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The announcement of 2024 Nobel Prize in Chemistry to Alphafold has reiterated
the role of AI in biology and mainly in the domain of “drug discovery”. Till
few years ago, structure-based drug design (SBDD) has been the preferred
experimental design in many academic and pharmaceutical R and D divisions
for developing novel therapeutics. However, with the advent of AI, the drug
design field especially has seen a paradigm shift in its R&D across platforms.
If “drug design” is a game, there are two main players, the small molecule drug
and its target biomolecule, and the rules governing the game are mainly based
on the interactions between these two players. In this brief review, we will be
discussing our efforts in improving the state-of-the-art technology with respect
to small molecules as well as in understanding the rules of the game. The review
is broadly divided into five sections with the first section introducing the field and
the challenges faced and the role of AI in this domain. In the second section,
we describe some of the existing small molecule libraries developed in our
labs and follow-up this section with a more recent knowledge-based resource
available for public use. In section four, we describe some of the screening
tools developed in our laboratories and are available for public use. Finally,
section five delves into how domain knowledge is improving the utilization of
AI in drug design. We provide three case studies from our work to illustrate
this work. Finally, we conclude with our thoughts on the future scope of AI
in drug design.

KEYWORDS

machine learning (ML), artificial intelligence, computer aided drug design (CADD), small
molecules, BIMP

1 Introduction

Small molecule libraries play a pivotal role in modern drug discovery,
serving as essential collections of chemical compounds for identifying molecules
with desired biological activity (Dandapani et al., 2012; Saldívar-González et al.,
2020). These libraries can be broadly categorized into diverse libraries, which
offer broad structural variety, and focused libraries that target specific protein
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FIGURE 1
An overview of the evolution, current state, and future directions of small molecule drug discovery in the age of AI is presented in this Figure,
highlighting the key developments from historical advances to emerging challenges.

families or biological pathways, such as GPCR kinases
(Dandapani et al., 2012; Harris et al., 2011). The generation
of these libraries employs various methodologies, including
combinatorial chemistry, diversity-oriented synthesis, fragment-
based approaches, natural product extraction, and computational
generation of virtual libraries (Dandapani et al., 2012; Saldívar-
González et al., 2020; Sadybekov and Katritch, 2023).

The success of in silico drug design is significantly influenced
by the selection of appropriate small molecule libraries through
multiple factors (Dandapani et al., 2012). While diverse libraries
enable broad exploration of chemical space, focused libraries
can enhance hit rates for specific targets (Dandapani et al.,
2012; Harris et al., 2011). The assessment of physicochemical
properties and drug-likeness, particularly through established filters
like Lipinski’s RO5 (Lipinski et al., 1997) ensures appropriate
absorption, distribution, metabolism, and excretion characteristics
(Dandapani et al., 2012; Sadybekov and Katritch, 2023). Aqueous
solubility remains a critical factor, as poorly soluble molecules can
lead to false positives and limited optimization potential.

These libraries find application across various drug discovery
approaches. In virtual screening, libraries undergo computational
assessment for target binding potential, often in conjunction
with experimental screening to enrich compound collections
(Dandapani et al., 2012; Sadybekov and Katritch, 2023).
De novo drug design utilizes these libraries as foundations
for generating novel molecules, particularly when existing
libraries have been exhausted, incorporating target constraints
and leveraging machine learning approaches (Sadybekov and
Katritch, 2023; Chang et al., 2023). Fragment-based drug
design employs libraries of small fragments to identify weak-
binding molecules that can be elaborated into more potent
compounds (Dandapani et al., 2012; Sadybekov and Katritch,
2023), while lead optimization uses libraries to enhance
existing compounds’ properties through quantitative structure-
activity relationship (QSAR) models (Sadybekov and Katritch,
2023; Chang et al., 2023). Figure 1 provides a comprehensive
overview of how these approaches have evolved from historical
developments to current AI-integrated methodologies, highlighting

the interconnected nature of various tools and resources in modern
drug discovery.

1.1 Historical context of small molecule
libraries

Theevolution of smallmolecule drug discovery has beenmarked
by transformative technological advances since the 1980s. The
field was revolutionized by combinatorial chemistry, progressing
from Geysen’s multi-pin technology to the first small-molecule
combinatorial library by Bunin and Ellman in 1992 (Liu et al., 2017).
This advancement, integrated with high-throughput screening
(HTS) and computational methods, became fundamental to
pharmaceutical lead discovery by the late 1990s (Appell et al., 2001).

Screening methodologies evolved in parallel, with laboratory
robotics enabling automated biological assays that could generate
up to 100,000 data points daily through ultrahigh-throughput
screening platforms (Appell et al., 2001). The field progressed from
random to focused libraries, with discovery libraries decreasing
from 57% (1992–1997) to 21% (1999) (Appell et al., 2001), in
contrast to targeted and optimization libraries. Fragment-Based
Drug Discovery (FBDD) emerged as a complementary approach,
leading to FDA-approved drugs like Vemurafenib (2011) and
Venetoclax (Mureddu and Vuister, 2022; Bon et al., 2022).

The success of this evolution is exemplified by landmark drugs
such as Imatinib (Gleevec), which revolutionized chronic myeloid
leukemia treatment in 2001 (Müller, 2009; Druker and Lydon, 2000).
Venetoclax demonstrated the feasibility of targeting protein-protein
interactions, representing one of the first non-natural product
clinical agents in this space (Congreve et al., 2008; Murray and Rees,
2009). While recent trends show a shift towards biologics due to
lower clinical trial attrition rates (Sun et al., 2011), small molecules
continue to comprise approximately 40% of FDA approvals annually
(Mureddu andVuister, 2022). However, challenges persist, with only
1% of compounds progressing from discovery to approved New
Drug Application (NDA), and a 50% failure rate in clinical trials due
to ADME issues (Appell et al., 2001), emphasizing the ongoing need
for innovative approaches in small molecule drug discovery.
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1.2 Types of small molecule libraries

A fundamental distinction exists between physically synthesized
and virtually synthesizable libraries. Synthesized libraries represent
physical collections created through chemical synthesis techniques,
available through in-house programs, vendors, or contract
research organizations (Dandapani et al., 2012). Conversely,
synthesizable libraries exist as digital collections of compounds
designed in silico, considered feasible to synthesize using known
chemical reactions and commercially available reagents (Saldívar-
González et al., 2020; Sadybekov and Katritch, 2023).

Several specialized categories have emerged to address
specific drug discovery needs. Fragment libraries consist of low
molecular weight compounds (typically <300 Da) with minimal
hydrogen bond donors/acceptors, low lipophilicity, and few
rotatable bonds (Dandapani et al., 2012). Lead-like libraries
contain compounds with properties desirable for drug candidates,
designed with a balance between structural diversity and drug-
like properties (Dandapani et al., 2012; Saldívar-González et al.,
2020). Natural product libraries comprise compounds derived
from natural sources, providing valuable structural diversity
and novel scaffolds for targeting macromolecule interactions
(Dandapani et al., 2012; Heinzke et al., 2024).

Computationally generated libraries, exemplified by the GDB-
17 library (160 billion molecules) and CHIPMUNK library (95
million compounds), enable cost-effective exploration of vast
chemical spaces (Saldívar-González et al., 2020; Korablyov et al.,
2024). While offering flexibility in design and novel structures,
these face challenges including uncertainty in predicted properties
and potential synthetic inaccessibility (Dandapani et al., 2012;
Sadybekov and Katritch, 2023; Popova et al., 2018).

1.3 Filters and assessment criteria

Drug-likeness assessment primarily relies on established
parameters, with RO5 setting fundamental criteria for oral
bioavailability, including molecular weight under 500 Daltons,
CLogP less than 5, and specific limits on hydrogen bond donors
and acceptors (Dandapani et al., 2012; Ress et al., 2004). Additional
guidelines have emerged for specialized applications, such as the
“rule of 3” for fragment-based design and “rule of 2” for reagents,
providing more targeted parameters for different molecular
categories (Saldívar-González et al., 2020).

ADMET (absorption, distribution, metabolism, excretion,
and toxicity) properties form a crucial component of
molecular assessment (Dandapani et al., 2012; Saldívar-
González et al., 2020; Chang et al., 2023).Optimal passivemembrane
absorption correlates with logP values between 0.5 and 3, while
metabolism considerations focus particularly on cytochrome P450
interactions. Toxicity evaluation encompasses various factors,
including cardiac risks through hERG channel binding, with specific
attention paid to identifying pan-assay interference compounds
(PAINS) to avoid false positives in biological assays.

Synthetic feasibility evaluation employs metrics such as the
synthetic accessibility score (SAS), where scores above 6 indicate
potentially challenging synthesis (Popova et al., 2018). Structural
properties assessment includes molecular complexity measures,

examining features such as chiral centers and sp2:sp3 hybridization
ratios, alongside diversity analysis using molecular fingerprints and
clustering algorithms (Dandapani et al., 2012).

The integration of adverse drug reaction (ADR) databases has
emerged as an additional filtering criterion, enhancing toxicity
predictions. Databases such as DrugCentral provide comprehensive
structural and pharmacological details for early safety assessment
(Halip et al., 2023). Deep learning models trained on data from
Open TG-GATEs and FAERS enable ADR likelihood prediction
(Mohsen et al., 2020), while the SIDER database offers drug-ADR
pairs from FDA drug labels for validation (Ietswaart et al., 2020).
These resources, combined with machine learning approaches,
facilitate more accurate correlation of structural features with
specific adverse effects, particularly through analysis of properties
aligned with traditional drug-likeness criteria (Halip et al., 2023).
Feature selection methods and random forest models have
achieved significant improvements in ADR detection, with some
studies reaching 100% accuracy for specific compounds (Liu and
Aickelin, 2021).

1.4 Limitations of current approaches and
emerging solutions

Traditional molecular filters, while valuable, often oversimplify
molecular behavior in biological systems (Dandapani et al.,
2012). ADMET prediction models frequently demonstrate
reduced accuracy when based on computational rather than
experimental data (Dandapani et al., 2012; Patel et al.,
2020). These models particularly struggle with non-traditional
molecules like macrocycles and PROTACs, partly due
to insufficient high-quality training data. The PDBbind
(Wang et al., 2005) database, for instance, inadequately represents
“negative space” or suboptimal interactions, limiting its utility
in predicting general binding behaviour (Sadybekov and
Katritch, 2023; Vamathevan et al., 2019).

Rigid adherence to conventional filters can exclude promising
compounds with unique properties that might prove effective,
particularly for non-oral drugs or specific targets (Dandapani et al.,
2012). This narrow focus on conventional “drug-like” space
reduces the possibility of discovering novel scaffolds or
chemotypes (Saldívar-González et al., 2020; Ress et al., 2004).
Current approaches often overlook crucial molecular complexity
factors such as three-dimensionality, chirality, and sp2:sp3
hybridization ratios (Dandapani et al., 2012).

A significant limitation emerges with newer drug modalities
like macrocycles and PROTACs. Traditional molecular descriptors,
developed for conventional small molecules, fail to capture features
of macrocycle chemotypes relevant to their pharmacological
behavior (Viarengo-Baker et al., 2021). For macrocycles,
computed parameters like clogP often do not reflect true
conformation-dependent lipophilicity, and traditional rules
about rotatable bonds become questionable when applied
to macrocyclic structures (Viarengo-Baker et al., 2021).
Successful macrocycles often achieve oral bioavailability through
“chameleonicity,” adapting their conformations to different
environments (Garcia Jimenez et al., 2023), as exemplified by
cyclosporin A (Kingwell, 2023).
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PROTACs present additional challenges due to their
heterobifunctional nature and large molecular weight
(700–1,100 Da) (An and Fu, 2018). Their size provides more
opportunities for metabolic attack (An and Fu, 2018), and their
optimization requires focus on the whole molecule rather than
individual components (Weng et al., 2021). Critical considerations
include linker design, which affects entropy, selectivity, activity,
and permeability (Weng et al., 2021). These compounds may bury
up to 800–900 Å2 of ligand surface area when binding to their
target, approaching protein-protein interface areas (Doak and
Kihlberg, 2017).

The field is adopting various strategies to address these
limitations. Chemical space exploration is expanding through
combinatorial chemistry, DNA-encoded libraries, and virtual
libraries of on-demand compounds (Sadybekov and Katritch,
2023; Korablyov et al., 2024; Gottipati et al., 2020). Machine
Learning (ML) and Artificial Intelligence (AI) enable de novo
design of novel scaffolds (Chang et al., 2023; Popova et al.,
2018; Gottipati et al., 2020; McNaughton et al., 2022), while
fragment-based approaches provide systematic methods for
developing new molecules (Dandapani et al., 2012; Ress et al.,
2004). Target-focused libraries leverage structural data and ligand
knowledge to improve hit rates for specific protein families
(Dandapani et al., 2012; Harris et al., 2011). Performance
diversity strategies, selecting compounds based on assay results
rather than chemical diversity alone, are showing promise
(Wawer et al., 2014). Advanced computational methods, including
molecular dynamics, DFT, and MMPBSA/MMGBSA/MMBAPPL,
provide more sophisticated analysis capabilities (Chang et al.,
2023). New approaches emphasize synthetic accessibility
assessment (Popova et al., 2018; Ivanenkov et al., 2023) and
improved scoring functions for virtual screening (Sadybekov and
Katritch, 2023), while hybrid strategies combine computational
methods with experimental validation to enhance library design
effectiveness.

New assessment criteria are emerging to address these
challenges. For macrocycles, modified rules suggest maintaining
HBD ≤7 combined with either MW < 1,000 Da, cLogP >2.5, or
TPSA <300 Å2 (Garcia Jimenez et al., 2023). PROTAC assessment
requires new metrics, with fa × fg = 0.25 suggested as a minimum
threshold for drug-likeness (Hornberger and Araujo, 2023).
Success stories like ARV-110 and ARV-471, which entered phase
I clinical trials in 2019, demonstrate the potential of these
approaches despite breaking traditional rules (Békés et al., 2022;
Blanco and Gardinier, 2020).

Recent advances in ADR prediction models offer potential
solutions to these limitations. Random Forest models can
now predict drug-ADR and target-ADR associations using in
vitro secondary pharmacology data (Ietswaart et al., 2020),
while deep learning frameworks like DeepSide utilize gene
expression profiling experiments and chemical structures
to predict ADRs (Uner et al., 2019). These approaches
enable early identification of potential safety issues, allowing
for structural modifications to reduce interactions with
targets linked to severe ADRs (Ietswaart et al., 2020). The
integration of multiple data types, from chemical structures
to literature mining, has enhanced the predictive power of
these models (Mohsen et al., 2020).

1.5 Role of artificial intelligence

AI and ML are revolutionizing library design and selection
through multiple avenues (Patel et al., 2020). At the core of
these advances lies the crucial aspect of molecular representation,
where deep learning algorithms perform feature learning or
representation learning, contrasting with traditional feature
engineering approaches (Chuang et al., 2020). The effectiveness
of these representations depends on key considerations:
expressiveness to capture chemical space diversity, parsimony to
maintain compactness without losing critical information, and
invariance to ensure consistent representation regardless of atom
numbering (Chuang et al., 2020).

When dealing with high-dimensional chemical descriptor
spaces, several challenges emerge. The empty space phenomenon
results in sparse dataset coverage, while the vanishing sphere
volumes and distance concentration effects can complicate
meaningful molecular comparisons (Reutlinger and Schneider,
2012). To address these challenges, various dimensionality reduction
and feature extraction methods are employed. These include
Principal Component Analysis (PCA) for uncorrelated variable
transformation, Kernel PCA for nonlinear relationship analysis,
and advanced techniques like symmetric encoder networks, self-
organizingmaps (SOM), and stochastic proximity embedding (SPE)
(Reutlinger and Schneider, 2012; Sarkar et al., 2023).

Enhanced virtual screening utilizing deep learning
models enables efficient analysis of large chemical spaces
and improved prediction of ligand properties. Machine
learning facilitates de novo design through generative models
and reinforcement learning, creating novel molecules with
desired properties and overcoming existing library limitations
(Gottipati et al., 2020; McNaughton et al., 2022).

Recent developments in AI have expanded to include
sophisticated ADR prediction models. Deep learning architectures
trained on drug chemical structures and gene expression profiles
can now predict adverse reactions with unprecedented accuracy
(Uner et al., 2019). These models, integrated with databases like
FAERS and SIDER, provide comprehensive safety assessments
early in the drug development process (Mohsen et al., 2020;
Ietswaart et al., 2020). The success of these approaches is evidenced
by models achieving high accuracy in detecting major ADRs,
particularly when combining multiple data sources and advanced
feature selection methods (Liu and Aickelin, 2021).

Generative models, such as REINVENT (Loeffler et al.,
2024), have become particularly instrumental in creating novel,
synthesizable compounds by exploring vast chemical spaces
beyond traditional limitations (Chang et al., 2023; Patel et al.,
2020; Loeffler et al., 2024). Based on recurrent neural networks
or transformers, these models can perform multi-objective
optimization, simultaneously considering factors like potency,
selectivity, solubility, and ADMET properties (Popova et al., 2018).
They enable scaffold hopping and linker design while incorporating
synthetic feasibility predictions through reinforcement learning
algorithms that navigate synthetically accessible chemical space
(Sadybekov and Katritch, 2023; Gottipati et al., 2020).

These advances aid in predicting ADMET and pharmacokinetic
properties, guiding hit-to-lead optimization through QSAR
models, and supporting target identification through omics
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data analysis (Sadybekov and Katritch, 2023; Patel et al., 2020).
However, careful consideration must be given to the application
of dimensionality reduction methods, as their misuse can
lead to erroneous results and misinterpretation, particularly in
hit finding and hit-to-lead optimization stages of early drug
discovery (Reutlinger and Schneider, 2012). When properly
implemented and combined with fragment-based drug discovery
approaches and ADR prediction models, these systems provide a
comprehensive framework for developing safer and more effective
drugs (Korablyov et al., 2024; Ietswaart et al., 2020).

2 Traditional approaches to molecular
library development

The efficient exploration of chemical space for drug discovery
necessitates robust approaches for generating and organizing
molecular libraries. Here, we present two complementary
methodologies developed by our group: a chemical template-
based generation system and a curated molecular database, each
addressing different aspects of the drug discovery pipeline.

2.1 Chemical template-based generation
system

We developed a comprehensive chemical template library
comprising 160 distinct chemical moieties, categorized into
rings, sidechains, and linkers. This modular system enables the
sequential construction of both known and novel molecular
structures through systematic combination and arrangement of
these template elements (Latha et al., 2004). The methodology
incorporates a structured workflow for molecule generation,
optimization, and evaluation against target proteins.

The system’s implementation involves several key steps: initial
molecule generation through template combinations, structural
optimization of the generated molecules, molecular docking against
target proteins, and subsequent scoring and ranking of potential
candidates. This approach has been successfully implemented in the
Sanjeevini software platform, facilitating active-site directed lead
design (Jayaram et al., 2006; Jayaram et al., 2012).

However, during implementation, we identified a significant
limitation: the disparity between computational feasibility and
synthetic accessibility. Specifically, molecules that can be readily
generated in silico may present substantial challenges for practical
synthesis in vitro. This observation prompted the development
of complementary approaches focused on curated molecular
databases (Latha and Jayaram, 2005).

2.2 NRDBSM: a curated database for virtual
screening

To address the limitations of template-based generation, we
developed the Non-Redundant Database of Small Molecules
(NRDBSM), specifically designed to facilitate virtual high-
throughput screening (vHTS). This database represents a carefully
curated collection of approximately 17,000 compounds, each

selected based on stringent physicochemical criteria and optimized
for lead-like characteristics (Shaikh et al., 2007; Shaikh et al., 2012).

The database construction prioritizes compliance with
established drug-likeness parameters, including Lipinski’s Rule
of Five and additional criteria crucial for evaluating solubility,
membrane permeability, and transport characteristics. Key
molecular descriptors used in the curation process include
molecular weight, hydrogen bond donor and acceptor counts,
partition coefficient (logP), and molar refractivity.

A distinctive feature of NRDBSM is its uniform distribution
of physicochemical parameters, deliberately deviating from the
typical normal distribution observed in conventional databases. The
parameters are distributed across carefully selected ranges: logP
values from −1.0 to 6.0, molar refractivity spanning 40 to 130,
molecular weights between 150 and 480, hydrogen bond donors
from 0 to 3, and hydrogen bond acceptors from 2 to 9. This
distribution strategy optimizes the coverage of chemical space while
maintaining drug-like characteristics.

The compounds in NRDBSM are characterized by simplified
molecular structures, conservative molecular weights, minimal
ring systems, controlled numbers of rotatable bonds, and
moderate hydrophobicity. This intentional simplicity facilitates
their prospective evolution into drug-like compounds post-vHTS,
allowing for systematic structural refinement and controlled
complexity augmentation (Shaikh et al., 2007; Shaikh et al., 2012).

The database incorporates a comprehensive search engine
enabling users to query and filter molecules based on multiple
physicochemical parameters. This functionality supports both
independent virtual screening campaigns and targeted searches
within larger molecular datasets, effectively streamlining the early
stages of drug discovery by identifying promising candidates while
minimizing subsequent optimization challenges.

These complementary approaches - template-based generation
and curated database development - provide researchers with
versatile tools for exploring chemical space in drug discovery. While
the template-based system offers flexibility in molecular design,
NRDBSM ensures practical applicability through careful curation
and optimization of physicochemical properties.

2.3 IDRs as targets and their limitations

Intrinsically Disordered Regions (IDRs) represent an
emerging class of drug targets that challenge traditional small
molecule screening approaches. These regions, characterized by
their structural flexibility, play crucial roles in protein-protein
interactions and are frequently associated with disease states,
making them attractive therapeutic targets (Han et al., 2023;
Wang et al., 2023). The structural plasticity of IDRs enables them to
interactwithmultiple partners through Short LinearMotifs (SLiMs),
promoting various biological processes including cell signaling and
protein modification (Han et al., 2023).

In small molecule screening, IDRs present unique opportunities
and challenges. The dynamic nature of IDP-ligand interactions,
where small molecules can interact with multiple sites
simultaneously, necessitates modified screening approaches
(Wang et al., 2023). IDP drug virtual screening (IDPDVS) has
emerged as an efficient strategy, employing conformation sampling,
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clustering, and selection of druggable conformations to identify
potential binding molecules (Ruan et al., 2021). This approach
has proven particularly valuable for IDPs without known active
small-molecule ligands.

Several computational methods enhance IDP-targeted drug
discovery. Ensemble-based drug discovery (EBDD) employs
many-to-many scoring, evaluating multiple protein conformations
against numerous ligands (Wang et al., 2023). The integration
of multiple experimental techniques, including NMR, SAXS,
and smFRET, with computational simulations has improved IDP
model accuracy (Wang et al., 2023). Recent advances in deep
learning and molecular dynamics have accelerated this field, with
enhanced sampling methods enabling direct generation of IDP
conformations (Wang et al., 2023).

Despite these advances, the structural flexibility of IDRs
complicates traditional binding site prediction and docking
approaches. However, successful examples of IDP-targeting
drugs advancing to clinical trials demonstrate the feasibility of
this approach (Wang et al., 2023), suggesting that integrating IDR-
specific considerations into screening workflows could significantly
expand the druggable target space.

3 Specialized knowledge-based
resources

The evolution of drug discovery has been significantly enhanced
by specialized databases that integrate diverse data types and
provide comprehensive insights into molecular interactions. These
knowledge bases serve as crucial resources for improving prediction
accuracy and streamlining the drug development process through
the integration of traditional knowledge, experimental data, and
computational approaches.

3.1 BIMP database

The Bioactivity of Phytochemicals of Indian Medicinal
Plants (BIMP) Database (https://scfbio.iitd.ac.in/bimp/) is a
comprehensive and meticulously curated resource developed to
assist researchers, scientists, and professionals in exploring the
therapeutic potential of India’s extensivemedicinal flora. By bridging
the gap between traditional knowledge and modern scientific
research, the BIMP Database facilitates the discovery of bioactive
compounds and therapeutic properties rooted in India’s rich
botanical heritage. This database is a crucial tool in advancing the
understanding of medicinal plants and their role in drug discovery
and development.

The BIMP Database encompasses an extensive inventory of
6,209 unique plant species and 105,909 phytochemicals. Each
entry is annotated with detailed physicochemical properties and
categorized into relevant compound classifications. This exhaustive
resource allows researchers to systematically explore the therapeutic
applications of Indian medicinal plants, providing valuable insights
for both experimental and computational studies.

One of the key features of the database is the availability of
molecular data in multiple formats, including SDF, PDB, XYZ, and

MOL2. These formats provide both 2D and 3D representations of
molecular structures, enabling detailed visualization and analysis.

Each phytochemical entry is supplemented with an extensive
profile of physicochemical properties such as solubility, polarity,
and molecular weight. Additionally, the inclusion of molecular
descriptors provides further structural insights, allowing researchers
to better understand compound behavior and bioactivity. These
detailed annotations equip users with the tools needed to evaluate
the potential of compounds in therapeutic contexts.

The BIMP Database also evaluates phytochemicals against
widely accepted druglikeness rules, including Lipinski’s Rule of
Five, Egan’s Rule, Muegge’s Rule, Ghose’s Rule, and Veber’s Rules.
Compounds that violate any of these rules are flagged, offering
researchers critical insights into their suitability as viable drug
candidates. This feature ensures that users can efficiently screen
compounds for drug development potential.

Another significant feature of the BIMP Database is its
integration of both predicted and experimentally validated
pharmacological targets for phytochemicals. This dual approach
provides comprehensive insights into the bioactivity of compounds
and aids in identifying specific therapeutic applications. By offering
predicted and experimental data, the database enables researchers
to make more informed decisions in their investigations of
pharmacological properties.

To further support drug discovery efforts, the database includes
robust tools for virtual screening, scaffold identification, and
similarity searches. These tools allow researchers to evaluate
compounds efficiently based on specific criteria, streamlining the
identification of potential drug candidates. Moreover, the database’s
search functionality supports diverse parameters, enabling users to
search for compounds by ID, name, plant species, plant family, or
links to external databases such as PubChem, DrugBank, FooDB,
KnapSack, ChemSpider, and CAS.

The BIMP Database serves as a valuable resource for multiple
sectors, including academia, the pharmaceutical industry, and
healthcare. Its applications extend to facilitating novel therapeutic
discoveries, supporting evidence-basedmedical research, informing
sustainable policymaking regarding medicinal plant usage, and
promoting biodiversity conservation (Chaurasia et al., 2024).
By seamlessly integrating traditional knowledge with advanced
scientific methodologies, the BIMP Database fosters significant
advancements in natural product research, drug development, and
sustainable healthcare solutions.

3.2 Comparative analysis of chemical
libraries

The landscape of chemical libraries encompasses various
specialized databases, each offering unique features and
complementary strengths.While BIMP focuses on Indianmedicinal
flora with 105,909 phytochemicals from 6,209 plant species, other
major databases like ZINC22 provide broader coverage with over 37
billion commercially available compounds (Tingle et al., 2023). This
diversity in scope and focus enables researchers to access different
segments of chemical space for drug discovery.

ZINC22’s strength lies in its extensive coverage of commercially
available compounds, offering advanced search capabilities
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and pre-calculated 3D conformers for virtual screening. The
database’s CartBlanche GUI facilitates analog searching, and its
tranche browser allows tailored subsetting for specific project
requirements (Tingle et al., 2023; Irwin et al., 2020). In contrast,
BIMP’s specialization in traditional medicine-derived compounds,
complete with experimentally validated targets and comprehensive
physicochemical annotations, provides a unique resource for natural
product-based drug discovery.

Natural product databases like COCONUT complement these
resources by aggregating information from multiple sources,
improving annotations, and offering specialized focus areas
(Chandrasekhar et al., 2025; Sorokina et al., 2021). While
COCONUT combines data from 53 openly accessible natural
product databases, specialized databases like NPAtlas focus
on microbial natural products, and others like NuBBEDB and
KNap-Sack concentrate on phytochemicals (Sorokina et al., 2021).

Eachdatabase offers distinct advantages in data organization and
accessibility. ZINC22 provides rapid lookup of molecular properties
and regular updates, with 90% of catalogs refreshed every 90 days
(Tingle et al., 2023; Irwin et al., 2020). BIMP’s strength lies in
its detailed physicochemical profiling, multiple molecular format
availability (SDF, PDB, XYZ, MOL2), and integration of both
predicted and experimental target data.

Notably, analysis of druggability across these databases
reveals interesting patterns. In BIMP’s collection of over 100,000
phytochemicals, 33% conform to all major druggability rules
(Lipinski, Ghose, Veber, Egan, Muegge’s), while 72% satisfy at
least one rule. These proportions are relatively high compared to
databases of chemically synthesized compounds, suggesting that
natural product libraries might offer a richer source of drug-like
molecules. This observation aligns with the historical success
of natural products in drug discovery and their evolutionary
optimization for biological interactions.

Together, these resources create a complementary ecosystem
for drug discovery, combining commercial availability, natural
product diversity, and traditional medicine knowledge. The higher
druggability ratio in natural product databases like BIMP provides
an additional strategic advantage for drug discovery efforts,
particularly when seeking novel scaffolds with inherent biological
relevance.

3.3 Integration of openTargets for
enhanced prediction

The Open Targets Platform, an open-source knowledge base
integrating data from 23 independent public sources, offers
valuable insights for drug target identification and prioritization
(Buniello et al., 2025). This resource uniquely combines multiple
data types: genetic associations, somaticmutations, transcriptomics,
pathway biology, and critically, information about approved
drugs and their targets (Han et al., 2022; Koscielny et al.,
2017). For approved pharmaceuticals, the platform provides
extensive molecular attributes and target information, enabling
more accurate prediction models through validated drug-
target pairs (Koscielny et al., 2017).

The platform’s comprehensive architecture supports multiple
prediction enhancement strategies. At the molecular level, it

enables the creation of three-dimensional data tensors comprising
gene targets, diseases, and evidence attributes (Ye et al., 2024).
This integration has demonstrated significant improvements
in prediction accuracy, particularly when combining target
tissue specificity with functional interactions (Buniello et al.,
2025). The ML-GPS (machine learning-assisted genetic priority
score) framework exemplifies this approach, utilizing predicted
phenotypes to enhance target identification for chronic diseases.
Thismethod has substantially expanded our understanding of drug-
target relationships, supporting over 15,000 previously unvalidated
gene-disease associations and identifying promising targets such as
LRRK2 inhibitors for Parkinson’s disease (Chen et al., 2024).

Gene expression datawithinOpenTargets provides an additional
layer for screening refinement. By incorporating expression profiles
withmolecular attributes of successful drugs, predictionmodels can
better account for both tissue-specific and cell-type specific effects.
This granular understanding of cellular responses enables more
precise predictions of drug effects across different cellular contexts
and tissues. The integration has proven particularly valuable for
target validation and novel indication discovery, although challenges
remain in normalizing heterogeneous data sources and managing
computational resources for large-scale expression analysis. Despite
these limitations, the combined use of validated drug-target
pairs and multi-level expression data has demonstrably improved
prediction accuracy, with some studies reporting significant
increases in both AUROC and AUPRC metrics (Ye et al., 2024).

4 Advanced computational methods
for screening

Virtual screening of extensive chemical libraries targeting
protein binding sites is a pivotal stage in modern drug discovery.
This involves computational docking of ligands into protein
binding sites to estimate their binding affinities. Traditional
docking methods often generate multiple poses for ligands, leading
to significant computational costs and challenges in accurately
predicting protein-ligand binding affinities. To address these issues,
advanced computational methods like RASPD+ (Holderbach et al.,
2020) and BAPPL+ (Soni et al., 2020) have been developed,
building on earlier versions of our CADD/Sanjeevini Pipeline
(Figures 2, 3), which established foundational approaches for
bracketing drug-like compounds from templates or databases
(Jayaram et al., 2006; Jayaram et al., 2012).

4.1 RASPD+

RASPD+ represents a pre-filtering approach designed to
prioritize ligands efficiently in drug discovery workflows. By
leveraging machine learning (ML) models and physicochemical
descriptors that are independent of ligand conformation, RASPD+
overcomes the limitations of traditional docking methods. Unlike
conventional approaches, RASPD+ does not require the generation
of ligand poses, focusing instead on pose-invariant descriptors
of ligands and protein binding pockets. This pose-independent
methodology reduces computational costs significantly while
maintaining strong predictive performance.
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FIGURE 2
Workflow and architecture of Sanjeevini.

FIGURE 3
The Sanjeevini pathway for active site directed lead compound design in silico.

The ML models employed in RASPD+ are trained on the
PDBbind dataset, enabling accurate prediction of protein-ligand
binding affinities. When benchmarked against its predecessor and
traditional scoring functions, RASPD+ demonstrates superior
regression performance across multiple test datasets. These

advancements make RASPD+ an ideal tool for pre-screening
compound libraries in pharmaceutical research. Its ability to
prioritize compounds rapidly without compromising accuracy
expedites the identification of promising drug candidates, offering a
highly efficient solution for early-stage drug discovery.
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Performance evaluations of RASPD+ reveal its consistent and
reliable regression performance, underscoring its potential to
streamline the identification of prospective leads from extensive
chemical libraries (Holderbach et al., 2020). This innovative
method represents a significant step forward in computational
drug discovery, combining computational efficiency with robust
predictive capabilities.

Performance evaluations of RASPD+ reveal its consistent and
reliable regression performance, underscoring its potential to
streamline the identification of prospective leads from extensive
chemical libraries (Holderbach et al., 2020). This innovative
method represents a significant step forward in computational
drug discovery, combining computational efficiency with robust
predictive capabilities. The practical utility of RASPD+ is
demonstrated through its successful implementation in various
drug discovery projects. For instance, in the Dhanvantari platform,
RASPD+ enables rapid screening of small molecule libraries
against target protein active sites (Bhat et al., 2020). Its efficiency
was particularly evident in a large-scale screening effort, where
it successfully processed a million-molecule library against an
identified site in HBsAg (Kiruthika et al., 2021), highlighting its
capability to handle extensive chemical libraries while maintaining
computational efficiency.

4.2 BAPPL+

BAPPL+ is an advanced scoring function designed to predict
the binding affinities of protein-ligand (PL) complexes with
enhanced accuracy. Evolved from earlier scoring functions such
as BAPPL and BAPPLZ, BAPPL+ incorporates machine learning
to improve prediction reliability. This new scoring function is
particularly versatile, accommodating both metallo and non-
metallo PL complexes, thus expanding its applicability in structure-
based drug design.

The performance of BAPPL+ is underpinned by an enlarged
and diverse training dataset, contributing to its enhanced
predictive capabilities. It achieves a high Pearson correlation
coefficient of approximately 0.76 with low standard deviations,
demonstrating its reliability and precision in predicting binding
affinities. These results surpass traditional scoring methods,
positioning BAPPL+ as a robust tool for ranking drug candidates
effectively.

BAPPL+ has been rigorously evaluated against state-of-the-
art scoring systems, consistently exhibiting superior efficacy
in predicting binding affinities. While its overall performance
is robust, evaluations of target-specific proteins reveal certain
limitations that provide opportunities for further refinement.
These insights pave the way for iterative improvements, ensuring
that BAPPL+ remains a dependable and precise framework for
evaluating candidate compounds. The versatility of BAPPL+ is
exemplified through its integration with various computational
methods. It effectively calculates overall binding free energies
of protein-inhibitor complexes throughout MD simulations, and
can be seamlessly combined with molecular docking, quantum
mechanical calculations, and molecular dynamics simulations
to provide comprehensive understanding of inhibitor binding
mechanisms (Kiruthika et al., 2021).

By accurately predicting binding affinities, BAPPL+ facilitates
the ranking of drug candidates, streamlining the drug discovery
process for bothmetallo and non-metallo protein targets (Soni et al.,
2020; Jain and Jayaram, 2005; Jain and Jayaram, 2007). Its integration
of machine learning and comprehensive dataset training, coupled
with its proven applications in complex computational workflows,
underscores its potential as a transformative tool in computational
drug discovery, driving innovation in the identification and
optimization of therapeutic compounds.

4.3 Molecular property predictor

MolPropPrep (MP2) takes advantage of a novel “bond order”
matrix representation of SMILES notation and utilizes the message
passing neural networks (MPNNs) with a built-in semi master node
to predict 15 different physico-chemical properties such as HOMO-
LUMO energy gaps, dipole moments, zero-point vibrational
energies (Brahmavar et al., 2024). With the introduction of semi
master node in the MPNN network, one can reverse engineer
the possible contributions of various functional groups to the
druglikeness of small molecules. With the current implementation
of this architecture and “Bond order” matrix (Figure 4), MP2 could
achieve an average error ratio of 0.61, across all the predicted
properties, which is an order of magnitude better than the state-of-
the-art tools.

4.4 AI driven methods for RNA-Small
molecule interactions

While traditional computational drug design has primarily
focused on proteins, recent advances in AI have enabled effective
screening of small molecules targeting RNA structures. Structure-
based drug design (SBDD) targeting RNA presents unique
challenges due to RNA’s conformational plasticity and dynamic
nature, making sequence information alone insufficient for accurate
predictions (Kozlovskii and Popov, 2021).

Several AI-driven approaches have emerged to address
these challenges. BiteNetN, a pioneering structure-based deep
learning method, effectively detects binding sites in nucleic acid
structures, working with arbitrary nucleic acid complexes to
demonstrate state-of-the-art performance (Kozlovskii and Popov,
2021). CplxCavity employs a two-step process, first determining
surface cavities using atomic coordinates, then utilizing machine
learning to predict binding sites (Pan, 2023). Additionally, geometric
deep learning methods using RNA-ligand Surface Interaction
Fingerprinting (RLASIF) have shown excellent performance in
characterizing binding affinity through molecular surface features
(Xia et al., 2025).

RNA-specific considerations have led to specialized prediction
tools. RSAPred offers quantitative models for predicting RNA-small
molecule binding affinity across six RNA subtypes, incorporating
RNA sequence-based and small molecule structure-based features
(Krishnan et al., 2024). DrugPred_RNA, though trained on
protein pockets, successfully identifies druggable RNA binding
sites using descriptors applicable to both RNA and protein
binding sites (Rekand and Brenk, 2021).
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FIGURE 4
Workflow schematic of the molecular modeling pipeline. The process begins with molecular graph construction, followed by generation of a bond
order matrix. A semi-master node is then incorporated to enhance information flow across the molecular structure. Finally, the Message Passing
Neural Network (MPNN) processes this enhanced representation to generate predictions. This stepwise approach enables comprehensive molecular
analysis while maintaining computational efficiency.

The development of these tools account for unique
characteristics of RNA-binding compounds, which typically exhibit
lower octanol-water partition coefficients, greater topological polar
surface areas, and more hydrogen bond donors and acceptors
compared to protein-binding compounds (Childs-Disney et al.,
2022). Despite these advances, the field faces limitations due
to the relatively small number of available RNA structures for
training deep learning models (Kozlovskii and Popov, 2021).
However, continued development of AI methods, combined with
experimental techniques like molecular dynamics simulations,
promises to enhance our ability to predict and optimize RNA-small
molecule interactions.

4.5 Screening approaches for
multi-molecule and complex systems

The complexity of biological systems often necessitates
considering multiple molecules and protein complexes in screening
approaches. Recent advances in computational methods have made
it feasible to predict drug combination effects and protein complex
interactions efficiently.

Drug combination prediction has evolved into both
classification and regression tasks, with deep learning models
demonstrating superior performance in handling large High-
Throughput Screening (HTS) datasets (Liu et al., 2023).
Sequential Model Optimization (SMO) methods iteratively
adapt to new observations, identifying highly synergistic
combinations while reducing experimental burden compared
to exhaustive searches (Bertin et al., 2022). The RECOVER
platform exemplifies this approach, utilizing deep neural networks
to predict synergy scores based on molecular fingerprints and
structural features (Bertin et al., 2022).

In the target space, protein-protein interactions (PPIs) present
unique challenges due to their typically large, flat interfaces (Voet
and Zhang, 2012; Koes et al., 2018). AnchorQuery, a specialized web
application, enables rational structure-based design of PPI inhibitors
through rapid screening of synthesizable compounds.This approach
particularly focuses on anchor side chains, which form energetic hot
spots at binding interfaces (Koes et al., 2018).

Virtual Screening methodologies have been adapted for
Small Molecule Protein-Protein Interaction Inhibitors (SMPPII)
discovery, incorporating molecular docking simulations and
pharmacophore modeling (Voet and Zhang, 2012). Pharmacophore
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models provide abstract 3D representations of essential chemical
functionalities, guiding the docking of compounds to ensure
desired conformations and interactions. The comparison of
PPI complexes with receptor-SMPPII structures enables visual
observation of interaction mimicry by small molecule ligands (Voet
and Zhang, 2012).

Challenges in these complex systems include data discrepancies
from inconsistent generation processes, systematic biases limiting
model generalizability, and protein mutations driving resistance
(Bertin et al., 2022). Advanced models like ComboKR address
these challenges by predicting drug combination response
surfaces using normalized data schemes (Huusari et al., 2025).
The integration of cheminformatics techniques, including
structure-based virtual screening and molecular dynamics, with
experimental validation has proven effective in identifying dual
inhibitors (Melagraki et al., 2017), demonstrating the power
of combining multiple computational approaches for complex
system analysis.

5 Integration of domain knowledge
with deep learning

The progression of scientific knowledge is typically
characterized by the gradual refinement of existing theories,
interspersed with revolutionary breakthroughs. Recent
advancements in artificial intelligence (AI) have made the prospect
of AI-based scientific assistants increasingly viable, offering the
potential to accelerate routine reasoning and even generate
transformative ideas. For such systems to be effective, they must
incorporate concepts, relations, and hypotheses familiar to human
scientists. While symbolic techniques have long been employed
for hypothesis generation and testing due to their ability to
reuse knowledge, modern neural-based deep learning approaches
provide distinct advantages. These include significantly higher
predictive performance, the ability to directly process diverse
observational data, and the development of interactive systems
through advancements in neural language models.

However, neural methods face challenges in leveraging
formalized scientific knowledge to improve predictions, offer
meaningful explanations, or ensure model correctness when
generating new concepts or relationships. This section explores the
feasibility of embedding formal domain knowledge into deep neural
networks, demonstrating its utility through case studies focused on
toxicity prediction, explanation, and molecular generation in drug
discovery. By integrating symbolic knowledge with graph neural
networks (GNNs), these studies highlight how hybrid approaches
can enhance data representation, predictive accuracy, and overall
system effectiveness. Figure 5 represents a black-box model with
the following inputs and outputs, as employed in these AI-driven
methodologies.

5.1 Case study 1: inclusion of domain
knowledge to improve prediction

Understanding how domain knowledge can enhance deep
learningmodels’ data representation is crucial in the field ofmachine

FIGURE 5
Summary of module L, which incorporates a deep network. The
structure, parameters, and loss function correspond to the inputs of
the deep network.

learning. Recent research has demonstrated an innovative approach
combining Graph Neural Networks (GNN) as the machine learning
engine (L) with a logical inference engine (⊢) for integrating
domain-specific knowledge. In a comprehensive investigation
of toxicity prediction, researchers analyzed a substantial dataset
comprising approximately 225,000 molecules distributed across
73 individual datasets, with each dataset containing around 3,000
molecules classified as either “toxic” or “non-toxic” based on
IC50 values. The methodology incorporated domain knowledge
through formal symbolic definitions of chemical concepts,
including functional groups, rings, and connected structures,
encompassing roughly 100 relations expressed in formalized
logical notation. By employing a logical inference engine to apply
these definitions, the researchers enriched molecular graphs with
detailed domain-specific information. These enhanced graphs
were then processed using a specialized GNN model called
BotGNN to distinguish between toxic and non-toxic molecules
(Dash et al., 2022).

Figure 6 illustrates the setup of this methodology, showcasing
the flow from domain knowledge integration to GNN processing.
The results demonstrate a significant improvement in predictive
accuracy across most datasets. The study compares BotGNN
models built using five different GNN architectures. In the
comparison, baseline GNN models and state-of-the-art models
using approximate background knowledge (referred to as VEGNN)
are outperformed by BotGNN. This highlights the value of
incorporating comprehensive background knowledge in enhancing
model performance.

5.2 Case study 2: inclusion of domain
knowledge to improve explanations

The intersection of domain knowledge and machine
learning interpretability presents compelling opportunities for
research advancement. A key development in this area, as
demonstrated by Srinivasan et al. (2024), employs a feedforward
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FIGURE 6
This figure shows the process of integrating domain knowledge into
molecular graphs using a logical inference engine, followed by toxicity
prediction with BotGNN.

neural network featuring a Compositional Relational Machine
(CRM), which reformulates how domain knowledge structures
data provided to deep learning models. This innovative framework
was tested on a focused subset of data, specifically utilizing 10
datasets from a larger collection of 73 toxicity datasets, along
with synthetic data containing known correct explanations
as benchmarks. The research extends beyond basic chemical
definitions to incorporate meta-information about chemical
concepts and relations, establishing important constraints such as
how rings and groups consist of sets of atoms, and how fused or
connected structures require at least two structures of potentially
different types.

Figure 7 illustrates the CRM architecture and its process of
iterative feature construction. The framework utilizes provided
meta-information to automatically generate a unique set of “simple
features,” from which all other complex molecular features can
be provably obtained through logical inference. These features
are combined iteratively, with each step incorporating at least
one simple feature with either another simple feature or a
complex feature. The resulting feedforward network structure
positions each non-input node as a complex feature, and the
CRM is trained using stochastic gradient descent (SGD). The CRM
serves as a proxy explainer for the BotGNN model, providing
explanations by examining activations within the CRM when
both models predict the same label. This approach enables a
tree-like explanation structure, as the most relevant nodes can
be backtraced to reveal the features involved in the CRM’s
prediction. An example of this tree-like explanation structure is
depicted in Figure 8.

The study effectively demonstrates how CRMs can function
as interpretable proxies for more complex models like BotGNN,
offering a structured approach to understanding model
predictions through the lens of domain-specific features and
relationships.

FIGURE 7
Architectural overview of the Compositional Relational Machine
(CRM). The diagram illustrates how the model iteratively constructs
complex features from simple features, resulting in a feedforward
network structure where each non-input node represents a complex
feature that can be used for toxicity prediction explanations.

5.3 Case study 3: inclusion of domain
knowledge to improve generation

Recent advances in molecular design have opened new
possibilities for generating molecules with specific binding
properties and physicochemical characteristics. One such approach,
developed by Bhat et al. (2024), leverages domain knowledge
to refine the loss function of deep learning models, specifically
focusing on generating molecules capable of binding to known
target macromolecules while satisfying various constraints. As
illustrated in Figure 9, this method incorporates a unique feedback
mechanism to enhance molecular generation.

The framework’s core component employs a Large Language
Model (LLM) augmented with a novel feedback loop, known as
“language models with logical feedback” (LMLF). This system
iteratively identifies and reinforces constraints that guide the model
toward generating “good molecules” - those meeting specified
logical criteria - effectively modifying the model’s loss function
through indirectmeans.When tested on established benchmarks for
Janus kinase inhibition, the LMLF approach demonstrated superior
performance, generating molecules with higher estimated binding
affinity compared to both state-of-the-artmethods and conventional
LLMs without logical feedback. Notably, computational chemists
provided favourable evaluations of the LMLF-generated molecules,
particularly highlighting their novelty and potential efficacy.

6 Conclusion

The evolution of molecular libraries continues to play a
pivotal role in the drug discovery process, bridging traditional
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FIGURE 8
Example of a tree-like explanation structure generated by the CRM. The visualization demonstrates how activations are backtraced through the
network to provide interpretable explanations of toxicity predictions, showing the hierarchical relationship between simple and complex features that
contributed to the model’s decision.

FIGURE 9
Schematic representation of the Language Models with Logical
Feedback (LMLF) framework. The diagram shows the integration of
domain knowledge into the model’s loss function, highlighting the
feedback loop mechanism that iteratively refines the generation of
molecules meeting specified logical constraints for target
macromolecule binding.

methodologies with new advancements in computational and AI
technologies. From the historical progression of combinatorial
chemistry in the 1980s to modern AI-driven approaches, the
field has demonstrated remarkable adaptability in addressing
emerging challenges. Traditional approaches, such as template-
based generation and curated libraries, have laid a strong
foundation for molecular exploration. For instance, curated
databases like NRDBSM and BIMP streamline the discovery
process by offering pre-screened collections of drug-like
molecules and phytochemicals, each designed to address specific

research needs. These resources emphasize physicochemical
properties, drug-likeness criteria, and accessibility for high-
throughput virtual screening, enhancing their utility for early-stage
discovery.

The integration of ML and AI into modern approaches marks
a transformative step in molecular library development. These
technologies not only expand the exploration of chemical space but
also enable the generation of novel, synthesizable compounds with
tailored properties. Tools such as RASPD+ and BAPPL+ exemplify
how computational methods are advancing ligand screening and
binding affinity predictions, reducing computational costs while
maintaining robust accuracy. The incorporation of adverse drug
reaction databases and OpenTargets data has further enhanced
prediction efficacy, while new approaches for screening RNA
targets and multi-molecule combinations demonstrate the field’s
expanding scope.

Looking ahead, emerging trends signal a shift toward more
diverse and complex molecular libraries, incorporating hybrid
approaches that blend computational predictions with experimental
validation. The rise of ultra-large virtual libraries, target-focused
collections, and AI-driven generative models underscores the
growing emphasis on innovation and efficiency in drug discovery.
Additionally, the development of specialized assessment criteria
for newer modalities like macrocycles and PROTACs reflects
the field’s adaptability to emerging therapeutic approaches.
By leveraging these advancements while acknowledging the
limitations of traditional filtering methods, researchers can
identify and optimize promising candidates more effectively,
accelerating the path from molecular design to therapeutic
application.

Ultimately, the convergence of traditional expertise,
modern computational tools, and specialized knowledge
bases promises to reshape the landscape of drug discovery,
unlocking new opportunities for addressing complex biological
challenges and improving human health.
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