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Background: Lung adenocarcinoma (LUAD) is responsible for majority cases of
lung cancer and considered to be the primary cause of cancer-related mortality.
The imbalance of cellular proliferation and apoptosis is critically implicated
in the pathogenesis and progression of LUAD. Sphingomyelin, a vital lipid
component, is integral to the regulation of tumor cell growth and apoptosis,
and has garnered significant attention as a target in novel anticancer therapies.
The pivotal molecules involved in sphingomyelin metabolism are crucial in
modulating tumor cell behavior, thereby influencing clinical outcomes.

Methods: A comprehensive consensus clustering analysis was conducted
by collecting clinical LUAD figures from the TCGA and GEO databases. By
employing Cox regression and Lasso regression analysis, a prognostic model for
LUAD patients was established by identifying seven sphingolipid-related genes
(SRGs), and validated in the GEO database. The study also delved into the clinical
relevance, functional capabilities, and immune implications of prognostic signals
associatedwith sphingolipidmetabolism. Finally, experiments conducted in vitro
confirmed the imbalance of sphingolipid-associated genes in LUAD.

Results: Using the prognostic model, lung adenocarcinoma (LUAD) patients
can be divided into high-risk and low-risk groups. Meanwhile, we can observe
marked disparities in survival times among these groups. Additionally, the model
demonstrates high predictive accuracy in external validation cohorts. Research
on the immune microenvironment and immunotherapy points to this risk
stratification as a useful reference for immunotherapeutic strategies in LUAD.
Finally, our hypothesis was corroborated through in vitro experiments.

Conclusion: This study demonstrates that sphingolipid-related gene prognostic
characteristics correlate with tumor progression and recurrence, long-term
prognosis, and immune infiltration in LUAD patients. The outcomes of our
study could help shape innovative strategies for early intervention and prognosis
prediction in lung adenocarcinoma.
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1 Introduction

Lung cancer ranks first among cancers all year round, while
the 5-year survival rate is only 26% (Bray et al., 2024). Lung
adenocarcinoma (LUAD), as the most common form of NSCLC,
comprises approximately 40% of lung cancer cases (Leiter et al.,
2023). Traditional lung cancer treatments primarily include surgery,
chemotherapy, and radiotherapy (Miller et al., 2022). Although
these techniques have made rapid progress in these years, patients
with lung adenocarcinoma have an unsatisfactory prognosis.
Recent advancements in immunotherapy and targeted therapy have
introduced a novel approach to precise treatment for lung cancer
patients. For example, some targeted drugs like EGFR tyrosine
kinase inhibitors, including gefitinib and erlotinib, are extensively
utilized in patients with certain gene mutations (Roviello, 2015;
Lo Sardo et al., 2018). The use of immune checkpoint inhibitors
(ICIs) leads to a marked improvement in survival rates for
those with locally advanced or metastatic NSCLC (Forde et al.,
2022). Nevertheless, few patients have experienced the anticipated
advantages of ICI therapy (Sharma et al., 2017). Identifying
potential biomarkers to predict lung adenocarcinoma’s response
to chemotherapy, targeted therapy, and immunotherapy holds
significant clinical importance. Traditional clinical models forecast
LUAD prognosis using tumor extension, performance status,
pathological staging, and TNM staging indicators. However, these
models have struggled to produce satisfactory outcomes due to
the heterogeneity in LUAD (Zuo et al., 2019). Consequently, novel
models must be developed for LUAD treatment and prognosis.

Metabonomics has recently been acknowledged for its
substantial influence on lung cancer development and progression
(Kerk et al., 2021; Brock Malcolm et al., 2008; Wang et al., 2019).
Sphingolipids, a crucial class of lipids, have emerged as a focal
point of research. Sphingolipid metabolism is closely associated
with cellular processes like proliferation, apoptosis, necrosis,
and autophagy, supporting the study of various physiological
and pathological conditions (Ogretmen, 2018; Breslow and
Weissman, 2010; Kraft, 2016). Sphingolipid metabonomics
constitutes a vital component of cellular signal transduction
plays a pivotal role in Immune cell recruitment and function
regulation in tumor microenvironment (Ogretmen, 2018). The key
components of sphingolipids are Ceramide, SM (Sphingomyelin),
sphingosine-1-phosphate (S1P),glycosphingolipid (GSL) and
various sphingolipids, including simple or complex gangliosides
(Mu et al., 2024). Ceramide (Cer) is known to regulate cell aging,
apoptosis and induce cell cycle arrest (Obeid et al., 1993), whereas
S1P is associated with promoting proliferation and exhibiting
anti-apoptotic properties (Lee et al., 1998). Sphingolipids with
biological activity have become essential regulators in cancer
cell biology. S1P is associated with cell survival, angiogenesis,
chemotherapy resistance, and cancer cell invasion. Conversely,
ceramides are linked to apoptosis induction, growth inhibition,
enhanced sensitivity to chemotherapy, and the promotion of
senescence in cancer cells (Hannun et al., 2015; Morad and Cabot,
2013). Furthermore, ceramides and S1P are crucial signaling
molecules involved in fundamental cellular processes, including
Cell inflammation, proliferation, vascular endothelial barrier,
cell transport, stress, autophagy, death and so on (Dany and
Ogretmen, 2015; Pettus et al., 2005).

Sphingolipid metabolites have been shown in recent research
to be key components of immunotherapy for NSCLC (Wang et al.,
2023; Zhang et al., 2023) and can influence the initiation and
progression of lung adenocarcinoma via autophagy and apoptosis
mechanisms (Shweta et al., 2022). Research by Gokhan Unlu
et al. suggests that sphingolipid synthesis may allow tumor cells
to escape immune detection by NK and CD8+ T cells and resist
IFNγ signaling effects (Soula et al., 2024). Nonetheless, the
association between sphingolipidmetabolism and the biological and
clinical outcomes of lung adenocarcinoma remains insufficiently
elucidated. Therefore, identifying the precise mechanisms and
targeted therapies is necessary for the diagnosis and treatment of
lung adenocarcinoma. Further research is necessary to understand
how sphingolipid-related genes (SRGs) can predict the therapeutic
and long-term prognosis for patients.

In this research, we obtained publicly available lung
adenocarcinoma datasets from the TCGA and GEO databases. We
created a novel prognostic model incorporating seven sphingolipid-
related genes utilizing comprehensive bioinformatics analyses. Based
on risk stratification, patients with lung adenocarcinoma were
categorizedintohighandlow-riskgroups.Furthermore, thealterations
in immune infiltration and immune checkpoint expression in these
patientswereassessedthroughthesphingolipidmetabolismspectrum.
Ultimately, we performed in vitro experiments and confirmed the
prognostic significance of the key genes in our model using the
Nantong Cohort. Our study introduces an innovative method for
diagnosing and treating lung adenocarcinoma (LUAD).

2 Materials and methods

2.1 Data collection of LUAD patients

All mRNA transcriptome data, survival information, and
clinical characteristics were obtained from The Cancer Genome
Atlas (TCGA) database through the UCSC Xena platform (http://
www.genome.ucsc.edu/). Following the process of data screening
and removal of irrelevant information, a total of 501 cancerous
tissues and 59 adjacent non-cancerous tissues were included in
the study. A combined dataset of 331 patients, including mRNA
expression data and survival time, was sourced from the Gene
Expression Omnibus (GEO) database, specifically from GSE31210
(n = 246) and GSE30219 (n = 85).

2.2 Acquisition of genes related to
sphingolipids

GeneCards were selected as the source of genes related to
sphingolipid metabolism, 721 SRGS with correlation scores greater
than the median (3.8464) were selected for follow-up studies.

2.3 Consensus clustering

The “Consensus ClusterPlus” R package was utilized for
unsupervised clustering. A consensus clustering method using the
K-means algorithm with Euclidean distance was executed 1,000
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times, employing an 80% resampling rate. The ideal number of
clusters was ascertained by employing an empirical cumulative
distribution function diagram.

2.4 Establishment of a risk signature
associated with sphingolipid

Sphingolipid-related genes with prognostic significance were
initially identified by us through a univariate Cox analysis. The
LASSO algorithm was subsequently utilized in the SRGs in the
TCGA-LUAD cohort. Finally, through the stepwise Cox regression
algorithm, a sphingolipid-related signature was established.
Consequently, the algorithm can assign a risk score to each LUAD.
Patients within the TCGA-LUAD cohort were divided into groups
with high and low-risk levels by using the optimal truncation value.
Subsequently, we examined the prognostic disparities between the
two groups and evaluated the accuracy of the model.

2.5 Determination of genes with
differential expression

Toidentifydifferentiallyexpressedgenes, thecutoffwasestablished
atanabsolute log2foldchange(|log2FC|)greaterthan1andanadjusted
P < 0.05. The stepwise-Cox analysis employed a P < 0.1 to determine
the final SRGs. Paired samples fromTCGA,which consisted of cancer
and paraneoplastic tissues from the same individual, were employed
to explore spatial differences in gene expression.

2.6 Analysis of immune infiltration

The infiltration of 22 immune cells was evaluated using the
“CIBERSORT” algorithm. The robustness of the CIBERSORT
algorithm was validated using four additional algorithms: xCell,
ESTIMATE, GSVA, and MCP-counter. The immune checkpoints
were derived from established research (Wang et al., 2021).

2.7 Analysis of SRG gene networks and
enrichment

A gene network analysis using GENEMANIA (http://genemania.
org/) was conducted to examine potential interactions between these
genes. To investigate the mechanisms linking riskscore clusters,
functional enrichment analyses, including Gene Ontology (GO),
Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set
Enrichment Analysis (GSEA), and Gene Set Variation Analysis
(GSVA), were performed on differentially expressed genes using R
packages such as “clusterProfiler,” “enrichplot,” “limma” and “ggplot2.”

2.8 Clinical specimens

The study was approved by the Ethics Committee of
Affiliated Hospital of Nantong University. All participants/patients
participating in this study have informed consent.

2.8.1 Tissue microarray construction and
immunohistochemistry

Four sets of microarrays of tumor and paracancer tissues
provided by the Department of Pathology, Affiliated Hospital of
Nantong University, aiming to verify the accuracy of the prognosis
model. The immunotissue microarrays included cancer tissues and
adjacent tissues from 127 patients with lung adenocarcinoma,
including 64 males and 63 females, 68 patients <65 years old,
59 patients ≥65 years old, 60 patients died, and 67 patients
were still alive. Due to the loss during the chip production
process, some samples fell off, so 118 LDHA chip samples, 106
CDKN3 chip samples, 112 SHC1 chip samples, and 108 BTK chip
samples were finally obtained. PrimaryAnti-LDHAantibody (1:150;
No: A18574, ABclonal, China), Anti-CDKN3 antibody (1:150;
No: A2061, ABclonal, China), Anti-SHC1 antibody (1:150; No:
A7725, ABclonal, China), Anti-BTK antibody (1:400; No: A19002,
ABclonal, China) were used for the immunohistochemical (IHC)
staining. Immunohistochemistry sectionswere scanned using a slide
scanning system (TEKSQRAY, China). ImageJ software was used
to measure the density of positive staining and the percentage of
positive immunostaining cells. Two experienced pathologists were
invited to verify the accuracy of the data. The final score (IHC score)
was determined bymultiplying the immunostaining intensity by the
percentage of positive immunostaining cells.

2.9 Statistical analysis

All the data processing and analysis described in this article
were performed utilizing R 4.0.3 software. The unpaired Student’s
t-test was used for data that were normally distributed, and the
Wilcoxon test was employed for data that were not normally
distributed. Univariate and multivariate Cox regression analyses
were employed to assess the impact of factors on LUAD prognosis.
Kaplan-Meier (K-M) survival curves were constructed to evaluate
survival differences, and the log-rank test was applied to determine
the statistical significance of the survival time differences between
the two patient cohorts. P < 0.05 was set as the threshold for
statistical significance.

3 Results

3.1 Screening and analysis of
sphingolipid-related genes

An analysis of the TCGA LUAD database revealed significant
differential expression of 5,066 genes between tumor and normal
tissues, and there were 2,850 genes that were upregulated and
2,216 genes that were downregulated in lung adenocarcinoma
(Figure 1A). A total of 721 sphingolipid metabolism related genes
were obtained through GENECARDS website. 181 genes were
obtained by intersecting 5,066 differentially expressed genes in
lung adenocarcinoma with 721 sphingolipid metabolism related
genes obtained from GENECARDS. These genes are not only
closely related to sphingolipid metabolism, but also show different
expression levels between lung cancer and paraneoplastic tissue
(Figure 1B). Univariate COX regression analysis was utilized for
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identifying 51 genes associated with sphingolipid metabolism
(Figure 1C) (Figure 1C only listed the first 20 genes). Figure 1D
illustrates the protein-protein interaction network among 51 genes
related to sphingolipid metabolism. The heatmap described the
expression patterns and characteristics of 51 differentially expressed
genes (DEGs) in sphingolipid metabolism family, including 29
sphingolipid metabolism family genes downregulated and 22
sphingolipid metabolism family genes upregulated (Figure 1E). We
investigated the primary enrichment pathways of these DEGs
by analyzing the enrichment of 51 genes using KEGG and
GO pathways. These results demonstrated that these genes were
enriched in small molecule metabolic process, lipid metabolic
process, endoplasmic reticulum and phosphorus metabolic process
pathways by GO analysis. KEGG analysis primarily focused on
pathways includingAGE-RAGE signaling in diabetic complications,
TNF signaling, Cholesterol metabolism, PPAR signaling, Choline
metabolism in cancer, HIF-1 signaling, IL-17 signaling, and Th17
cell differentiation (Figures 1F, G).

3.2 Consensus clustering analysis of
prognostic genes related to sphingolipids

Aconsistent cluster analysis involved in 501 cancer samples from
the TCGA cohort were conducted for examining the relationship
between 51 sphingolipid metabolism-related genes and LUAD
subtypes. K = 2 is determined as the optimal number established
on the cumulative distribution function (CDF) curve of the
consensus score matrix (Figures 2A–C) and the proportion of
ambiguous clustering (PAC) statistics (Figures 2D–F). Samples
with high consistency scores are more likely to be repeatedly
clustered together. Therefore, 442 patients were organized into
two groups, with 265 in group 1 and 248 in group 2. Following
this, a marked difference in OS was detected between the two
groups (Figure 2G). The heatmap illustrates the correlation
between different genes expression and clinical characteristics
(Figure 2H). Between the two clusters, there were 851 upregulated
genes and 1,414 downregulated genes, with the volcano plot
depicting the logFC and FDR values of these genes (Figure 2I).
According to GO enrichment analysis, we can find that these
genes were connected with different molecular processes such
as leukotriene metabolism, extracellular matrix, receptor-ligand
interaction, and hormone activity (Figures 3A–C). The analysis of
KEGG enrichment highlighted significant enrichment in pathways
such as Nitrogen metabolism, Transcriptional misregulation in
cancer, Neuroactive ligand-receptor interaction, alpha-Linolenic
acid metabolism and Cytokine-cytokine receptor interaction
(Figure 3D). GSEA enrichment analysis identified that pathways
like SPLICEOSOME, CELL CYCLE, MISMATCH REPAIR, and
DNA REPLICATION were enriched with differentially expressed
genes in the two clusters (Figure 3E).

3.3 Construction and verification of the
SRGs prognostic model

For developing a prognostic model utilizing genes
associated with sphingolipid metabolism. In COX univariate

analysis, 51 metabolism-related genes were significantly
linked to overall survival (OS) in LUAD patients. Then
we performed lasso analysis on the 51 genes, twelve genes
associated with sphingolipid metabolism were identified
(Figures 4A, B). To construct the model, seven genes were
identified through stepwise regression (Figure 4C). To establish
a risk-scoring model, the subsequent algorithms are utilized: =
LDHA∗0.289328503921739+SHC1∗0.256323270897663+CDKN3∗

0.123076351124556+PCSK9∗0.101300068657929+CAV2∗0.152654
94282098+PDGFB∗0.165967594013992+BTK∗(-0.2191057373115
87). The survival curve in Figure 4D represents the prognosis for
lung adenocarcinoma patients with varying expression levels of
7 SRGs. Except for the prognosis curve of CAV2, the other OS
curves were significantly different (p < 0.05). Among them, LDHA,
SHC1, CDKN3 were all associated with poor prognosis, while BTK
was well correlated with prognosis (Figure 4D). Analysis of mRNA
expression in TCGA paired samples revealed notably enhanced
levels of LDHA, SHC1 and CDKN3 in cancer tissues compared
to adjacent tissues, whereas PCSK9, BTK, CAV2 and PDGFB
showed significantly reduced expression (Figure 4E). Figure 4F
illustrates the protein-protein interaction network analysis for
seven molecules. For further analysis, TCGA-LUAD patients were
categorized into high risk score (n = 187) and low risk score (n =
381) subgroups determined by the optimal cutoff. The seven SRGs’
coefficients are illustrated in Figure 4G.

The distribution of risk scores and the living condition of
patients in the TCGA database’s high and low risk groups are
depicted in Figure 5A. The survival time of patients gradually
diminishes as the risk score increases, whereas the risk of death
becomes higher. The Kaplan-Meier analysis indicated a notably
lower survival rate for the high-risk group compared to the low-
risk group (Figure 5B). The training dataset was utilized to perform
ROC curve analysis, evaluating the predictive accuracy of SRGs for
LUAD patient outcomes. The results indicated the AUC value of the
TCGA training cohort exceeded 0.69 for 1, 3, 5 years (Figure 5C).
Subsequently, GEO databases GSE30219 and GSE31210 were
employed as validation sets to assess the risk model (Figures 5D–I).
Similar results are observed inGSE30219 andGSE31210 as in TCGA
databases (Figures 5D, E). Figures 5F, G illustrate that in GSE30219
and GSE31210, compared to the low-risk group, the high-risk group
had a much lower survival rate. Additionally, ROC curve analysis
revealed the AUC value of GEO test cohort exceeded 0.68 at 1,
3, 5 years (Figures 5H, I). The sphingolipid-associated prognostic
model demonstrates high accuracy in predicting outcomes of lung
adenocarcinoma patient.

3.4 Prognostic risk score distribution and
stratification by clinical characteristics

The K-M curve revealed that high-risk samples exhibited
poorer overall survival compared to the low-risk category in
gender-stratified subgroups (Figures 6A, B). In both age subgroups,
those over 65 and those 65 or younger, the high-risk group
showed a markedly decreased overall survival rate when compared
with the low-risk group (Figures 6C, D). Pathological staging and
stratification revealed that in stage I and II subgroups, the prognosis
of high-risk sample is worse (Figure 6E). While no significant
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FIGURE 1
Screening and analysis of sphingolipid-related genes. (A) The differentially expressed genes of lung adenocarcinoma were screened through the TCGA
database. (B) 181 sphingolipid-related genes identified by intersecting 5066 TCGA-LUAD genes and 721 GeneCards database genes. (C) Through
univariate Cox regression analysis, 51 SRGs (P < 0.05) were identified. (D) Interconnection of the 51 SRGs. (E) Heatmap analysis about
sphingolipid-related genes in LUAD versus normal tissues. (F) GO analysis of sphingolipid-related genes was performed. (G) KEGG analysis of SRGs was
performed.

OS difference was observed between two groups in stage IV
and its subgroups, the overall OS trend remained consistent with
pre-stratification results (Figure 6F). The reason why no obvious
difference in OS is observed is that smaller sample size post-
stratification and the decline in calculation efficiency, we speculate.
The survival probability of LUAD patients in the high-risk group
was consistently lower than that of the low-risk group across various
clinical subgroups (Figures 6A–F). The K-m clustering subgroup
shows notable distinctions in risk score distribution, confirming

the consistency between K-m clustering signature results and
sphingolipid metabolism (Figures 6A–F). In general, gender affects
risk scores, while the female patients’ risk score is lower than that
of male patients (Figure 6G). The risk score distribution did not
significantly differ between the subgroups of age ≥65 and <65,
indicating that age does not influence the risk score distribution
(Figure 6H). The risk score increases with tumor progression and
changes in pathological stage (Figure 6I). The findings indicate
that, after stratifying clinical features, our risk score distribution
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FIGURE 2
Characteristics of sphingolipid-related Cluster in TCGA-LUAD cohort. (A) The consensus clustering’s delta area curve demonstrated the relative shift in
the area beneath the cumulative distribution function (CDF) curve for values of k from 2 to 10. (B) Intragroup correlations reached their maximum,
while intergroup correlations were minimal when k = 2. (C) The consistency of sample clustering. (D–F) The average consistency evaluation within the
cluster group shows that K = 2 has the highest consistency, with K = 3 having the second highest. (G) Survival probabilities for cluster1 and cluster2
were depicted by the Kaplan-Meier curve. (H) The heatmap illustrated contacts and differences between clinical characteristics and the expression of
SRGs in two groups. (I) The volcano plot revealed the distinct gene expressions across the two clusters.

significantly influences LUAD patient prognosis, demonstrating
high specificity and sensitivity in prognostic prediction.

3.5 Immune infiltration analysis for
sphingolipid-signature

We analyzed variations in the infiltration of 22 immune cell
types across these SRGs subgroups utilizing the Cibersort database

(Figures 7A, C). Clinical characteristics and their association with
risk score subgroups are shown on the heatmap (Figure 7B).
The study found that the high-risk group exhibited considerably
higher levels of activated NK cells, resting macrophages M0,
and activated mast cells compared to the low-risk group. On the
contrary, the high-risk group had significantly lower levels of
resting CD4 memory T cells, regulatory T cells (Tregs), resting
dendritic cells, and resting mast cells. A significant positive
association was found between the T_cells_follicular_helper and
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FIGURE 3
The two clusters exhibited notable enrichment in Gene Ontology (GO) categories (A–C), KEGG pathways (D), and multiple pathways identified through
Gene Set Enrichment Analysis (GSEA) (E).

the Riskscore (Figure 7H). Demonstrating that the function of
two subgroups remains unaffected by the analysis algorithm,
we employed the MCP-counter (Figure 7D) and ESTIMATE
(Figure 7E) algorithms to verify the accuracy and stability of the
Cibersort results, which were consistent with the Cibersort database
evaluations. As shown in Figure 7F, riskscore is negatively correlated
with both ESTIMATEScore, ImmuneScore and StromalScore
(Figure 7F). We observed a negative correlation (R = −0.4) between
macrophage M2 and Plasma_cells in the lung adenocarcinoma
microenvironment (Figure 5G). In summary, these findings indicate
that high-risk subgroups exhibit considerably reduced immune
infiltration and increased tumor purity, potentially influencing
immunotherapy outcomes of LUAD patients.

3.6 Validation of in vitro experiments

We conducted in vitro experiments for validating the differential
expression of SRGs in cancer and adjacent tissues of LUAD.A cohort
study utilized a tissue microarray from 127 lung adenocarcinoma
patients at Nantong Hospital. Immunohistochemical staining was

utilized for identifying the expression of LDHA, CDKN3, SHC1,
and BTK in 127 lung cancer samples (Figures 8A–D). The reason
why we chose these four molecules is that they showed obvious
differences in the previous K-M curves (P < 0.001) (Figure 4D). By
immunohistochemical staining, we can find that all four molecules
are expressed in cytoplasm (Figures 8A–D). Immunohistochemical
score (IHC score) of tumor tissue was different in each sample. The
expression of LDHA, CDKN3, and SHC1 were significantly raised
in lung adenocarcinoma compared to non-cancer cells, whereas
BTK expression was higher in non-cancer than in cancer cells
(Figures 8A2, B2, C2, D2). The 127 patients were categorized into
two groups attributed to their IHC scores. In Nantong cohort,
patients exhibiting high expression levels of LDHA, CDKN3, and
SHC1 had a significantly poorer prognosis compared to those
with low expression levels of these markers (Figures 8A1, B1, C1).
Patients with high BTK expression have a better prognosis compared
to those with low BTK expression (Figure 8D1). Despite the
minor statistical difference in patients’ OS shown in Figure 8D1
(P = 0.013), the general trend aligns with the TCGA database,
possibly due to the limited sample size and varying ethnic groups
in the sample. Crucially, all four SRGs developed nomograms,
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FIGURE 4
Construction of the SRGs Prognostic Model. (A, B) The analysis with LASSO employed the least lambda value. (C) The stepwise Cox algorithm was used
to identify seven genes. (D) Prognostic curves of 7 sphingolipid metabolism related genes. (E) mRNA expression levels in paired TCGA samples. (F)
Protein interaction network analysis of sphingolipid related genes. (G) Coefficients of seven genes associated with sphingolipid metabolism were
determined through stepwise Cox regression.

identifying the IHC score as a key independent predictor of patient
prognosis (Figures 8E–H). While age and gender do not seem to be
key prognostic factors, and T and N have some predictive value.
The Harrell C-index values of the nomogram models predicting
overall survival rates are 0.81 for LDHA, 0.79 for CDKN3, 0.75 for
SHC1, and 0.73 for BTK. In a word, our research shows that the
expressions of key genes of sphingolipidmetabolism, such as LDHA,
CDKN3, SHC1 and BTK, are obviously different from those of non-
cancerous tissues in lung adenocarcinoma, and can obviously affect
the prognosis of LUAD patients.

4 Discussion

Cancer has consistently posed a significant challenge in modern
medicineworldwide. Lung cancer is the primary cause of death from
cancer in men and ranks as the second leading cause in women,
following breast cancer (Bray et al., 2024). Approximately 40% of
diagnosed cases are lung adenocarcinomas (LUADs) (Leiter et al.,
2023). The invasion of cancer cells into adjacent tissues is primarily
driven by mechanisms of immune evasion and drug resistance,
which are major contributors to cancer mortality. Recent progress
inmolecular targeted and immunotherapies has gradually improved

survival rates for LUAD patients. Despite advancements, drug
resistance and recurrence are key factors in LUAD progression,
primarily driven by immune evasion and resistance to tumor cell
apoptosis (Zhan et al., 2019; Nechiporuk et al., 2019; Yu et al.,
2023). The intricate molecular mechanisms of LUAD contribute to
its unfavorable prognosis, suggesting that constructing a predictive
model utilizing multiple genes could be a more efficacious approach
(Laurence et al., 2021; Zhang et al., 2023b). Recently, an increasing
number of prognostic markers for LUAD have been identified
(Zhang et al., 2024a; Zhang et al., 2024b). For example, there may be
potential links between programmed cell death caused by intestinal
microorganisms and mitochondria and LUAD prognosis, diagnosis
and treatment (Fang et al., 2024; Feng et al., 2024; Zhang et al.,
2024c). However, the current paucity of adequate biomarkers
hinders this objective, underscoring the necessity of identifying
additional biomarkers for enhancing the accuracy of early predictive
models in LUAD.

The cell membrane is composed of diverse lipids, among
which sphingolipids are integral in preserving structural integrity
of the membrane and regulating its mobility (Ogretmen, 2018).
Sphingolipids belong to a broader class of lipids. Furthermore,
as secondary messengers in cellular signal transduction,
sphingolipids are implicated in the regulation of numerous
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FIGURE 5
Assessment and confirmation of prognostic signature. (A, D, E) The risk-score, survival time, survival status and gene expression of the training set,
external set GSE30219 and GSE31210. (B, F, G) K-m analysis verified the risk model’s prognostic significance in the TCGA training set, GSE31210 and
GSE30219 cohort. (C, H, I) ROC curve analysis verified the risk model’s prognostic significance in the TCGA training set, GSE31210 and
GSE30219 cohort.

biological processes (Dany and Ogretmen, 2015; Pettus et al.,
2005). Recent studies found a strong link between sphingolipid
metabolism and tumor development and progression, influencing
processes such as cell death, senescence, cell cycle arrest, cell
proliferation, and anti-apoptosis (Obeid et al., 1993; Lee et al., 1998;
Hannun et al., 2015; Morad and Cabot, 2013).

We initially screened 51 genes associated with sphingolipid
metabolism in lung adenocarcinoma tissues, comparing them to
normal tissues. Among these, 29 genes exhibited downregulation,
while 22 genes were upregulated. Subsequently, we employed the K-
m algorithm to categorize TCGA samples into two distinct clusters.
Differentially expressed genes in the two LUAD clusters are mainly

enriched in processes related to phosphorus and lipid metabolism,
small molecule metabolism, and the endoplasmic reticulum. They
are also associated with pathways such as TNF signaling, cholesterol
metabolism, PPAR signaling, choline metabolism in cancer, IL-
17 signaling, HIF-1 signaling, and Th17 cell differentiation. The
overall survival (OS) in cluster 1 was worse than in cluster 2. These
findings indicate that the prognostic differences among clusters
related to sphingolipid metabolism are associated with variations
in immune response. Seven SRGs were identified using univariate
regression, LASSO, and stepwise regression analyses. And these
SRGs were used to create new prognostic risk profiles, enabling the
classification of LUAD patients into high-risk and low-risk groups.
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FIGURE 6
Prognostic Risk Score Distribution and Stratification by Clinical Characteristics. (A–F) The log-rank test and K-m curves revealed that patients at high
risk had inferior overall survival outcomes compared to those at low risk, across all age and gender subgroups. (G–I) The distribution of risk scores is
analyzed across different genders, age groups, and pathological stages.

The high-risk group had a significantly poorer prognosis than the
low-risk group. We evaluated the model’s accuracy by performing
comprehensive ROC curve analyses on the training and test cohorts.
The AUC values surpassed 0.68 at 1, 3, and 5 years, peaking
at 0.74 at 3 years. The differential expression of mRNA related
to sphingolipid metabolism was confirmed using paired samples
from TCGA. Subsequently, the protein expression of sphingolipid
metabolism was further confirmed through immunohistochemical
experiments. The prognostic signals were integrated with 7 SRGs,
including LDHA, SHC1, CDKN3, PCSK9, CAV2, PDGFB and BTK.
Among them, LDHA, SHC1 and CDKN3 were associated with poor

prognosis, while BTK was well correlated with good prognosis.
Finally, we selected fourmolecules LDHA, CDKN3, SHC1 and BTK,
which are most significantly impacting the prognosis of patients,
for in vitro experiments. In Nantong cohort, our analysis revealed
that LDHA, SHC1, and CDKN3 are associated with poor prognosis,
whereas BTK is linked to favorable prognosis, aligning with findings
from the TCGA database. We created a nomogram and found
the immunohistochemical (IHC) score to be a key independent
predictor of overall survival.

Prior studies have descripted a negative correlation between
tumor purity and immune response, indicating that tumor purity
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FIGURE 7
Analysis of immune infiltration associated with the signature. (A) The immune infiltration analysis in LUAD patients compared the percentage
abundance of tumor-infiltrating immune cells between high and low risk-score groups. (B) Heatmap illustrating differential gene expression associated
with sphingolipid-related signatures in LUAD. (C) The degrees of immune cell infiltration in patients with LUAD were compared across two risk groups.
(D) Xcell algorithms identified immune cell expression differences between two risk groups. (E, F) Examining the differences in ESTIMATE, stromal, and
immune scores between cluster 1 and cluster 2. (G) Correlation between immune cells. (H) The Riskscore is proportional to the T cells follicular helper.

could be an indicator of immune response levels in the tumor
microenvironment (Liu et al., 2019). Similar to these findings, our
study demonstrated that immune infiltration was lower in the high-
risk group than in the low-risk group. Significant differences were
observed in the abundance of immune cell types, such as activated

CD4 memory T cells, M0 macrophages, resting mast cells, resting
natural killer corpuscles, resting dendritic cells, activated mast
cells and resting CD4 memory T cells between the two groups.
The critical environment for cancer development is composed
of the tumor microenvironment (TME) (Mantovani et al., 2008;
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FIGURE 8
Verification of laboratory experiments. (A–D) Immunohistochemistry (IHC) results indicated that the protein expression of LDHA, CDKN3, SHC1 were
significantly elevated in tumor tissues compared to normal tissues. And the expression of BTK protein in tumor tissues was lower compared to normal
tissues. (A1, A2) K-m curve and nomogram of LDHA. (B1, B2) K-m curve and nomogram of CDKN3. (C1, C2) K-m curve and nomogram of SHC1. (D1,
D2) K-m curve and nomogram of BTK. (E–H) The nomogram for the Nantong cohort incorporates the IHC-score alongside clinical parameters such as
age, gender, and T, N stage. Significance levels: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001.
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Engblom et al., 2016) which leading to tumor immune escape
(Li et al., 2024; Wang et al., 2022). And the relationship between
sphingolipid metabolism and signal transduction has received
increasing attention in the tumor microenvironment. Sphingolipids
play a crucial role in regulating inflammation and extracellular
matrix dynamics in the tumor microenvironment. For example,
S1P can activate various signaling pathways in immune cells,
endothelial cells, and fibroblasts, affecting the secretion of cytokines,
chemokines, and growth factors that regulate inflammation
(Mohammed et al., 2023; Weigel et al., 2023). By regulating the
tumor immune microenvironment, S1P affects tumor progression
and the effectiveness of immunotherapy. For example, in breast
cancer, the S1P gradient between peripheral blood and bonemarrow
mediates the redistribution of Treg cells (Rathinasamy et al., 2017).
Ceramide is an essential component of T cell immune development.
In mouse models, inhibition of ceramide synthesis has been shown
to promote the differentiation of immunosuppressive Treg cells
and impair the function of cytotoxic T cells (Hose et al., 2022).
Ceramide can activate the T cell receptor (TCR) and co-stimulatory
molecule CD28 on the surface of T cells, thereby enhancing the
activation of CD8+ T cells (Vaena et al., 2021). Cumin et al.’s
study showed that sphingolipids contribute to the remodeling of
extracellular matrix (ECM) vascular structure, thereby affecting the
proliferation, invasion and metastasis of cancer cells (Cumin et al.,
2022). Current research suggests that innate lymphocytes (ILC) in
the TME could hinder the initiation and advancement of digestive
system tumors and impact the effectiveness of immunotherapy
(Shen et al., 2024). Inflammatory cells and mediators represent
essential elements of the TME, with tumor-associated macrophages
(TAMs) exemplifying the connection between inflammation
and oncogenesis (Mantovani et al., 2017). The primary reason
for mortality from tumors, such as lung cancer, is metastasis
(Ruixin et al., 2024). In most tumors, macrophages aid cancer
progression and metastasis by supporting cancer cell survival
and growth, promoting angiogenesis, and inhibiting innate and
adaptive immune responses (Coussens et al., 2013; Cassetta
and Pollard, 2018; Locati et al., 2020; Murray et al., 2014). Our
analysis demonstrated significantly higher expression levels of
M0 macrophages in the high-risk group compared to the low-
risk group, consistent with prior observations in renal clear cell
carcinoma (Farha et al., 2023).

Our study integrates data from two large public databases,
TCGA and GEO, and constructs a prognostic model based on
7 sphingolipid-related genes, breaking through the limitations
of single database analysis and improve the reliability and
generalization capabilities of the model. In addition, we verified
the functions of key genes through in vitro experiments, further
supporting the biological rationality of the model. Immune
infiltration analysis further illustrates that the model is Value
in immunotherapy, the expression level of M0 macrophages in
the high-risk group is significantly increased, so we may be
more effective in using M0 macrophage-related immunotherapy
drugs for the treatment of high-risk patients. Our model can
provide clinicians with Prognostic information on patient survival
probability and disease progression helps develop personalized
treatment options. Risk stratification of patients to enable closer
monitoring and more active treatment of high-risk patients while
avoiding overtreatment of low-risk patients, reduces the medical

costs of patients. As well as provide advice on patient education,
psychological support, and clinical research. However, there are still
some areas that need improvement. In the future, our research
needs to further integrate multi-omics data, use deep learning
algorithms and artificial intelligence technology, and build a more
comprehensive prognostic model to more accurately reflect the
biological characteristics of the tumor and disease progression. And
verify the accuracy and reliability of the prognostic model in more
independent clinical cohorts, and further optimize the model based
on feedback.

This study aims to identify a biomarker linked to
sphingolipid metabolism for predicting survival outcomes in
lung adenocarcinoma (LUAD) patients and to explore the
effects of tumor immune infiltration and immunotherapy on
prognosis. It is anticipated that our findings will offer novel
insights into the precise diagnosis and treatment strategies for
LUAD patients.
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