore
and Jayanthi, 2019; Au et al., 2018; Danilov et al., 2021; Cong et al.,
2019a; Zhang et al., 2022) and the other on temporal image
sequences (Wu et al., 2020; Pang et al., 2021; Zhang et al., 2019).
For single-frame approaches, some methods (Compas et al., 2014;
Mohan and Vishnukumar, 2016; Wan et al., 2018; Kishore and
Jayanthi, 2019; Au et al., 2018) detect stenosis by utilizing vessel
diameters. These approaches first extract the vessels, calculate
diameter variations, and then locate stenotic regions based on these
changes. However, such methods impose strict requirements on the
accuracy of vessel boundary segmentation.

Other single-frame approaches directly perform localization
and stenosis classification on cross-community access (XCA)
images. For instance, Du et al. (2018) used a multi-level
convolutional neural network to extract texture features at
different levels for stenosis detection and localization. Similarly,
Cong et al. (2019a) employed a combination of convolutional
neural networks and recurrent neural networks to select key
frames and classify coronary artery stenosis. However, a single-
frame image carries limited information. In particular, the
stenosis is moving in each frame, and it is difficult to assess
the full picture of the stenosis at a single time point. Temporal
information helps better observe and understand the stenosis, so
many methods that utilize temporal context have been proposed.
The dynamic information of the stenosis in a time series helps
comprehensively observe the stenosis from various morphological
changes. For example, Zhang et al. (2019) extracted sequential
temporal features using a 3D convolutional neural network and
an attention mechanism to assist in stenosis detection from
keyframe images. Pang et al. (2021) extract feature maps frame
by frame from the sequence, use an attention mechanism to fuse
sequential features, and decode the output to generate stenosis
detection boxes.

However, these methods ignore the long-term temporal
information, such as the changes in the whole video. While short-
term temporal information can partially mitigate these issues by
tracking vessel state changes, persistent noise may be incorrectly
interpreted as normal vessel behavior. This misinterpretation
compromises detection reliability. In contrast, long-term temporal
information can obtain precise vessel structure information by
capturing changes in vessels and their environment over an extended
period. Some methods, such as long short-term memory networks
(LSTMs) (Cong et al., 2019b; Cong et al., 2023; Rodrigues et al.,
2021) and recurrent neural networks (RNNs) (Fischer et al.,
2020), can extract temporal information to a certain extent, but
when the sequence becomes longer, it is easy to forget long-
distance information, and performance will decrease (Qin et al.,
2024). At the same time, LSTM is also susceptible to noise in
the sequence (Qin et al., 2023).The lack of such long-term temporal
information makes it difficult for the model to remove noise from
the complex temporal changes in ICA videos and extractmore stable
and generalized features. These limitations hinder the effectiveness
of these methods for stenosis detection and evaluation.

Recently,Mambabasedonstate-spacemodelshasbeenresearched
as an effective and economical method for modeling long-term
sequences (Gu and Dao, 2023; Zhang et al., 2024). Mamba excels
at capturing complex dependencies in sequential data and its data-
dependent state parameters also allow for flexible state modeling.
Moreover,Mamba canmodel sequences in linear time.This efficiency
surpasses other sequence modeling methods (Dang et al., 2024).
Mamba shows great potential for embedding long-term temporal
information into the stenosis detection pipeline.

This article proposes a long-term temporal enhanced You Only
Look Once (YOLO) (LT-YOLO) method for stenosis detection and
assessment on invasive coronary angiography (shown in Figure 1C).
LT-YOLO combines long-term temporal information and multi-
level spatial information through state-space models to identify
diverse stenotic morphology. It is based on a YOLOv8 structure
and realizes the following improvements: First, a spatial information
perception backbone is designed. This backbone replaces the last
layer of the YOLOv8 backbone with our carefully designed dynamic
transformer block. The C2f structure of the YOLOv8 backbone
gains great performance on local information extraction, while the
dynamic transformer block utilizes our dual-stream self-attention
mechanism to flexibly extract the context and structural features
of the images. The combination of the two parts enables the
model to better distinguish between the coronary artery and
the background semantics. Second, a spatial–temporal multi-level
fusion neck is designed. This neck fuses temporal and spatial
information atmultiple feature levels. It conveys long-term temporal
information among each feature level through the state-spacemodel.
Then, the PANet in YOLOv8 conveys spatial information across
different levels.Thismulti-level spatial-temporal information fusion
mechanism enables themodel to perceive the features of the stenosis
regions frommultiple dimensions, thus handling the varied stenotic
morphology. Third, a detail-aware detection head is designed. This
head utilizes the feature from the first layer to convey low-level
information into the head with a cross-attention mechanism. This
low-level information helps the head identify details of the stenosis
and handle the small stenosis regions. Our contributions can be
summarized as follows:
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FIGURE 1
The contribution of LT-YOLO. (A)The process of coronary stenosis detection and assessment. (B)LT-YOLO addresses the challenges of stenotic
morphology confusion, such as the coronary-background similarity, varied stenotic morphology, and small-area stenoses. (C)This paper proposes a
method that embeds long-term temporal information with state-space models into the object detection pipeline.

1. This paper describes an automatic tool for stenosis detection
and assessment in invasive coronary angiography to assist the
workflow of the computer-aided diagnosis;

2. This paper proposes to mine long-term temporal
information for stenosis detection, which has been
ignored in the previous research;
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3. This paper inspects the stenotic morphology confusion
problem in the stenosis detection task and solves it in the
backbone, neck, and detection head of the YOLO;

4. Extensive experiments on 350 ICA video images show that LT-
YOLO achieves superior stenosis detection compared to seven
state-of-the-art methods. Its performance is especially good
when detecting stenoses of less than 50%, which have been
ignored by the previous methods.

2 Related work

2.1 Automatic detection of coronary artery
stenosis

The detection and evaluation of coronary artery stenosis is a
classic problem in the field of automated cardiovascular disease
assessment. With the rapid development of artificial intelligence,
an increasing number of studies have employed ICA image data
for automated analysis. By leveraging computer vision and object
detection methods, stenosis locations and types can be identified
quickly and objectively, aiding in diagnostic analysis.

Early methods for automatic stenosis detection primarily relied
on comparing variations in vessel radius. For example, Compas et al.
(2014) calculated vessel diameters based on image intensity changes,
generating a vessel diameter surface where the minimum value
corresponded to the stenotic region.Wan et al. (2018) applied image
enhancement techniques and extracted vessel skeletons using the
level set algorithm. Subsequently, the vessel radius and orientation
were calculated, and local extrema were used to identify stenotic
locations. Coronary artery segmentation results are often utilized to
extract vessel diameters, which are then used to detect and classify
stenosis. However, such methods (Mohan and Vishnukumar, 2016;
Kishore and Jayanthi, 2019; Au et al., 2018) heavily depend on the
accurate extraction of vascular structures, making it challenging to
achieve reliable and consistent stenosis detection.

With the development of neural networks, some end-to-end
methods have been directly applied to stenosis detection. Ovalle-
Magallanes (2022) combined convolutional neural networks (CNN)
and quantum networks to directly extract stenotic regions from
single-frame images. Du et al. (2018) used multi-level CNNs to
extract features of different sizes from images and then performed
stenosis detection and localization. Cong et al. (2019a) employed
a combination of CNN and recurrent neural networks (RNNs)
to first select key frames for stenosis and then classify coronary
artery stenosis.

Single-frame-based methods struggle to address issues such
as vessel deformation caused by respiratory and cardiac motion,
vessel occlusion, and limited foreground-background differences.
Temporal information can be used more comprehensively to
evaluate stenosis. Zhang et al. (2019) first used two 3D CNNs to
integrate temporal information from angiographic sequences at two
angles and determined the severity of stenosis aftermerging features
with an attention mechanism. Wu et al. (2020) used temporal
constraints to reduce false positives. However, these constraints are
highly sensitive to vessel movement. Pang et al. (2021) performed
stenosis detection frame by frame in the sequence and then fused
features from candidate boxes in these frames, optimizing the initial

detection boxes. However, subsequent feature fusion depends on
the results of the initial single-frame detection. Han et al. (2023)
proposed a spatiotemporal feature aggregation module, which
extracts features from local regions of interest and aggregates them
using an attention mechanism for stenosis detection. However,
the computational demands of the attention mechanism and the
proposal of regions of interest significantly slow down inference
speed. In summary, while the methods combining temporal
information have improved stenosis detection, they do not explicitly
model long-term temporal context and thus struggle to globally
understand dynamic evolution. The reliance on local temporal
information may limit the effectiveness of these methods in stenosis
detection and assessment.

2.2 Applications of Mamba to computer
vision

Mamba (Gu and Dao, 2023) is a selective structured state-space
model (SSM), where the state-space model serves as a system for
mapping sequential data. It maps inputs to latent state variables
and generates outputs through the evolution of these states. Due to
its global receptive field and linear complexity, Mamba has gained
considerable attention in computer vision tasks.

Ma et al. (2024) proposed a U-shaped network combining
convolutional neural networks and Mamba for biomedical image
segmentation, which enhances long-term dependency in images.
Zhu et al. (2024) introduced bidirectional scanning Mamba blocks,
a computationally efficient and general-purpose vision backbone.
Yang et al. (2024) proposed temporal Mamba blocks using multi-
directional scanning tomodel spatiotemporal dependencies in video
sequences. Shi et al. (2024) developed amulti-levelMambamodel to
enhance the influence of long-term information.

Other works have applied Mamba in medical image analysis
(Xing et al., 2024; Ye et al., 2024; Hao J. et al., 2024; Liu et al., 2024;
Ruan and Xiang, 2024). For example, Hao et al. (2024a) introduced
frequency-domain features into Vision Mamba to improve the
performance of low-contrast cone beam computed tomography
segmentation. Liu et al. (2024) enhanced the performance of
Mamba in medical image segmentation networks by using models
pre-trained on natural datasets. Ruan and Xiang (2024) also
integrated Mamba into the U-shaped network structure for medical
image segmentation, improving computational efficiency.

2.3 Applications of YOLO in medical
imaging

You Only Look Once (YOLO) (Redmon et al., 2016) is an object
detection algorithm that uses convolutional neural networks to
detect regions of interest in real time. It splits an image into a grid of
cells, and each cell is in charge of detecting objects in a particular
region. It is faster than the traditional two-stage methods, which
makes it applicable to real-time scenarios. YOLO has undergone
several iterations andupgrades since its initial proposal (Ragab et al.,
2024), overcoming limitations and improving performance. Its
remarkable performance has garnered widespread attention and
application across various fields.
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In medical image processing, YOLO is mainly applied to the
detection and localization of anatomical structures (Mortada et al.,
2023; Zeng et al., 2023), lesions (Baccouche et al., 2021; Santos et al.,
2022), tumors (Montalbo, 2020), and other regions of interest
(Zhou et al., 2023). YOLO helps enhance diagnostic accuracy and
facilitates more effective treatment processes. YOLO has strong
detection capabilities across various modalities of medical images,
including X-rays (Hao S. et al., 2024; Adji et al., 2021), MRI scans
(Almufareh et al., 2024; Rahimi et al., 2024), ultrasound images
(Wang et al., 2023; Cao et al., 2019), and CT scans (Ji et al., 2023;
Liu, 2022). It achieves high detection accuracy for conditions such
as lung nodules (Liu, 2022), breast nodules (Hao S. et al., 2024),
vascular stenosis (Wang et al., 2024), and tumors (Rahimi et al.,
2024). YOLO has been successfully applied in the segmentation
of organs such as the heart (Balasubramani et al., 2024), liver
(Randar et al., 2024), and other organs (Hammami et al., 2020).
Precise organ segmentation is crucial for disease assessment and
surgical planning.

YOLO also serves as a valuable tool for computer-assisted
diagnosis (Wang et al., 2022; Amiri Tehrani Zade et al., 2023). It can
detect and track surgical instruments and other regions of interest in
real time during surgery.This ability helps surgeons quickly identify
targets, plan surgical paths, and ultimately improves the safety and
efficiency of surgeries.

3 Methods

The study designs the LT-YOLO to detect stenosis and assess
its severity. As a whole, the LT-YOLO embeds three novel modules
into the YOLOv8 structure. The three modules aim to handle
stenotic morphology confusion and detect small, moderate, and
severe stenosis accurately.

Specifically, the input of the network is a sequence of frames
X = {x0,x1,…,xn}. The output is the prediction result set of the
sequence:R = {(r0,d, r0,a), (r1,d, r1,a),…,(rn,d, rn,a)}, where ri,d denotes
the detection result of the i-th frame, and ri,a denotes the severity
assessment result of the i-th frame.

3.1 Spatial-aware backbone

The spatial-aware backbone is designed to extract the spatial
information of each frame. The structure of a spatial-aware
backbone is shown in Figure 2A. It replaces the last layer of
the YOLOv8 backbone with the dynamic transformer block. The
spatial-aware backbone can be divided into several stages. The C2f
convolution is utilized to extract the low-level features f. Then, f is
fed into the dynamic transformer block (shown in Figure 3A) using
Equation 1:

Aj
i = s(l( f

j
i)) + x

Yj
i =MLP(l( f ji)) +A

j
i

, (1)

where x denotes the input feature map of the transformer
block. l denotes the layer norm. s denotes the core of our
dynamic transformer block–the dual-stream self-attention (shown
in Figure 3B).MLP denotes the multi-layer perception.

The dual-stream self-attention can achieve dynamic self-attention
based on the semantic relationships in each frame of ICA sequences
to distinguish between the coronary arteries and the background.
The challenge of distinguishing stenotic regions stems from their
diverse feature presentations and similarities to background coronary
artery tissue. The dual stream combines the regular and deformable
self-attention to extract comprehensive semantic context features.
These semantic context features help to improve this distinguishing
ability (Sun et al., 2023). As the core of the transformer, the self-
attention mechanism is a widely known method for extracting
context information (Vaswani, 2017). However, the regular self-
attention mechanism is restricted by the fixed patch partitioning
mechanism. It cannot flexibly allocate attention positions for different
input images, thus failing to obtain accurate semantic information.
Deformable self-attention is a mechanism that flexibly allocates
attention positions (Xia et al., 2022). It learns several groups of offsets
that are independent of the query to shift the key and value to
important regions, ensuring different responses to different image
regions. The dual-stream self-attention combines the regular self-
attention and the deformable self-attention, enabling the module to
generate semantic features that take both global and object-specific
information into account.This complementary approach significantly
enhances themodel’s ability to differentiate between stenotic andnon-
stenotic areas by leveraging rich contextual information that singular
attention mechanisms might miss.

The structure of the dual-stream self-attention
is shown in Figure 3B. Specifically, the dual-stream self-attention
sees the deformable self-attention and the regular self-attention as
two parallel branches and generates keys and values, respectively.
The two groups of key-value are concatenated in dimension and then
subjected to dimension reduction of feature dimensions through a
Convolution layer. The concentrated key value is utilized to process
the queries.

The dual-stream self-attention can be denoted as Equation 2:

K,V = Conv(C( fWk, f′Wk)) ,Conv(C( fWv, f′Wv))

Q = fWq

am = σ(QmKmT

√dk
)Vm, m = 1,…,M

A = C(z1,…,zM)W f

, (2)

whereQ, K, and V denote the query, key, and value of self-attention.
f denotes the input of the dual-stream self-attention. f′ denotes the
deformable feature map. Wq, Wk, and Wv denote the projection
matrices for Q, K, and V. W f denotes the projection matrix for
the output. am denotes the output of the m-th attention head.
A denotes the output of the multi-head attention. σ denotes the
sigmoid function. C denotes the concatenation. Conv denotes the
convolution layer.

The deformable feature map f′ is generated using Equation 3

x′ =Φ ( f;p+Δp)

p = {(i′, j′) |i′ = 2i
h/r− 1
, j′ =

2j
W/r− 1

}

where i, j ∈ {x|x ∈ ℕ,0 ≤ x ≤ H
r
− 1}

Δp = θ (Q)

(3)
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FIGURE 2
The structure of LT-YOLO. (A) T_0-T_n denote the time steps of the input sequence. P1-P5 denote different levels of the feature maps. C2fConv
denotes the standard convolution layer of YOLOv8. Dynamic Transformer block denotes the block proposed in this article. (B) PANer denotes the
feature fusion process in YOLOv8. (C) q, k and v denote the query, key and value of the cross-attention mechanism. Detect denotes the detection head
of the model.

FIGURE 3
The structure of the dynamic Transformer block. (A) The Norm&FFN denotes the process of the normalization and the feed forward network. Add
denotes the element-wise addition operation of the feature maps. (B) F1 and F_2 denotes the sampled features of the input feature map and the
deformable feature map, respectively. q, k, v denote the query, value and key of the standard self-attention. q’, k’, v’ denote the query, value and key of
the deformable self-attention. Wq, Wk, W_v Wq’, Wk’ and W_v’ denote the projection matrices of the queries, keys and values. θ denotes the function
for calculating the offset of the reference points. Conv denotes the convolution layer that combines the keys and values.

The format of this equation seems incorrect. where p denotes
the reference point set. H and W denote the height and width
of f. r denotes the distances between each point. θ denotes

the function for calculating the offset of the reference points.
Specifically, θ is set as a network with a DWConv layer for
estimating the offset and a 1∗ 1 Convolution layer for reducing
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FIGURE 4
The details of the temporal Mamba.

FIGURE 5
Example of stenosis detection and assessment images in the CADICA dataset. The 0, 1, and 2 denote the p0-50, p50-70, and p70-100 stenoses,
respectively.

the feature dimension. The sampling function Φ(⋅, ⋅) is set as
Equation 4:

ϕ ( f;p) = ∑
(rx,ry)

max(0,1− |px − rx|)max(0, |1− py − ry|) f [ry, rx;] ,

(4)

where (rx, ry) denotes the indexes of the locations on f.

3.2 Multi-level spatial–temporal fusion
module

The multi-level spatial-temporal fusion module aims at
embedding temporal information into the object detection pipeline.
The structure of the multi-level spatial-temporal fusion module

is shown in Figure 2A. Specifically, it splits the feature map from
each level into several patches and sees each patch as a state. The
temporal information is conveyed through the Mamba within
each level. Then, the spatial information is aggregated across
different levels.

The process of conveying temporal information can be
denoted as Equation 5:

Fi=Mamba(xi)

xi= {Si,P0T0
,Si,P1T0
,…,Si,PnT0

,…,Si,P0Tn
,Si,P1Tn
,…,Si,PnTn

}

Si= PatchEmd( fi)

, (5)

whereMamba denotes the temporal Mamba. PatchEmd denotes the
patch embedding process. xi denotes the generated sequence of the
feature map from the i-th level.
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FIGURE 6
The label distribution of our dataset.

The structure of the temporal Mamba is shown
in Figure 4. The state-space models can be denoted
as Equation 6:

ht = Aht−1 +Bxt
SSM(xt) = Cht

(6)

where x denotes the input sequence. ht denotes the state
in time t. A,B and C denote the parameters of the
state-space models.

In LT-YOLO, the bidirectional SSM is utilized to
comprehensively mine the long-term information. The forward
SSM and backward SSM can be denoted as Equation 7:

SSM f (X) = SSM (Conv (X))

SSMb (X) = SSM (Conv (Inv (X)))
, (7)

where Inv(⋅) denotes the inverse function.
Then, the spatial information is fused across each level through

the PANet in YOLOv8 (Sohan et al., 2024).
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FIGURE 7
The loss curves for model training.

TABLE 1 Performance comparison experiments between LT-YOLO and other state-of-the-art object detection methods based on the stenosis detection
and assessment dataset.

Model APp0−50(%) APp50−70(%) APp70−100(%) mAP@0.5 (%)

RetinaNet 37.5 69.8 73.2 60.2

Faster R-CNN 52.2 70.7 75.6 66.2

Mask R-CNN 59.1 70.5 75.1 68.2

Cascade R-CNN 61.7 71.5 70.1 67.8

YOLOv3 63.2 72.5 77.1 70.9

YOLOv5 64.5 72.9 77.8 71.7

YOLOv8 66.2 75.9 78.3 73.5

LT-YOLO 70.1 80.4 78.6 76.4

aTables may have a footer.
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FIGURE 8
Inference time performance of LT-YOLO and other state-of-the-art methods.

FIGURE 9
FPS-mAP relationship for the comparison experiment.

TABLE 2 Ablation study on LT-YOLO. A denotes the spatial-aware backbone. B denotes the multi-level spatial–temporal fusion neck. C denotes the
detail-aware head.

Model APp0−50(%) APp50−70(%) APp70−100(%) mAP@0.5 (%)

YOLOv8 66.2 75.9 78.3 73.5

+A 65.3 79.2 78.9 74.1

+B 69.1 78.7 78.8 75.5

+A + B + C(LT-YOLO) 70.1 80.4 78.6 76.4

3.3 Detail-aware detection head

The detail-aware detection head is based on the improved
YOLOv8 head. It extracts the detailed information from the low-
level feature map to enhance the structural information absent in
the high-level features. It is beneficial for detecting small stenosis

regions. To achieve this purpose, the detail-aware detection head
utilizes a cross-attention mechanism between the low-level features
and the high-level feature maps (Shim et al., 2023). The structure of
the detail-aware detection head is shown in Figure 2C.

Specifically, the detail-aware detection head utilizes F1 to
generate the key and value, and the F3,F4,F5 as the queries to
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FIGURE 10
Comparison of the FPS-mAP relationship of the innovative module proposed in this paper. A denotes the spatial-aware backbone. B denotes the
multi-level spatial–temporal fusion neck. C denotes the detail-aware head.

implement the cross-attention mechanism. The process can be
denoted as Equation 8:

fca (Q,K,V) = softmax(QKT

√dk
)V, (8)

where fca denotes the cross-attention function, and dk is the
dimensionality of the key. In this module, Q,K,V can be defined as
Equation 9:

K,V= fpl ( fLN (F
1) ,dk,dk)

Qi = fpl ( fLN (F
i) ,dk,dk)

, (9)

where i = 3,4,5, fLN is the linear norm, and fpl is the linear
projection. Then, F3,F4,F5 are decoded to the boundary-
enhancement feature map using Equation 10:

CAi = fca (Qi,K,V)

Pi = fFFN ( fLN (CAi + Fi)) +CAi + Fi
, (10)

where FFFN denotes the feed forward network.
Then, the decoded multi-level features are fed into the detection

head to obtain the final prediction boxes.

4 Experiments

4.1 Dataset, experimental setup, and
evaluation metrics

4.1.1 Dataset and experimental setup
The experiments are performed on 350 videos extracted from

the Coronary Angiography Digital Imaging and Communication
Archive (CADICA) (Jiménez-Partinen et al., 2024). CADICA is a
public dataset composed of ICAvideos of 42 patients.The annotations
of thedatasetare in the formatof (c,x,y,w,h)of theboxes that surround
the stenosis regions. The c denotes the class of the stenosis, which is
divided into three categories according to the stenosis percentage:
<50% (p0-50, small), 50%–70% (p50-70, moderate), and >70% (p70-
100,severe).Figure 5showstheexample imagesofourdataset.Figure 6
shows the label distribution of our dataset, from which 350 videos

are sampled. Each video is composed of 10 consecutive contrast-
filled frames. For the dataset composition, the diversity in sequence
selection is ensured by incorporating various vascular patterns and
stenosis degrees. Furthermore, for each patient, multiple viewing
perspectives are sampled to capture anatomical variations. These
selection strategies ensure the maximum data representativeness.
The 5-fold cross-validation is implemented, with three folds for
training, one for validation, and one for testing. The final results
reported in the manuscript represent the average performance across
all folds. The learning rate (lr) is configured to 1e−2.The momentum
parameter is adjusted to 9e−1 with the weight decay configured
to 1e−4. During the experiment, each frame is resized into 512×
512. During training, all experimental methods utilize identical
data augmentation strategies: flipping, brightness adjustment, and
copy–paste operations. The hardware environment utilized in this
experiment is NVIDIA RTX A6000.

4.1.2 Evaluation metrics
Theaverageposition(AP)ofdifferentclassesandthemeanaverage

position (mAP) at 0.5 are used to evaluate the detection result of
LT-YOLO.The four metrics are calculated through Equation 11:

P = TP
TP+ FP

R = TP
TP+ FN

AP = ∫
1

0
PdR

mAP =
∑K

i=1
APi

K

, (11)

where TP denotes the true positive instances (correctly detected
objects). FP denotes the false positive instances (incorrectly detected
objects). FN denotes the false negative instances (objects not
detected). P denotes the precision. R denotes the recall. K denotes
the num of the classes.

The frames per second (FPS) value is utilized to assess the
inference time. The FPS is calculated with Equation 12:

FPS = N
t
, (12)

where N represents the quantity of frames, and t is the processing
time measured in seconds.
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FIGURE 11
The visualization results of LT-YOLO and YOLOv8. The dark blue boxes denote the ground truth of small stenoses. The light blue boxes denote the
ground truth of moderate stenoses. The black boxes denote the ground truth of severe stenoses. The red, red, and white boxes denote the prediction
results of small, moderate, and severe stenosis, respectively.

4.2 Experimental results and analysis

A comparison experiment and ablation study is conducted
on our dataset to evaluate the effectiveness of LT-YOLO. The
comparison experiment compares the performance of LT-
YOLO with other object detection methods. The ablation
study proves the effectiveness of the three components of LT-
YOLO. Figure 7 illustrates the training process of LT-YOLO.
The loss curves in Figure 7 indicate that both the train loss
and the val loss show a trend of declining rapidly at first and

then remaining relatively stable. It suggests that the training
pipeline is effective with no signs of either under-fitting or
over-fitting.

4.2.1 Comparison experiment
A comparison experiment is conducted between LT-YOLO

and the state-of-the-art object detection methods, including
RetinaNet (Ross and Dollár, 2017), Faster R-CNN (Ren et al.,
2016), mask R-CNN (He et al., 2017), Cascade R-CNN (Cai
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and Vasconcelos, 2018), YOLOv3 (Farhadi and Redmon, 2018),
YOLOv5 (Jocher et al., 2022) and YOLOv8 (Sohan et al., 2024).

As shown in Table 1, LT-YOLO gives the best performance. The
overall mAP increases by 2.9%–16.2%. The APs of p0-50, p50-70,
and p70-100 increase by 32.6%–3.9%, 4.5%–10.6%, and 0.3%–8.5%,
respectively. These results prove the superior performance of LT-
YOLO against other object detection methods.

Figure 8 compares the inference time (frames per second) of
all methods. Although LT-YOLO shows a slightly slower speed
than YOLOv8 (which has the fastest inference time), it achieves
better accuracy in coronary artery stenosis detection. Meanwhile,
LT-YOLO still maintains faster inference times than all other
comparison methods. This trade-off between speed and accuracy
is appropriate for clinical applications where detection precision
takes priority over processing speed. Figure 9 shows the FPS-mAP
relationship comparison of all methods in detail. The LT-YOLO
proposed in this article achieves the best detection effect with
suboptimal inference time performance.

4.2.2 Ablation study
To evaluate the effectiveness of the different components of LT-

YOLO, an ablation study was conducted on the stenosis detection
and assessment dataset.The result is shown in Table 2. A denotes the
spatial-aware backbone. B denotes the multi-level spatial-temporal
fusion neck. C denotes the detail-aware head. Table 2 indicates that
the spatial-aware backbone increases the APs of p50-70 and p70-
100 to 3.3% and 0.6%, respectively. However, it decreases the AP
of p0-50 by 0.9%. This is because the dynamic transformer block
in the spatial-aware backbone pays attention to global information
extraction and may lose detailed information. The multi-level
spatial-temporal fusion neck increases the APs of p0-50, p50-
70, and p70-100 to 2.9%, 2.8%, and 0.5%, respectively. With the
low-level information enhancement of the detail-aware head, LT-
YOLO finally increases the mAP@50 by 2.9%. It also shows that
the full model decreases the A + B model by 0.2% in APp70−100.
This decrease is attributed to the minor noise introduced by the
detail-aware head. The head incorporates low-level information,
making the model more sensitive to the small and moderated
stenosis. However, it may introduce minor noise. Such minor noise
might slightly affect the model’s feature processing for the large
stenosis and result in a minor decrease. However, this decrease is
negligible considering the model’s overall improved performance in
stenosis detection.

Figure 10 shows the FPS-mAP relationship comparison of all
innovative models proposed in this article. The addition of the
spatial-aware backbone, the multi-level spatial–temporal fusion
neck, and the detail-aware head improves the accuracy to a certain
extent in terms of comprehensive accuracy.

4.3 Visualization results

Figure 11 illustrates the visualization results of LT-YOLO and
YOLOv8. The four rows denote the four examples of the prediction

results. In each row, the four columns denote the original image, the
ground truth, the prediction result of YOLOv8, and the prediction
result of LT-YOLO. The first row shows that LT-YOLO is able to
locate the stenosis more accurately than YOLOv8. The second row
and the last row indicate that LT-YOLO can recognize stenosis
that is ignored by YOLOv8. The third row shows that LT-YOLO is
more confident in stenosis assessment. In conclusion, Figure 11
proves the superior stenosis detection and assessment
ability of LT-YOLO.

5 Conclusion

This study proposes a long-term temporal enhanced YOLO
(LT-YOLO) for stenosis detection and assessment in invasive
coronary angiography (ICA). LT-YOLO combines the strengths
of a spatial-aware backbone, a multi-level spatial–temporal fusion
neck, and a detail-aware detection head to mine long-term
temporal information for addressing the challenge of stenotic
morphology confusion. The LT-YOLO effectively enhances
the detection of the stenosis regions and achieves superior
performance compared to existing state-of-the-art methods on
350 ICA videos. While these results are promising, future work
should focus on multi-center validation to evaluate the model’s
performance across different patient populations and imaging
protocols. This broader validation would provide comprehensive
evidence for the clinical applicability of this valuable tool in aiding
CAD diagnosis.
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