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Background: Numerous studies have reported that dysregulation of fatty
acid metabolic pathways is associated with the pathogenesis of vitiligo, in
which arachidonic acid metabolism (AAM) plays an important role. However,
the molecular mechanisms of AAM in the pathogenesis of vitiligo have not
been clarified. Therefore, we aimed to identify the biomarkers and molecular
mechanisms associated with AAM in vitiligo using bioinformatics methods.

Methods: The GSE75819 and GSE65127 datasets were used in this study as the
training and validation sets, respectively, alongwith 58 AAM-related genes (AAM-
RGs). The differentially expressed genes (DEGs) between the lesional and control
groups in the training set were identified through differential expression analysis.
A biomarker-based nomogram was constructed to predict the risk of vitiligo.

Results: 15 overlapping candidate genes were obtained between the DEGs and
AAM-RGs. Machine-learning algorithms were used to identify six key genes as
PTGDS, PNPLA8, FAAH, ABHD12, PTGS1, and MGLL. In both the training and
validation sets, PTGDS, PNPLA8, and MGLL. In both the training and validation
sets, PTGDS, PNPLA8, and MGLL were regarded as biomarkers. A nomogram
based on these biomarkers showed potential for predicting the risk of vitiligo.
Functional enrichment, immune cell infiltration, and regulatory network analyses
were used to elucidate the molecular mechanisms.

Conclusion: In conclusion, PTGDS, PNPLA8, and MGLL were implicated in
AAM to influence the pathogenesis of vitiligo. These findings offer insights into
vitiligo treatment, although further research is needed for a comprehensive
understanding.
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1 Introduction

Vitiligo is a localized or generalized depigmentation skin disorder characterized
by decreased color, increased whiteness, and distinct boundaries (Lyu and Sun,
2022). The pathogenesis of vitiligo is unclear and may be related to factors such
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as immune dysfunction, oxidative stress, melanocyte dysfunction,
and intestinal flora disturbance (Post et al., 2023). At present, there
are very few treatment methods for vitiligo and different degrees of
limitations that do not meet the demands of patients (Cunningham
and Rosmarin, 2023). Therefore, further exploration of safer, more
efficient, and inexpensive treatment strategies is an urgent problem
in vitiligo research.

Polyunsaturated fatty acids are essential substances needed
for maintaining human health and mainly include the ω-3 and
ω-6 types (Duan et al., 2023). Arachidonic acid (AA) is an
essential fatty acid in the human body belonging to the ω-6
type of polyunsaturated fatty acids. AA and its metabolites have
important biological activities in inflammatory responses, immune
regulation, and signal transmission, which are involved in the
occurrence and development of various diseases (Zhang et al.,
2023). Growing evidence suggests that arachidonic acid metabolism
(AAM) is closely associated with autoimmune diseases, such as
psoriasis, systemic lupus erythematosus, and rheumatoid arthritis
(Chaaba et al., 2023; Tu et al., 2023; Ye et al., 2021; Turolo et al.,
2021).Moreover, it has been reported that the incidence ofmetabolic
syndrome in patients with vitiligo is significantly higher than in
healthy controls (Liang et al., 2022). Studies have shown that
dysregulation of the fatty acid metabolic pathways is associated
with the pathogenesis of vitiligo (Ni et al., 2020; Ye et al., 2022).
However, there are no relevant studies on how AAM participates
in the occurrence and development of vitiligo. Therefore, in-depth
exploration of vitiligo based on metabolic disorders is needed.

In the present study, the weighted gene coexpression network
analysis (WGCNA) tool and machine learning were used to explore
the key genes related to AAM in vitiligo. Based on bioinformatics
analysis of the biological pathways and immunemicroenvironments
of the key genes, the molecular regulatory mechanisms of these
genes were further explored to provide a new reference for the
clinical diagnosis and treatment of vitiligo.

2 Materials and methods

2.1 Data source

The GSE75819 dataset (platform: GPL6884), which
includes 15 lesions and 15 control skin tissues from
vitiligo patients (Supplementary Table S1), was downloaded from
the Gene Expression Omnibus (GEO) database (https://www.ncbi.
nlm.nih.gov/geo/) for use as the training set. The validation set
GSE65127 (platform: GPL570) contained 10 lesions and 20 control
skin tissue samples. A total of 58 AAM-related genes (AAM-RGs)
were also downloaded from MSigDB (https://www.gsea-msigdb.
org/gsea/msigdb).

2.2 Identification and functional
enrichment analysis of the candidate genes

The limma package (v3.54.0) (Ritchie et al., 2015) was used to
analyze the differentially expressed genes (DEGs) of the lesional
and control groups from the training set with |log2FC|>0.5 and
adj. P < 0.05. The volcano plot was used to visualize the DEGs

using the ggplot2 package (v3.4.1). The top-10 upregulated and
downregulated DEGs were labeled in the volcano plot, and
their expression heatmap was obtained using the circlize package
(v0.4.15) (Gu et al., 2014). Furthermore, the intersection between the
DEGs and AAM-RGs was obtained to identify the candidate genes.
To probe the functions of these candidate genes, the gene ontology
(GO) and Kyoto Encyclopedia Of Genes And Genomes (KEGG)
enrichment analyses were conducted using the clusterProfiler
package (v4.2.2) (Wu et al., 2021) with a threshold of adj. P < 0.05.
To further explore the relationships between the proteins encoded
by the candidate genes and understand their potential functions, the
protein–protein interaction (PPI) network was constructed based
on the protein interaction information in the STRING database by
setting a medium confidence level >0.4.

2.3 Biomarker screening

The least absolute shrinkage and selection operator (LASSO) and
support vector machine recursive feature elimination (SVM-RFE)
algorithms were employed on the training set to screen the feature
genes based on the candidate genes. LASSO regression analysis was
then performed using the glmnet package (v4.1-4) (Friedman et al.,
2010), where the optimal lambda value (Lambda.min) was obtained
through 10-fold cross-validation to minimize the model error rate.
At this stage, the feature genes 1 whose regression coefficients
were not penalized to 0 were selected. Meanwhile, the SVM-RFE
was implemented using the caret package (v6.0-93, https://cran.r-
project.org/web/packages/caret/index.html) to obtain feature genes
2. Subsequently, the feature genes from the two machine learning
algorithms were combined to yield the key genes. The expression
levels of these key genes in the lesional and control groups from
the training and validation sets were analyzed separately, and those
with significant expression differences and consistent trends in both
datasets were considered biomarkers for further analyses. To explore
the performances of the biomarkers in differentiating vitiligo samples
from the control samples, the “pROC” package (v1.18.0) was used on
thetrainingsetGSE75819todrawthereceiveroperatingcharacteristics
(ROC)curvesof thecandidatekeygenesandtocalculate theareaunder
the curve (AUC). An AUC value greater than 0.7 indicated that the
corresponding gene had relatively good diagnostic performance.

2.4 Construction and verification of the
nomogram

To predict the risk of vitiligo, the rms package (https://CRAN.R-
project.org/package=rms) was applied to create a nomogram based
on the biomarkers identified from the training set with lesional
status as the outcome. Then, the predictive ability of the nomogram
was evaluated using the calibration curve, decision curve analysis
(DCA), and clinical impact curves (CICs).

2.5 Gene set enrichment analysis (GSEA)

To investigate the biological pathways involved with the
biomarkers, GSEA was performed on the biomarkers from the
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training set using the clusterProfiler package, and the Spearman
correlation coefficient of each biomarker with all the other genes was
computed using “c2cp.kegg.v7.5.1.symbols.gmt” as the reference set
of genes.The genes were then sorted in descending order to produce
a list of related genes corresponding to each biomarker for theGSEA.

2.6 Immune cell infiltration analysis

We used the GSVA package (v1.42.0) (Hänzelmann et al.,
2013) to compute the enrichment scores of 28 immune infiltrating
cells for all samples in the training set based on the ssGSEA
algorithm. Then, these enrichment scores were displayed in a
box plot to identify the differential immune cells between the
lesional and control groups. For the training set, the correlations
between the differential immune infiltrating cells were analyzed
using the corrplot package (v0.92), and the relationships between
the biomarkers and differential immune cells were assessed
by the Spearman correlation analysis to explore the immune
microenvironment characteristics specific to vitiligo.

2.7 Chromosome localizations and
regulatory networks of the biomarkers

Thedistribution of biomarkers on the chromosomeswas initially
visualized using Circos (http://circos.ca/) with the training set. The
GeneMania network was then constructed (http://www.genemania.
org/) to predict other genes related to the biomarker functions
and biological pathways. The transcription factors (TFs) regulating
the biomarkers were retrieved from the Network Analyst database
(https://www.networkanalyst.ca/), and the upstream miRNAs of
the biomarkers were predicted for the training set using the
ENCORI and miRWalk databases. Then, the miRNAs from the
two databases were overlapped to obtain the intersecting miRNAs.
Finally, themiRNA–mRNA–TF regulatory networkwas constructed
using Cytoscape software.

2.8 RT-PCR

Skin tissues from vitiligo patients (generally from the lower
back) who were diagnosed as having advanced non-segmental
vitiligo, including two men and two women aged 19–52 years,
were obtained from the Department of Dermatology of Shaanxi
Provincial People’s Hospital. The exclusion criteria were as follows:
participants had other related skin or autoimmune diseases in the
past 6months or had received systemic therapy with glucocorticoids
and immunosuppressive drugs. The skin tissues of healthy people
were obtained from the plastic surgery department of Shaanxi
Provincial People’s Hospital; these people had no genetic history,
no systemic immune diseases, and no acute or chronic history and
included two men and two women aged 21–56 years. This study
was conducted in accordance with the guidelines of the Declaration
of Helsinki. The Ethics Committee of Shaanxi Provincial People’s
Hospital approved the study, and all patients provided written
informed consent. Total RNA was extracted from the tissue samples
using the Total RNA kit (Omega Bio-tec, Inc.). Then, the total

RNA was transcribed into cDNA using the PrimeScript™ RT kit
(TaKaRa, Dalian, China). RT-PCR was then performed using the
PCRMaster Mix (Thermo Fisher).The primers were designed using
primer premier 5.0 software, and the sequences were as follows:
PNPLA8 forward: 5′-AGCCTACAAGTCCTTCTGCGATAC-3′;
PNPLA8 reverse: 5′-TCCGTGGGACGAGAAAGAAAGTTAG-
3′; PTGDS forward: 5′-GGTCTCCGTGCAGCCCAAC-3′;
PTGDS reverse: 5′-TGGACAACGCCGCCTTCTTC-3′; MGLL
forward: 5′-TCCAACTGCTGAATGCCGTCTC-3′; MGLL reverse:
5′-TTGTCCTGGCTCTTGGCTAACTC-3′; β-actin forward:
5′-CTGGAACGGTGAAGGTGACA-3′; β-actin reverse: 5′-
AAGGGACTTCCTGTAACAATGCA-3′. The PCR thermocycling
conditions consisted of an initial 5 min of denaturation at 95°C,
followed by 30 cycles at 95°C for 30 s, 54°C for 30 s, and 72°C for
40 s. The change in transcript abundance was calculated using the
2−ΔΔCT method.

2.9 Statistical analysis

R software (v4.2.2) was used for the statistical analyses. The
differences between groups were analyzed by Wilcoxon’s test, and
P < 0.05 was set as the statistical significance.

3 Results

3.1 Identification and enrichment analyses
of the candidate genes

A total of 4,253 DEGs (2,473 upregulated and 1,780
downregulated) were obtained from the lesional and control
groups of the training set (Figure 1A). The expressions of the
top-10 upregulated and downregulated DEGs in the two groups
are shown as a heatmap in Figure 1B. By overlapping the 4,253
DEGs with the 58 AAM-RGs, 15 candidate genes were obtained
for subsequent analyses (Figure 1C). These 15 candidate genes were
enriched in 221 GO items (e.g., AAM process, long-chain fatty acid
metabolic process, and unsaturated fatty acid metabolic process)
(Figure 1D; Supplementary Table S2) and 52 KEGG pathways (e.g.,
AAM, glutathione metabolism, and VEGF signaling pathway)
(Figure 1E; Supplementary Table S3). The enrichment analysis
results showed that the DEGs were widely involved in the AAM
pathway associated with the synthesis of lipid molecules such as
prostaglandins and leukotrienes that play key roles in various
physiological processes, including inflammation and immunity.
Furthermore, the PPI network showed 21 interactions between 14
proteins (GPX4-PTGS2, MGLL-FAAH, PTGS1-PTGDS etc.), of
which ALOXE3 was an isolated target with no protein interactions
with the other genes (Figure 1F).

3.2 Screening of biomarkers

Based on the 15 candidate genes identified from the training
set, six key genes (PTGDS, PNPLA8, FAAH, ABHD12, PTGS1, and
MGLL) were screened through intersection with seven feature genes
1 produced by the LASSO algorithm (lambda.min = 0.005445)
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FIGURE 1
Identification and enrichment analyses of the candidate genes in normal and vitiligo samples. (A) Volcano plot of the differentially expressed genes
(DEGs). The red dots represent the significantly upregulated genes, and the blue dots represent the significantly downregulated genes. (B) Heatmap of
the DEGs. The top part is a density heatmap of the expression levels of the upregulated and downregulated genes in the samples showing the lines of
the quartile means; the lower part is the expression heatmap of the top-10 upregulated and downregulated genes in the samples. Each square
represented a sample, with red representing upregulation and purple representing downregulation. (C) Venn diagram of the interacting targets. (D) GO
enrichment analysis results. (E) KEGG pathway enrichment analysis results. (F) PPI network of the candidate genes.
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and 10 feature genes 2 produced by the SVM-RFE algorithm
(Figures 2A–C). In the training set, PNPLA8 was found to be
significantly overexpressed in the lesion group, while the other
key genes were significantly underexpressed (Figure 2D). In the
validation set, PNPLA8 and PTGS1were significantly overexpressed,
while PTGDS and MGLL were significantly underexpressed in the
lesion group (Figure 2E). FAAH andABHD12 showed no significant
differences between the lesional and control groups. Therefore,
PTGDS, PNPLA8, and MGLL were selected as biomarkers. The
subsequent ROC results showed that the AUC values of PTGDS,
PNPLA8, and MGLL were all greater than 0.7, indicating that these
biomarkers had good diagnostic performances (Figure 2F).

3.3 Prediction of vitiligo from nomogram
modeling

The total points were computed based on the expressions of
the three biomarkers to create a nomogram model for vitiligo
prediction (Figure 3A). In the calibration curve for the nomogram,
the P value of the Hosmer–Lemeshow test was greater than 0.05 (P
= 0.496), indicating that there was no notable difference between
the predicted and true values and that the model had a high
predictive accuracy (Figure 3B). The DCA suggested that the net
benefit of the nomogrammodel was higher than the extreme curves
(Figure 3C).TheCICs also indicated that themodelmight have high
clinical validity (Figure 3D).

3.4 GSEA

According to the GSEA, PTGDS and PNPLA8 were
significantly enriched in the ribosome, proteasome, cell cycle,
and other pathways; MGLL was significantly enriched in the
lysosome, endocytosis, Fc gamma R mediated phagocytosis, and
other pathways (Figures 4A–C).

3.5 Immune infiltration analysis

Immune infiltration analysis was performed on 28 immune
cells and three biomarkers. Initially, the heatmap showed the
distribution of the enrichment scores of the 28 immune infiltrating
cells between the lesion and control samples (Figure 5A). It was
noted that the enrichment scores of 19 immune infiltrating cells,
such as activated CD8 T cells, activated CD4 T cells, and effector
memory CD4 T cells, were significantly different between the two
groups (P < 0.05) (Figure 5B). Figure 5C shows the correlations
between the 19 differential immune cells. There was an extremely
significant negative correlation between monocytes and immature
dendritic cells (cor = −0.86), while therewas an extremely significant
positive correlation between the activated CD4 T cells and effector
memory CD4 T cells (cor = 0.85). The relationships between the
immune cells and biomarkers showed that PTGDS and MGLL
were both significantly negatively correlated with immune cells
such as activated CD4 T cells, effector memory CD4 T cells,
immature dendritic cells, and memory B cells as well as significantly
positively correlated with central memory CD8 T cells, monocytes,

plasmacytoid dendritic cells, and other cells. However, PNPLA8 had
the opposite correlations as the above two genes, suggesting that
PNPLA8might play an opposite role to those of PTGDS andMGLL
in the regulation of immune cells (Figure 5D).

3.6 Construction of the TF–miRNA–mRNA
network

The chromosomal localization analysis revealed that PTGDS
was located on chromosome 9, PNPLA8 on chromosome 7, and
MGLL on chromosome 3 (Figure 6A). A total of 20 genes related
to biomarker functions were analyzed using GeneMania, and the
functions of these genes were mainly related to lipid metabolic
processes (Figure 6B). The results of TF predictions showed that
11 TFs could regulate the expression of MGLL while 4 TFs could
regulate the expression of PTGDS. Among these TFs, TFAP2A was
identified as a regulator of both biomarkers. In addition, the TF-
miRNA-mRNA network showed the intersecting miRNAs and TFs
corresponding to each of the three biomarkers (Figure 6C).

3.7 Target gene expression verifications in
clinical samples

TheRT-PCRresults showed that comparedwith the control group,
the expressions of PTGDS and MGLL in the skin tissues of vitiligo
patients were significantly downregulated, whereas the expression of
PNPLA8 was significantly upregulated (Figure 7). These results were
consistent with the findings of the bioinformatics analysis, confirming
that the target genes may play crucial roles in vitiligo.

4 Discussion

Vitiligo is a depigmentation skin disorder caused by many
factors, including autoimmune, metabolic, or their combination.
The incidence of metabolic syndrome was reported to be
significantly higher in patients with vitiligo than healthy controls
(Tanacan and Atakan, 2020). The metabolic pathways of fatty acids,
including arachidonic acid, are significantly associated with the
development of vitiligo (Ni et al., 2020), but their actionmechanisms
in vitiligo have not been studied.

Machine learning algorithms are widely used in bioinformatics
and genomics. In the present study, LASSO and SVM-RFE
algorithms were used to screen the key genes related to AAM
in vitiligo. The genes selected by LASSO focus on linear
relationships, while the genes selected by SVM-RFE focus on
classification performance. Combining the two algorithms can
thus reduce the risk of overfitting due to the limitations of a single
algorithm (Liang et al., 2022). The selected key genes were not only
based on linear relationships and classification performance but also
more representative and stable. In terms of biomarker prediction,
this key gene set can more accurately reflect the characteristics of
the biomarkers and improve prediction accuracy.

In this study, we first obtained six AAM-RGs in vitiligo by
searching the transcriptome dataset in the GEO database along
with difference analysis and machine learning; then, PTGDS,
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FIGURE 2
Machine learning approach for screening biomarkers. (A) LASSO logistic regression to screen candidate genes. (B) SVM-RFE for screening the
candidate genes. (C) Venn diagrams of the hub genes between LASSO and SVM-RFE. (D) Expressions of the six hub genes in the training dataset. (E)
Expressions of the six hub genes in the validation dataset. (F) The receiver operating characteristic curves of the three identified biomarkers show that
the area under each curve is >0.7, as indicated in the inset legend.

PNPLA8, and MGLL were verified as the three key genes through
the validation set. Prostaglandin D synthase (PTGDS) is an
important enzyme in the AAM pathway that is responsible for
the synthesis of prostaglandin D2 (PGD2) and plays a critical role
in the transportation of fat-soluble substances (Hu et al., 2022).
PGD2 has anti-inflammatory and immunomodulatory functions
and plays important roles in regulating the immune responses
and maintaining immune homeostasis (Xu et al., 2024). Therefore,
PTGDS may play a role in the immunomodulatory mechanism
of vitiligo through its metabolite PGD2. In addition, the change

in PTGDS expression may affect the normal functions of cells
by regulating the oxidative stress level, which is related to the
pathogenesis of vitiligo (Li et al., 2024). Monoacylglycerol lipase
(MGLL) is a primary enzyme responsible for the hydrolysis of 2-
arachidonoylglycerol (2-AG) for breaking down monoglycerides
into glycerol and fatty acids (Gil-Ordóñez et al., 2018); it plays
a crucial role in various pathological processes, including pain,
inflammation, and oxidative stress (Fan et al., 2024). By hydrolyzing
2-AG, MGLL affects the levels of AA and its metabolites, which
play important roles in immune regulation and inflammation, i.e.,
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FIGURE 3
Construction of nomogram model for vitiligo prediction. (A) Nomogram model of PTGDS, MGLL, and PNPLA8. (B) Calibration curve for evaluating the
predictive ability of the column chart mode. (C) Decision curve analysis for evaluating the predictive ability of the column chart model. (D) Clinical
impact curve for evaluating the predictive ability of the column chart model.

regulating T cell proliferation and cytokine secretion (Cisar et al.,
2018; Deng and Li, 2020). Therefore, MGLL may participate
in the immune response process of vitiligo by regulating the
activation and functions of immune cells. PNPLA8 is a lipase
8 containing patatin-like phospholipase domains and is involved
in regulating the production of fatty acids, such as AA, as well
as regulation of melanin production and cell functions through
activation of the PI3K/Akt/Gsk3β and MAPK signaling pathways
(Tan et al., 2023; Mosca et al., 2021). In addition, PNPLA8
enhances the production of AA through various subclasses of

phosphatidylethanolamine and phosphatidylcholine to increase the
production of prostaglandin E2 (PGE 2), which is beneficial for cell
growth (Ramanadham et al., 2015). Knockdown of PNPLA8 has
been reported to increase lipid peroxidation and trigger the intrinsic
apoptotic pathways (Moon et al., 2012). However, the specific roles
of MGLL and PNPLA8 in vitiligo are not directly reported; thus,
future studies may further explore the roles of these enzymes in
vitiligo and their potential clinical applications. Our study also
showed that the three key genes PTGDS, PNPLA8, and MGLL are
biomarkers for predictive models of vitiligo. Although the diagnosis
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FIGURE 4
Gene set enrichment analyses of (A) PTGDS, (B) PNPLA8, and (C) MGLL.

of vitiligo is relatively clear through clinical observations and the
Wood’s lamp examination, AA and other unsaturated fatty acids
can help determine the inflammatory and autoimmune statuses
(Kuda et al., 2018; Schwarz et al., 2017).

We further conducted immune infiltration analysis of the key
genes to understand the relationships between them and vitiligo
as well as its pathological mechanism. This analysis showed that
there were 19 different immune cells between the lesion and control
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FIGURE 5
Analysis of immune infiltration. (A) Heatmap of the distribution of immune infiltrating cells between lesional and control samples. (B) Box plot of the 28
immune cell expressions between the sample groups. (C) Heatmap of correlations between the immune cells. (D) Analysis of correlations between the
three key genes and distinct immune cells. (∗P < 0.05,∗∗P < 0.01,∗∗∗P < 0.001).

groups and that the proportions of activated CD8 T cells, activated
CD4 T cells, and effector memory CD4 T cells were higher in the
lesion group. CD8 T lymphocytes play an important role in the
pathogenesis of vitiligo and are responsible for the destruction of
melanocytes (van den Boorn et al., 2009). These cytotoxic CD8 T
cells are present in greater numbers in the blood of vitiligo patients
compared to healthy controls and are associated with vitiligo activity
(Strassner et al., 2017). CD4 T cell dysfunction is often observed in
autoimmune diseases, and these cells also play an important role in
the autoimmune pathogenesis of vitiligo. Early reports have shown

that the CD4 and CD8 T cells in vitiligo primarily produce IFN-

γ and TNF-α, which are characteristic of Th1/Tc1 cell polarization

(Wańkowicz-Kalińska et al., 2003). Studies using transgenic mouse

models of melanocyte-specific T cell receptors have shown that

CD4 T cells are involved in skin decolorization (Lambe et al., 2006).

In addition, our results show that PTGDS, PNPLA8, and MGLL are

significantly associated with changes inmultiple immune cells; here,

PTGDS andMGLL have similar correlations with the immune cells,

whereasPNPLA8 has the opposite correlation of the other two genes.
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FIGURE 6
TF–miRNA–mRNA regulatory network. (A) Chromosome localization analysis of the three key genes. (B) GeneMania analysis of the key genes. (C)
Analysis of the transcription factors and miRNAs regulatory network of the key genes. The red circles are the key genes, orange diamonds are the
transcription factors, and blue triangles are the miRNAs.

FIGURE 7
RT-PCR validation of the identified biomarkers. Skin tissues of four patients with vitiligo and four normal controls were collected for RT-PCR. (∗P < 0.05).

These results suggest that PTGDS, PNPLA8, and MGLL may be
involved in the pathogenesis of vitiligo through immune responses.

The results of TF predictions show that 11 TFs could regulate
the expression of MGLL and 4 TFs could regulate the expression

of PTGDS. TFAP2A was identified as a common transcriptional
regulator of the biomarkers PTGDS and MGLL; TFAP2A can
bind to DNA and plays an important role in regulating cell
proliferation, differentiation, and apoptosis. Several TFs, including
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TFAP2A, have been identified in the skin samples of psoriasis
patients and have been associated with the development of skin
lesions in psoriasis (Alena et al., 2017). The role of TFAP2A in
vitiligo needs further exploration and experimental evidence. We
also constructed a TF–miRNA–mRNA network, which is conducive
to further exploration of the mechanisms of these biomarkers in the
occurrence and development of vitiligo.

There are some limitations to our present study. First, although
we verified the expression patterns of the key genes, the specific
biological roles of the related genes in vitiligo have not been explored
deeply. Future studies are thus needed for functional validation in
combination with in vivo and in vitro models to confirm the roles
of these genes in vitiligo. Second, given the small sample sizes and
limited sources, the statistical power of the results presented herein
may be inadequate.Therefore, increasing the sample size and adding
multicenter samples can help improve the reliability and broader
applicability of our findings. In addition, although the biomarkers
identified herein show potential for the diagnosis of vitiligo, there
may be limitations in distinguishing the different stages or subtypes
of vitiligo. Future studies should thus consider including samples
of patients with different subtypes and stages of vitiligo to better
evaluate the application of the proposed approach in clinical typing.

In summary, our results suggest that AAM may be closely
related to vitiligo and that the AAM-RGs can be used as diagnostic
biomarkers of vitiligo. The different expression patterns of these
genes can providemore information for the diagnosis and treatment
of vitiligo. By analyzing the expression characteristics of these
genes, we can better predict the responses of patients to different
treatment schemes, provide a scientific basis for the development
of personalized treatment regimens, and dynamically monitor the
effects during treatment to improve the treatment effects as well as
quality of life of the patients.
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