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Introduction: Colorectal cancer (CRC) is characterized by an extremely high
mortality rate, mainly caused by the high metastatic potential of this type of
cancer. To date, chemotherapy remains the backbone of the treatment of
metastatic colorectal cancer. Three main chemotherapeutic drugs used for
the treatment of metastatic colorectal cancer are 5-fluorouracil, oxaliplatin
and irinotecan which is metabolized to an active compound SN-38. The main
goal of this study was to find the genes connected to the resistance to the
aforementioned drugs and to construct a predictive gene expression-based
classifier to separate responders and non-responders.

Methods: In this study, we analyzed gene expression profiles of seven patient-
derived CRC organoids and performed correlation analyses between gene
expression and IC50 values for the three standard-of-care chemotherapeutic
drugs. We also included in the study publicly available datasets of colorectal
cancer cell lines, thus combining two different in vitromodels relevant to cancer
research. Logistic regressionwas used to build gene expression-based classifiers
for metastatic Stage IV and non-metastatic Stage II/III CRC patients. Prognostic
performance was evaluated through Kaplan-Meier survival analysis and log-rank
tests, while independent prognostic significancewas assessed usingmultivariate
Cox proportional hazards modeling.

Results: A small set of genes showed consistent correlation with resistance
to chemotherapy across different datasets. While some genes were previously
implicated in cancer prognosis and drug response, several were linked to
drug resistance for the first time. The resulting gene expression signatures
successfully stratified Stage II/III and Stage IV CRC patients, with potential clinical
utility for improving treatment outcomes after further validation.

Discussion: This study highlights the advantages of integrating diverse
experimental models, such as organoids and cell lines, to identify novel
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prognostic biomarkers and enhance the understanding of chemotherapy
resistance in CRC.

KEYWORDS

colorectal cancer, organoids, chemotherapy, drug resistance, response prediction,
transcriptomic gene signature

1 Introduction

Colorectal cancer (CRC) is one of themost prevalent and deadly
cancers worldwide, accounting for approximately 1.9 million new
cases and over 900,000 deaths each year (Bray et al., 2024). It
ranks as the third most common cancer and the second leading
cause of cancer-related mortality globally (Bray et al., 2024). The
high mortality rate from CRC is largely driven by metastasis,
which occurs in a significant proportion of patients. According to
statistics, approximately 20% of patients with newly diagnosed CRC
present with synchronous metastases, primarily affecting the liver
(Cervantes et al., 2023). Furthermore, up to 50% of patients initially
diagnosed with localized disease will develop metastases following
treatment of initially localized primary tumor (Cervantes et al.,
2023). Despite advancements in treatment, including surgery,
chemotherapy, and targeted therapies, achieving long-term survival
in metastatic CRC remains a significant challenge (Ciardiello et al.,
2022). Therefore, it is crucial to develop not only new treatments for
metastatic colorectal cancer but also strategies to prevent recurrence,
most of which manifest as distant metastases (Haria et al., 2021).

In clinical practice, the assessment of colorectal cancer
recurrence risk and therapy selection relies on well-established
markers such as TNM staging, MSI status, and mutations in
KRAS, NRAS, and BRAF, which are routinely used to guide
treatment decisions (Koncina et al., 2020). In addition, emerging
gene expression signatures, such as the Oncotype DX Colon
and Consensus Molecular Subtypes (CMS), are being integrated
into clinical settings to personalize therapy, predict recurrence,
and optimize patient outcomes (Ahluwalia et al., 2021). Current
molecular biomarkers, such as mutations and expression signatures,
mainly reflect the biological characteristics of tumors rather than
their sensitivity to therapy. While some of them are useful for
guiding targeted and immunotherapy, neither molecular nor
clinical markers available today can reliably predict responses to
chemotherapy. As chemotherapy remains a cornerstone of colorectal
cancer treatment, the limitations of existing biomarkers underscore
the need for developing new tools to enhance personalized treatment
strategies.

There has been growing interest in testing chemotherapeutic
and targeted agents directly on CRC organoids, which accurately
replicate the histological and molecular characteristics of the
original tumors (van de Wetering et al., 2015; Su et al., 2023).
This method offers a personalized approach by allowing precise
evaluations of how individual tumors respond to specific drugs,
potentially improving treatment outcomes through tailored
therapies based on each patient’s unique cancer profile. Currently,
this approach is primarily applied to metastatic cancer, where it is
easier to compare in vitro results with clinical responses (Ooft et al.,
2019; Narasimhan et al., 2020; Tan et al., 2023). However, the
method has several limitations, including high costs, labor-intensive

processes, and challenges in successfully establishing organoid
cultures. Furthermore, clinical validation remains limited.

An intriguing alternative is to combine molecular and culturing
approaches: identifying drug sensitivity markers from a small
set of organoid cultures and applying these markers directly to
tumor tissues. This method eliminates the need for extensive
organoid culture, making the process faster and more cost-
effective. Notably, this combined approach has already been
successfully implemented for pancreatic cancer (Tiriac et al.,
2018), gastric cancer (Vistoso Monreal et al., 2024) and biliary
tract cancer (Ren et al., 2023).

In this study, we expanded our collection of CRC organoids
to identify correlations between gene expression and IC50 values
for three commonly used CRC drugs: 5-fluorouracil (5-FU),
oxaliplatin, and SN-38 (the active metabolite of irinotecan). To
ensure robust results, we integrated our organoid data with
publicly available data on CRC cell lines, thus bridging two
distinct in vitro models currently available for cancer research
and validating the results of each experiment. As a result, we
identified genes whose expression consistently correlates with the
response to standard chemotherapeutic drugs. These genes could
serve as potential new targets to overcome drug resistance and
warrant further investigation. Additionally, using publicly available
transcriptomic datasets, we demonstrated that some of these genes
possess prognostic value for both early- and late-stage CRC. Gene
expression signatures based on these identified genes were shown
to effectively predict patient outcomes, underscoring their potential
for further translational research. A general flow chart of this study
is presented in Supplementary Figure S1.

2 Materials and methods

2.1 Primary patient material and organoid
culture

In this work 4 new cultures of colorectal cancer patient-derived
organoids (CRC PDOs) were established from resected metastatic
tissue as described previously (Nikulin et al., 2020; Poloznikov et al.,
2021). Initial material was obtained from 3 distinct patients P4,
P5 and P6 and 2 different metastases from P6 were used for two
CRC PDOs P6(1) and P6(2). The generation of CRC PDOs P1,
P2 and P3 was described previously (Poloznikov et al., 2021). The
main clinical parameters of the patients included in the study are
summarized in Supplementary Table S1. The study was approved by
the local ethics committee.

The tissue sample was obtained during the examination of
the surgically resected tissue block by a qualified pathologist
who identified the resected tissue as a metastasis. Tissue was
cut into small fragments and placed immediately into MACS
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tissue storage solution (Miltenyi Biotec, Germany). The sample was
stored for several hours at 4°C. Then, the tissue fragments were
transferred into a tube for tissue homogenization (gentleMACS C
Tube, Miltenyi Biotec, Germany), and dissociated with gentleMACS
Octo Dissociator (Miltenyi Biotec, Germany) according to the
manufacturer’s instructions. After the end of the program, the
resulting suspension was centrifuged at 300 g for 10 min. The
supernatant was removed, and the pellet was resuspended in 10 mL
of DPBS (Thermo Fisher Scientific, United States of America).Then,
the suspension was recentrifuged with the same parameters, the
supernatant was also removed, and the pellet was resuspended in
DMEM/F-12 culture medium (Thermo Fisher Scientific, United
States of America). Then, the tube with the suspension was placed
on ice, and the suspension was mixed with Matrigel Growth Factor
Reduced (GFR) Basement Membrane Matrix (Corning, United
States of America) in the ratio 1:2.Then, 50 μL drops of the resulting
suspension in the extracellularmatrix were transferred into the wells
of a 24-well culture plate (TPP, Switzerland) and placed into a cell
culture incubator (37°C, 5% CO2) for 20 min for solidification of
the gel. Then, 750 μL of complete cell culture medium was added
to each well, and the plate was incubated in a cell culture incubator.
The recipe of the complete cell culture medium for CRC organoids
was described earlier (Poloznikov et al., 2021). The cell culture
medium was replaced every 48 h. Cells were inspected visually by
an inverted Axio Observer Z1 microscope (Carl Zeiss, Germany).
Organoids were subcultured (1:5 dilution) every 2 weeks with the
help of TrypLE Express (Thermo Fisher Scientific, United States
of America).

2.2 Histology

Fragments of the original tumor tissue were fixed in 10% neutral
buffered formalin (overnight at room temperature) and embedded
into paraffin. Formalin-fixed samples of tumor organoids were
covered with Histogel (Thermo Fisher Scientific, United States of
America) and then embedded into paraffin. Serial sections with a
thickness of 4 μm were cut and then were routinely stained with
hematoxylin-eosin and examined by light microscopy.

2.3 Drug test

Organoids were diluted in Matrigel GFR Basement Membrane
Matrix (Corning, United States of America) and seeded into 96-well
plates (TPP, Switzerland) (50 organoids perwell). After solidification
of the gel, 100 ul of complete cell culture medium was added
into each well. After 24 h, the organoid culture medium was
replaced with the control medium or the medium containing single
standard-of-care (SoC) drugs. Stock solutions of 5-FU and SN-
38 were prepared in DMSO; stock solution of Oxaliplatin was
prepared in water (Hall et al., 2014). Then CRC organoids were
incubated in a cell culture incubator (37°C, 5% CO2) for 72 h,
and the relative number of viable cells was measured with MTS
assay (Promega, United States of America). Each experiment was
performed in triplicates. An R package “drc” was used to fit dose-
response curves and to determine the half-maximal inhibitory
concentration IC50 (Ritz et al., 2015). To confirm the data on

sensitivity and resistance, a separate experiment was additionally
conducted on two organoid cultures P1 and P3. The size changes
of the obtained organoids under conditions similar to the MTS
test were assessed using microphotographs obtained by an inverted
microscope PrimoVert (Carl Zeiss, Germany).

2.4 RNA sequencing

Organoids were lysed with the QIAzol Lysis Reagent (Qiagen,
Germany). The lysates were stored at −80°C before RNA isolation.
RNA isolation was performed using miRNeasy Micro Kit (Qiagen,
Germany) according to themanufacturer’s protocol. NanodropND-
1000 (Thermo Fisher Scientific, United States of America) was used
to assess the quantity and purity of the extracted RNA. Total RNA
samples were also QC-checked using an Agilent 2100 Bioanalyzer
(Agilent Technologies, United States of America). For each CRC
PDO, three independently obtained samples of RNA were used.

Libraries for mRNA sequencing were prepared from total RNA
samples using the Illumina Stranded mRNA Library Prep Kit
(Illumina, United States of America). Each sample was sequenced
on the NextSeq 550 (Illumina, United States of America) to generate
paired-end 75-nucleotide reads.

The quality of FASTQ files was assessed with FastQC v0.11.9
(Babraham Bioinformatics, United Kingdom) and multiQC v1.9
(Ewels et al., 2016). The adapters were trimmed with fastp 0.21.1
(Chen et al., 2018). The trimmed mRNA-seq reads were mapped
on the reference human genomeGENCODE release 37 (GENCODE
GRCh38. primary assembly) with STAR 2.7.7a (Dobin et al., 2013).
GENCODE release 37 genome annotation (gencode.v37. primary
assembly. annotation) (Frankish et al., 2019)was used to generate the
countmatrix with the featureCount tool from ssubread-2.0.1 aligner
(Liao et al., 2013; 2014).

RNA-seq data generated in this study were deposited
into the Gene Expression Omnibus database under accession
GSE251958 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE251958).

2.5 Gene expression and correlation
analysis

This study utilized data on the sensitivity of colorectal cancer
cell lines and organoids to SoC chemotherapeutic drugs, as well as
RNA expression data.The analysis of cell lines was based on publicly
available data from the Genomics of Drug Sensitivity in Cancer
(GDSC) (Yang et al., 2012) and the Cancer Cell Line Encyclopedia
(CCLE) (Barretina et al., 2012). Sensitivity data for the cell lines
to SoC drugs were available across several datasets. For 5-FU, both
GDSC1 and GDSC2 datasets were used. Oxaliplatin sensitivity data
came from two independent repeats within the GDSC2 dataset,
labeled GDSC2 and GDSC2_2. SN-38 data was only available in
the GDSC1 dataset. All cell line data were downloaded from the
DepMap portal https://depmap.org/portal (Tsherniak et al., 2017).

Gene expression analysis was performed using DESeq2 v1.28.1
(Love et al., 2014). A regularized logarithm transformation
of the count data was applied before conducting correlation
analysis (Love et al., 2014). Spearman correlation coefficients were
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calculated for all genes in relation to the IC50 values of each
chemotherapeutic drug. Correlations were considered significant if
the absolute value of the Spearman correlation coefficient exceeded
0.3 and the p-value was less than 0.05. The threshold for the
Spearman correlation coefficient was selected based on prior studies
(Shee et al., 2019; Ioannidis et al., 2020) and the understanding that
drug response is a complex and multifactorial biological process. In
this context, the influence of any single gene is inherently limited.
Thus, even modest correlations with a Spearman coefficient of ±0.3
are considered meaningful, particularly when they are reproducible
across independent datasets.

An intersection analysis was subsequently conducted to identify
geneswith significant co-directional correlations across the available
datasets (GDSC1, GDSC2, and ORGANOIDS). This resulted in a
subset of genes consistently correlated across all datasets.

2.6 Pathway analysis

Following the intersection analysis, genes common across all
tested datasets were selected for further investigation. For each drug,
a list of geneswas compiled and categorized based on the direction of
their correlation.This gene list was then used as the basis for pathway
enrichment analysis.

The enrichment analysis focused on signaling pathways, using
an overrepresentation approach. This was performed with the
“enrichPathway” function from the ReactomePA package, applying
the default settings (Yu and He, 2016).

2.7 Construction of the gene expression
classifier

We used the subset of genes consistently correlated across all
datasets to develop prognostic classifiers for both metastatic and
non-metastatic colorectal cancer. For late-stage metastatic CRC, our
goal was to predict overall survival (OS) status within 5 years, while
for early-stage non-metastatic CRC,we aimed to predict relapse-free
survival (RFS) status.

For metastatic CRC, we utilized the publicly available dataset
GSE159216 from the Gene Expression Omnibus (GEO) (Eide et al.,
2021; Moosavi et al., 2021). This dataset contains transcriptomic
profiles from metastatic liver tissue of 171 CRC patients. Patients
who died within 5 years were categorized as having an unfavorable
prognosis, while a favorable prognosis was assigned only if the
follow-up period was at least 5 years and the patient was alive.
A subset of patients with available prognostic information was
split into training (112 patients) and testing (47 patients) datasets.
For non-metastatic CRC we used data from the GSE39582 dataset
(Marisa et al., 2013). Initially, we selected only the patients who had
II or III stage of the disease andwhowere treatedwith chemotherapy.
This filter resulted in the whole treated patient dataset with 210
patients. Then we defined the status of the patients as favorable in
case of absence of relapse and time of follow-up more or equal to
5 years and unfavorable in case of developing of relapse within 5
years. The subset of patients with available prognostic status was
split to construct train (112 patients) and test (47 patients) datasets.
We also evaluated the performance of the best constructed classifier

on a group of untreated patients at the same disease stages from
the same dataset. The microarray data were normalized using the
Robust Multiarray Average (RMA) method, implemented in the
“affy” package in R (Gautier et al., 2004).

The classifier constructed for Stage II/III CRC patients
was further validated using the mRNA-seq dataset E-MTAB-
12862 from ArrayExpress, with a training cohort of 441
patients and a testing cohort of 189 patients (Nunes et al.,
2024). Raw count data derived from STAR alignment were
normalized using the trimmed mean of M values (TMM) method
followed by log-transformed counts per million (logCPM), as
implemented in the “edgeR” package (Robinson et al., 2010;
McCarthy et al., 2012; Chen et al., 2016).

To construct gene expression-based classifiers, we employed a
sequential algorithm using logistic regression, implemented with
the “glm” function in R. The classifiers were trained exclusively on
the training datasets. Initially, models were built using a single gene
from the list of consistently correlated genes, with additional genes
added stepwise, up to a total of 12 genes. At each step, models were
retained if the newly added gene was at least marginally significant
(p-value <0.15) and all other genes were significant (p-value <0.05).
Additionally, we conducted repeated 3-fold cross-validation at each
step, selecting the top 50% of models based on average ROC-
AUC values.

Survival analysis for groups predicted by the best classifier
(with a threshold set at 0.5) was performed using the Kaplan-
Meier method and log-rank test. To assess whether the gene
expression-based model served as an independent prognostic
factor when accounting for other clinically relevant variables,
we used a multivariate Cox proportional hazards model.
All analyses were conducted in R using the “survival” and
“survminer” packages.

2.8 Analysis of biological mechanisms
underlying prognostic classifications

To investigate the differences in molecular pathways and
immune response-related pathways between favorable and
unfavorable prognosis groups in CRC at Stages II-III and IV,
we employed the clusterProfiler package along with the KEGG
(Kyoto Encyclopedia of Genes and Genomes) and GO (Gene
Ontology) databases (Ashburner et al., 2000; Kanehisa and
Goto, 2000; Yu et al., 2012). Differentially expressed genes
were identified using the “limma” package, and enrichment
analyses for KEGG pathways and GO biological processes
were performed with a significance threshold of an adjusted
p-value <0.05 (Ritchie et al., 2015).

To examine immune and stromal differences between prognosis
groups, the ESTIMATE algorithm was applied (Yoshihara et al.,
2013). Preprocessed and normalized gene expression data
were used to calculate immune and stromal scores, as well as
tumor purity estimates. A two-sample t-test was conducted to
evaluate the statistical significance of score differences between
prognosis groups.

For detailed immune cell population analysis, the xCell
algorithm was utilized (Aran et al., 2017). Normalized gene
expression data were input into xCell to estimate the relative
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abundances of various immune and stromal cell types. Differences
in cell type proportions between prognosis groups were
assessed using a t-test, with adjusted p-values calculated via
the Benjamini–Hochberg (BH) method to account for multiple
comparisons. Results were visualized using boxplots, displaying the
distribution of each cell type stratified by prognosis group, providing
insights into the immune microenvironment of CRC in relation to
patient outcomes.

3 Results

3.1 Morphological similarities between
patient-derived tumor organoids and
corresponding clinical tumors

Patient-derived colorectal cancer organoids (CRC PDOs) were
generated from digested tumor tissue, embedded in Matrigel, and
cultured for up to 3 weeks without passaging. After subculturing,
significant cell growth was observed as early as the second
day post-seeding. To verify that the organoids consisted of
colorectal cancer cells rather than normal epithelial cells, H&E
histological analysis was performed on the established CRC
PDOs. An experienced pathologist compared the morphology
of the organoids to that of the primary tumors, confirming
that all organoid cultures were composed of malignant cells
(Figure 1; Supplementary Figure S2).

3.2 Response of CRC patient-derived
organoids (PDOs) to standard-of-care
chemotherapeutic drugs

Our results revealed that the response to standard
chemotherapeutic drugs varied significantly across the tumor
organoid cultures (Figure 2). Organoids from patients P1 and
P4 exhibited the highest resistance to 5-FU, with IC50 values of
313 µM and 984 μM, respectively, which were 6 and 20 times
higher than the average IC50 values for other patients. For
oxaliplatin, organoids from patients P3, P4, and P5 showed the
greatest resistance, with IC50 values ranging from 190 to 440 μM,
compared to 20–70 µM for other patients. Interestingly, organoids
from P3 and P4 also displayed the highest resistance to SN-38,
although the variation in SN-38 sensitivity across organoids was
less pronounced compared to the other drugs. These viability
assays allowed us to identify organoid cultures with differing
levels of sensitivity and resistance, highlighting potential variations
in drug responsiveness among patients. The results of the drug
sensitivity and resistance tests were further validated through
micrographs of the two organoid cultures, P1 and P3, taken
after 72-h treatment with the drugs, as well as under control
conditions (Supplementary Figure S3). These visual observations
confirmed that P1 exhibited greater resistance to 5-FU compared
to P3, while P3 showed higher resistance to Oxaliplatin and SN-38
compared to P1.These findings were fully consistent with the results
obtained from the MTS assay, further supporting the robustness of
our observations.

3.3 Correlation analysis of gene expression
with resistance to standard-of-care drugs

Correlational analysis of gene expression and IC50 values
for established CRC PDOs and CRC cell lines from publicly
available datasets (GDSC1, GDSC2, GDSC2_2) revealed a large
number of genes whose expression was positively or negatively
correlated with sensitivity to standard chemotherapy drugs
(Figure 3). The number of genes significantly correlated with
drug sensitivity in a single direction for one dataset ranged
from a few hundred to nearly two thousand. Notably, the
reproducibility of the correlations between the CRC cell line
datasets was moderate. Furthermore, the number of genes
consistently correlated with drug sensitivity across both CRC
cell lines and organoids was very limited. For 5-FU, a total
of 91 genes were consistently correlated (50 positively and 41
negatively), while for oxaliplatin, only 53 genes were identified
(20 positively and 33 negatively). Interestingly, SN-38 had the
smallest number of consistently correlated genes across datasets,
with 23 genes showing positive correlations and 5 showing
negative correlations; however, this analysis involved only two
datasets (ORGANOIDS and GDSC1). The complete list of
intersecting genes is provided in the Supplementary Tables S2–S4.
Selected genes associated with resistance to standard
chemotherapy will be discussed in detail in the
Discussion section.

We also aimed to identify genes whose expression correlated
with sensitivity to more than one SoC drug. The analysis revealed
that the number of such genes was extremely limited, with no
genes found in the triple intersection of the Venn diagrams for
all three SoC drugs (Supplementary Figure S4). Furthermore, no
genes showed significant correlations in opposite directions for
any pair of tested SoC drugs, indicating no contradictory findings
regarding chemotherapy sensitivity (Supplementary Figure S5).
However, common genes were identified between 5-FU and
oxaliplatin: one gene (AVPI1) showed a positive correlation,
while four genes (DHX33, LYRM2, RANGRF, WRAP53) exhibited
negative correlations with IC50 values for both drugs across
all datasets. These genes will be discussed in detail in the
Discussion section.

3.4 Pathway analysis

Several significantly enriched pathways were identified based
on genes whose expression consistently correlated with drug
sensitivity (Supplementary Table S5). For 5-FU, the pathways
“Iron Uptake and Transport” and “Transferrin Endocytosis
and Recycling” were activated in more resistant cells. In
oxaliplatin-resistant cells, pathways such as “Rab Regulation
of Trafficking” and “RAB GEFs exchange GTP for GDP on
RABs” were identified. In contrast, oxaliplatin-sensitive cells
showed activation of pathways like “Transport of Mature mRNA
derived from an Intron-Containing Transcript”, “Transport of
Mature Transcript to Cytoplasm”, and “Processing of Capped
Intron-Containing Pre-mRNA”, indicating enhanced nuclear
pore complex transport. In SN-38-sensitive cells, pathways
associated with taste receptors, which belong to the GPCR
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FIGURE 1
Brightfield images of the established CRC PDOs alongside comparative histological analysis of H&E-stained slides from the initial tissue and organoids.
P4–P6 refers to patient numbers. Scale bars represent 200 μm in the brightfield images and 50 μm in the H&E images.

transmembrane protein superfamily, were activated. These
pathways include “Sensory Perception of Taste”, “Sensory
Perception of Sweet, Bitter, and Umami (Glutamate) Taste”,
and “GPCR Ligand Binding”. The role of some of these
pathways in cancer progression will be further explored in the
Discussion section.

3.5 Predictive 12-gene classifier assessing
overall survival of patients with metastatic
CRC

Using genes whose expression is consistently associated with
resistance to the three tested standard-of-care drugs, we developed

Frontiers in Molecular Biosciences 06 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1531175
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Razumovskaya et al. 10.3389/fmolb.2025.1531175

FIGURE 2
Dose-response results of the drug test for standard-of-care drugs (5-FU, Oxaliplatin, and SN-38) on colorectal cancer organoids derived from
patients P1–P6.

a series of classifiers to predict OS status in patients with
metastatic Stage IV colorectal cancer. Gene expression data from
liver metastasis samples (GSE159216) were used, with the dataset
split into training and test sets. Classifiers were constructed using
logistic regression models incorporating 12 genes, with over 6
million classifiers generated based on various gene combinations. All
classifiers were trained and cross-validated on the training dataset,
and their performance was subsequently evaluated on the test
dataset. To identify themost stable classifier, we selectedmodelswith
ROC-AUC values exceeding 0.85 on both training and test datasets,
and the best classifier was chosen based on the highest ROC-AUC
value achieved during cross-validation. This approach allows for the
identification of a stable gene expression signature most suitable for
further validation. A list of genes and model coefficients for the
optimal signature is provided in the Supplementary Table S6, with
select genes discussed in the Discussion section.

The best classifier achieved an AUC of 0.94 on the training
dataset and 0.87 on the test dataset (Figure 4A). Kaplan-Meier
analysis for the training, test, and complete datasets (the latter also
includes patients with uncertain status) demonstrated a significantly
better overall survival for patients predicted to have a favorable OS
status (log-rank p < 0.0001). Approximately two-thirds of metastatic
CRC patients were classified as having an unfavorable prognosis,
with only one-third predicted to have a favorable prognosis. The 5-
year survival rate for patients with a favorable prognosis exceeded
75%, which is uncommon in metastatic CRC.

The heatmap of gene expression for the 12-gene
signature (Figure 4B) indicates that robust OS status prediction
cannot rely on any single gene alone, despite trends of higher or
lower expression in metastatic tissue samples from patients with
differing prognoses. However, the combined expression of these
genes produced a highly robust classifier with a low error rate.

To assess whether the OS status predicted by the 12-gene
expression signature was an independent prognostic factor, we
performed a Cox multivariate analysis alongside available clinical
parameters and visualized the results in a forest plot (Figure 4C).The
predicted OS status was confirmed as an independent prognostic
factor, exhibiting the highest HR of 7.1 (95% CI: 3.8–13.3). The

next strongest independent factors were the presence of extrahepatic
metastases (HR = 2.4, 95% CI 1.5–3.8), gender (HR = 1.8, 95% CI
1.1–2.7), and KRAS mutations (HR = 1.5, 95% CI 1.0–2.3). All other
factors were insignificant in the multivariate analysis.

3.6 Predictive 12-gene classifier assessing
relapse-free survival of patients with stage
II/III CRC

Similar to metastatic Stage IV CRC, we searched classifiers
based on genes whose expression is consistently associated with
resistance to the three standard-of-care drugs in non-metastatic
Stage II/III CRC, to predict RFS status. For this analysis, we
used the publicly available dataset GSE39582, which includes gene
expression data from primary colorectal tumors.We first focused on
patients treated with adjuvant chemotherapy, as our genes of interest
relate to response to SoC chemotherapy. The dataset was split into
training and test sets. We included 12 genes in the classifiers, as in
the metastatic CRC analysis, and generated approximately 123,000
classifiers in total—amuch smaller number than formetastatic CRC.
For Stage II/III CRC, no classifiers reached a ROC-AUC value over
0.85 on both training and test datasets, so we lowered the threshold
to 0.75. As with metastatic CRC, the best classifier was selected
based on the highest ROC-AUC value obtained during cross-
validation. This optimal classifier was then tested on patients who
had not received adjuvant chemotherapy. The genes and coefficients
for the best gene expression signature for Stage II/III CRC are
available in Supplementary Table S7, with selected genes discussed
in the Discussion section.

Overall, the best classifier’s AUC for treated Stage II/III CRC
was lower than for metastatic CRC, at 0.92 on the training dataset
and 0.76 on the test dataset (Figure 5A). Kaplan-Meier analysis of
the training, test, and complete datasets (the latter includes patients
with uncertain status) for Stage II/III CRC patients treated with
adjuvant chemotherapy indicated a significantly better prognosis for
patients predicted to have a favorable RFS status (log-rank p < 0.0001
for training and complete datasets; log-rank p = 0.004 for the test
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FIGURE 3
Results of the correlational analysis between gene expression levels and IC50 values in established CRC patient-derived organoids and cell lines. (A)
Ranked Spearman correlation coefficients displaying the relationship between gene expression levels and IC50 values of standard-of-care drugs across
different datasets, with genes showing the highest correlation coefficients marked in the plots. (B) Venn diagrams showing the overlap of significantly
correlated genes for each SOC drug across the different datasets.
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FIGURE 4
Prediction of overall survival for patients with metastatic Stage IV CRC using a 12-gene expression signature. (A) Kaplan-Meier plots for the training,
test, and complete (including censored data) datasets, along with ROC curves for the training and test datasets. (B) Heatmap of gene expression in
metastatic tumor tissue for genes included in the 12-gene signature, with classifier predictions and actual OS status included. (C) Forest plot displaying
the results of a multivariate Cox regression model, identifying potential risk factors for overall survival in patients with metastatic Stage IV CRC.
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dataset). Approximately 56% of treated Stage II/III CRC patients
were classified as having a favorable prognosis, while 44% were
classified as unfavorable.Notably, the 5-year survival rate for patients
with an unfavorable prognosis was approximately 35%, which is
notably low for early-stage CRC.

The heatmap of gene expression for the 12-gene
signature (Figure 5B) demonstrates that robust RFS status prediction
in Stage II/III CRC patients treated with adjuvant chemotherapy
cannot rely on any single gene alone, though some genes showed
distinct expression trends in primary tumor samples from patients
with different prognoses. However, the classifier combining all 12
genes was robust, with a low error rate similar to that observed in
metastatic CRC.

To assess whether the predicted RFS status based on the 12-
gene expression signature is an independent prognostic factor,
we performed a Cox multivariate analysis incorporating available
clinical parameters and visualized the results in a forest plot
(Figure 5C). This analysis indicated that the predicted status was
the only independent prognostic factor with HR of 7.1 (95% CI
3.7–13.6). All other factors, including the TNM stage and molecular
CIT subtype (Marisa et al., 2013), were found to be insignificant in
the multivariate analysis.

We next evaluated whether the best classifier, developed
using data from Stage II/III CRC patients treated with adjuvant
chemotherapy, could predict RFS status in patients who did not
receive adjuvant chemotherapy. Kaplan-Meier analysis (Figure 6A)
indicated that patients with a predicted favorable prognosis
had a higher RFS rate (log-rank p = 0.013). However, the
survival difference between patients with favorable and unfavorable
prognoses was notably smaller than that observed in the adjuvant-
treated group. Among Stage II/III CRC patients untreated with
adjuvant chemotherapy, approximately 59% were classified as
having a favorable prognosis, and 41% as unfavorable, which
is comparable to the distribution seen in the adjuvant-treated
cohort. Additional validation was conducted using the RNA-seq
dataset of Stage II/III CRC patients (Nunes et al., 2024). Kaplan-
Meier analysis (Supplementary Figure S6) revealed that patients
with a predicted favorable prognosis had a relapse-free survival
rate exceeding 75%, compared to less than 50% in patients with
an unfavorable prognosis (log-rank p = 0.003 in the training
dataset and log-rank p = 0.049 in the test dataset). These findings
further support the classifier’s robustness and its ability to reliably
distinguish between favorable and unfavorable prognosis groups
across independent datasets.

Similar to the treated cohort, the heatmap of gene expression
for the 12-gene signature in untreated patients (Figure 6B)
demonstrated that robust RFS prediction would not be feasible
based on the expression of a single gene. Although certain genes
exhibited clear expression patterns associated with prognosis, the
combined 12-gene classifier was not as robust, showing a higher
error rate in this group.

In Cox multivariate analysis of clinical parameters for
untreated Stage II/III CRC patients (Figure 6C), the RFS status
predicted by the 12-gene signature was not an independent
prognostic factor (p > 0.05). In this group, the only significant
independent prognostic factor was TNM Stage, with HR of 2.4
(95% CI 1.4–4.1).

3.7 Analysis of biological mechanisms
underlying prognostic classifications

To elucidate the biological mechanisms underlying prognostic
classifications, we examined differences in molecular pathways,
immune response-related pathways, immune scores, stromal scores,
and immune cell proportions between favorable and unfavorable
prognosis groups. This comprehensive analysis was performed
across both early (Stages II/III) and late (Stage IV) stages of CRC
to provide a detailed understanding of the factors contributing to
patient outcomes.

In Stages II-III, KEGG pathway enrichment analysis
revealed significant activation of pathways associated with
oxidative phosphorylation, thermogenesis, and extracellular
matrix (ECM) organization in the unfavorable prognosis
group (Supplementary Table S8). These findings emphasize the
pivotal role of enhanced mitochondrial activity and ECM
remodeling, both of which are integral to tumor growth and
localized invasion. Supporting this, GO analysis highlighted
mitochondrial respiratory chain complex assembly and ECM
structural organization as key biological processes driving
these outcomes (Supplementary Table S9). Together, these results
underscore the critical influence of metabolic activity and ECM
dynamics in determining the prognosis of early-stage CRC.

In Stage IV tumors, KEGG pathway enrichment analysis
identified significant activation of immune-related pathways
and pathways associated with cellular stress and proliferation
in the unfavorable prognosis group (Supplementary Table S10).
Notably, pathways related to infection, such as Salmonella
infection, were enriched, potentially indicating a link to
immune responses or inflammation within the tumor
microenvironment. Additional enriched pathways included those
involved in cell cycle regulation and apoptosis, aligning with
the high proliferative and adaptive capacity that characterizes
metastatic cancer (Supplementary Table S11). These findings
highlight the complex interplay between immune dynamics,
cellular stress, and proliferation in shaping the outcomes of
advanced-stage CRC.

In Stages II-III, patients with a favorable prognosis exhibited
significantly lower immune (p = 4.6E-02) and stromal scores (p
= 2.5E-05) compared to those with an unfavorable prognosis,
reflecting a tumor microenvironment with reduced immune
infiltration (Supplementary Figure S7). Higher tumor purity was
also observed in favorable prognosis cases (p = 4.0E-04), suggesting
a less complex and potentially less immunologically active tumor
microenvironment. ESTIMATE scores further supported these
findings, showing significant differences between prognosis groups
(p = 6.4E-04).

Conversely, in Stage IV tumors, no significant
differences in immune, stromal, or ESTIMATE scores
were observed between the favorable and unfavorable
prognosis groups (Supplementary Figure S8). This indicates that
the tumor microenvironment in metastatic CRC is consistently
immune-enriched, regardless of prognosis.

Immune cell composition analysis showed minimal variations
specific to disease stages. In Stages II-III, no significant
differences in the proportions of individual immune cell
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FIGURE 5
Prediction of relapse-free survival for Stage II/III CRC patients treated with adjuvant chemotherapy using a 12-gene expression signature. (A)
Kaplan-Meier plots for the training, test, and complete (including censored data) datasets, alongside ROC curves for the training and test datasets. (B)
Heatmap of gene expression in primary tumor tissue for genes in the 12-gene signature, including classifier predictions and actual RFS status. (C) Forest
plot showing results of a multivariate Cox regression model, identifying potential risk factors for RFS in Stage II/III CRC patients treated with adjuvant
chemotherapy.
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FIGURE 6
Prediction of relapse-free survival for Stage II/III CRC patients untreated with adjuvant chemotherapy using a 12-gene expression signature. (A)
Kaplan-Meier plot for the complete (including censored data) dataset. (B) Heatmap of gene expression in primary tumor tissue for genes in the 12-gene
signature, including classifier predictions and actual RFS status. (C) Forest plot showing results of a multivariate Cox regression model, identifying
potential risk factors for RFS in Stage II/III CRC patients untreated with adjuvant chemotherapy.

Frontiers in Molecular Biosciences 12 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1531175
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Razumovskaya et al. 10.3389/fmolb.2025.1531175

types were identified between prognosis groups (adjusted p-
value ≥0.05), suggesting that the differences in the tumor
microenvironment are systemic rather than cell-type specific
(Supplementary Table S12; Supplementary Figures S9A, 9B).
However, the significant differences in overall immune and stromal
scores underscore broader changes in the immune landscape
between prognosis groups in this case.

In Stage IV tumors, immune cell composition
remained consistent across prognosis groups, with no
significant differences identified (adjusted p-value ≥0.05)
(Supplementary Table S13; Supplementary Figures S10A, 10B).
These findings suggest that the immune cell profile in metastatic
CRC is stable and does not vary significantly with prognosis.

4 Discussion

The treatment of metastatic colorectal cancer remains a
significant challenge (Ciardiello et al., 2022). Therefore, developing
new therapeutic options for metastatic CRC, along with strategies to
prevent recurrence in initially localized disease—often manifesting
as distant metastases—continues to be essential (Haria et al., 2021).
With an increasing array of treatments available, precision medicine
is gaining importance in ensuring that the most effective therapies
are selected for each patient. Tumor organoids represent a promising
tool for assessing personalized treatment sensitivity. Studies have
shown that CRC organoids can reasonably predict clinical responses
(Ooft et al., 2019; Narasimhan et al., 2020; Tan et al., 2023). However,
several factors currently limit their broader use, including challenges
in establishing organoid cultures from tumor tissue, lack of immune
or stromal components in the organoid system, high costs, and
labor-intensive procedures. Although the direct clinical application
of tumor organoids is still under development, organoids serve as
highly relevant in vitro models (Veninga and Voest, 2021). They
reflect many characteristics of the original tumors and offer a
valuable platform for identifying novel biomarkers, including those
associated with drug resistance (Mir et al., 2016; Ryu et al., 2024).

In this study, we expanded our previously established CRC
organoid collection (Poloznikov et al., 2021) to identify robust
biomarkers associated with resistance to three standard-of-care
chemotherapeutic agents — 5-FU, oxaliplatin, and SN-38 (an active
metabolite of CPT-11 or irinotecan), which are key components
of systemic CRC treatment. To achieve this, we conducted mRNA
sequencing on the organoids and performed cytotoxicity assays
to assess drug response, aiming to identify genes with expression
levels that correlate with drug resistance. These genes could serve as
biomarkers for drug resistance and may also represent therapeutic
targets. Even modest correlations with a Spearman coefficient of
±0.3 are meaningful if reproducible, as this ensures reliability in
the context of drug response, a complex biological process where
the influence of any single gene is often limited. For the first time,
in our study we conducted correlational analyses using both CRC
organoids and publicly available CRC cell line data to ensure reliable
findings. The intersection of gene lists from these datasets allowed
us to pinpoint genes whose expression consistently correlates with
resistance to each SoC drug. We would like to emphasize that
our novel approach of combining two in vitro models enabled
the identification of new genes previously not associated with

drug resistance. Finally, these genes were used to construct gene
expression signatures to predict overall survival in Stage IV CRC
patients and relapse-free survival in Stage II/III CRC patients.

Our results highlight the limited reproducibility in studies that
correlate drug resistance with gene expression, especially when
comparing data across differentmodels. Evenwithin comparisons of
cancer cell lines alone, reproducibility is modest, and this becomes
more pronounced when comparing cell lines to tumor organoids.
This may be partly due to varying experimental conditions.
Additionally, tumor organoids, as more advanced models, may
inherently yield different results than traditional cancer cell lines.
However, the extensive use of cancer cell lines in research
has demonstrated their utility, underscoring the importance of
synthesizing findings from diverse model types to ensure robust,
reliable conclusions. In the future, larger studies on CRC organoids
may reveal additional genes associated with resistance to commonly
used chemotherapeutic agents in CRC treatment—genes that might
not be detectable in cell line models.

The first drug we studied, 5-fluorouracil (5-FU), is a cornerstone
of chemotherapy for CRC treatment (Kumar et al., 2023).
Structurally, 5-FU is a heterocyclic aromatic compound similar
to pyrimidines, specifically resembling uracil but with a fluorine
atom substituting for hydrogen at the C-5 position. This structural
similarity enables 5-FU to be incorporated into RNA and DNA,
disrupting nucleoside metabolism and causing cytotoxicity and
death in rapidly dividing cells (Noordhuis et al., 2004). In
mammalian cells, 5-FU is metabolized into three main active
forms: fluorodeoxyuridine triphosphate (FdUTP), fluorouridine
triphosphate (FUTP), and fluorodeoxyuridine monophosphate
(FdUMP). Among these, FdUMP inhibits thymidylate synthase
(TS) by forming a stable complex that blocks the synthesis of
deoxythymidine monophosphate (dTMP), an essential nucleotide
for DNA replication and repair (Longley et al., 2003).

Currently, numerous mechanisms of resistance to 5-FU have
been identified. Some are broadly relevant across anticancer drugs,
such as the expression of ABC transporters, while others are
more specific to 5-FU, involving enzymes that metabolize the drug
(Azwar et al., 2021). In this study, we identified additional genes
linked to 5-FU response, with UXS1 standing out as particularly
notable. UXS1 encodes an enzyme that converts UDP-glucuronic
acid to UDP-xylose. Interestingly, previous research has connected
this gene to 5-FU resistance in fungal cells (Billmyre et al.,
2020). In fungi, mutations and downregulation of UXS1 lead
to the accumulation of UDP-glucuronic acid, which may hinder
the formation of toxic 5-FU metabolites or interfere with the
inhibition of drug targets, like TS. Consequently, in fungi, UXS1
expression correlates negatively with 5-FU resistance. However,
our findings suggest a different relationship in CRC, where
UXS1 expression is distinctly associated with 5-FU resistance. In
our study, UXS1 expression showed a positive correlation with
IC50 values for 5-FU, indicating that higher UXS1 expression is
linked to increased drug resistance. Furthermore, elevated UXS1
expression significantly increased the risk of death in patients
with metastatic CRC. Notably, recent work has demonstrated that
cisplatin-resistant lung and breast cancer cells exhibit sensitivity
to UXS1 knockout (Doshi et al., 2023). This underscores the
potential of UXS1 as a novel therapeutic target in overcoming
chemoresistance in certain cancers, including CRC.
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Our pathway analysis revealed, among others, a pathway for
iron uptake and transport. There is now a large body of research
showing that resistance to anticancer drugs significantly alters iron
metabolism depending on the type of cancer and the drugs used.
Since iron is an essential element for cell proliferation, various
drug-resistant cells with high proliferation rates often increase iron
uptake, thereby increasing its intracellular level (Kazan et al., 2017).
Particularly, increased expression of several genes, associated with
this pathway, including the V-ATPase subunit genes ATP6V0C
and ATP6V0E1, was linked to heightened resistance to 5-FU. V-
ATPase is involved in membrane trafficking, receptor recycling
(e.g., transferrin and insulin receptors), and autophagy (Collins and
Forgac, 2020). Elevated V-ATPase expression correlates with poor
prognosis across many cancer types, and its inhibition presents a
potential anticancer strategy (Chen F. et al., 2022). Notably, higher
expression of ATP6V0C and ATP6V0E1 was significantly associated
with worse prognosis for Stage II/III CRC patients.

In addition, it was revealed that increased expression of the genes
HSPA1L and SETD6 was significantly correlated with resistance to
5-FU. Their high expression levels were found to be associated with
poor prognosis for metastatic colorectal cancer. Previous research
has established that heat shock 70-kDa protein 1-like (HSPA1L)
is crucial in promoting CRC proliferation via HIF-1α activation
and cellular prion protein (PrPC) regulation within tumor niches
(Lee et al., 2017), and its expression has already been linked to CRC
prognosis (Lee et al., 2019; Huang et al., 2024). Similarly, SETD6
has been implicated as a marker in breast cancer stem cells, and
its mutation is associated with increased susceptibility to familial
colorectal cancer type X (Martín-Morales et al., 2017; Li et al., 2023).
Overall, our study highlights the previously underexplored role of
these genes in 5-FU resistance, offering novel insights into their
potential as therapeutic targets in CRC.

Conversely, higher expression of certain genes linked to 5-FU
response was associated with a significantly improved prognosis
in CRC patients. One prominent example is POGLUT1 (Protein
O-Glucosyltransferase 1), whose expression showed a negative
correlation with 5-FU IC50 values, suggesting increased sensitivity
to the drug. Consistent with this, elevated POGLUT1 expression
significantly lowered the risk of death for metastatic CRC patients.
Interestingly, previous studies linked higher POGLUT1 levels to
more advanced CRC (Mehboob and Lang, 2021). POGLUT1
expression has been observed to be significantly elevated in
colorectal cancer tissues compared to adjacent noncancerous areas,
with overexpression linked to advanced TNM stages, lymph
node metastasis, and shorter survival times (Fang et al., 2017).
Knockdown of POGLUT1 in CRC cells has been shown to halt
proliferation and enhance cell adhesion (Fang et al., 2017). These
findings underscore how the role of specific genes in cancer
progression and therapeutic response can vary widely, sometimes
even showing opposite effects.

Another notable example is IL16, where higher expression is
associated with significantly improved prognosis. Intriguingly, IL16
was the only gene included in both gene expression signatures
for metastatic Stage IV CRC and early Stage II/III CRC patients.
The limited overlap between metastatic and non-metastatic CRC
gene signatures can be attributed to the fundamentally distinct
characteristics of primary and metastatic tumors. In early-stage
CRC, chemotherapy primarily targets a small population of residual

cancer cells that have not yet initiated metastasis. In contrast,
metastatic cancer involves widely disseminated cells that have
already adapted to the tumor microenvironment and developed
enhanced resistance to treatment (D’Alterio et al., 2020). Interleukin-
16, a multifunctional cytokine, plays a key role in inflammatory
diseases and contributes to tumor development and progression
(Kovacs, 2001; Richmond et al., 2014). Recent studies have identified
single nucleotide polymorphisms (SNPs) in the IL16 gene as a
potential factor in CRC susceptibility. While CRC patients have
significantly higher serum IL-16 levels than healthy individuals,
no significant association was found between IL16 polymorphisms
and serum IL-16 levels (Gao et al., 2008). In our analysis,
IL16 expression was positively correlated with 5-FU resistance
in vitro, with higher expression observed in more resistant cells.
However, patient data showed an opposite association, where
elevated IL16 expression was linked to a better prognosis. This
discrepancy underscores the limitations of directly translating in
vitro findings, even from advanced models like organoids, into
clinical observations. One possible explanation for this opposing
effect is that IL16 is predominantly expressed in immune cells, not
epithelial cells. Higher IL16 expression in tumor tissue may indicate
greater immune systemactivation,which could enhance the patient’s
prognosis.

The second key CRC drug explored in this study is oxaliplatin,
a third-generation platinum-based medication commonly used
in colorectal, gastric, and pancreatic cancers (Mustafa et al.,
2024a). Its introduction has notably improved objective response
rates and progression-free survival in metastatic CRC patients.
Oxaliplatin functions primarily by binding to DNA to create
adducts that cause DNA damage, which disrupts replication
and transcription processes, ultimately leading to apoptosis and
triggering immune responses (Alcindor and Beauger, 2011).
Despite these therapeutic benefits, oxaliplatin efficacy is often
compromised by tumor resistance, making it essential to explore the
molecular mechanisms behind this resistance to optimize treatment
strategies. While previous studies have provided insights into the
mechanisms of oxaliplatin resistance and its biomarkers (Martinez-
Balibrea et al., 2015; Escalante et al., 2021), much remains to
be explored. A considerable number of genes associated with
oxaliplatin resistance relate closely to its mechanism of action, with
DNA repair genes such as ERCC1, ERCC2, XRCC1, and OGG1
playing essential roles in counteracting oxaliplatin-induced damage.
Genes involved in drug transport, such as ATP7A/B, ABCC1/4,
and ABCB1, also affect cellular uptake and efflux, impacting drug
sensitivity. Additionally, genes tied to apoptosis, including BCL2,
BIRC5, BAX, and XIAP, are involved in oxaliplatin resistance.

Through our correlation analysis, we identified several genes
linked with oxaliplatin resistance in CRC organoids and cell lines
that have previously been associated with CRC development or
proposed as prognostic biomarkers. Notable examples include
TRIM37 (Hu and Gan, 2017; Zhao et al., 2017), HNRNPH1
(Takahashi et al., 2020), MCM4 (Ahluwalia et al., 2019), RIOK1
(Chen Y. et al., 2022) and GDI1 (Xie et al., 2021). Moreover, some of
these genes demonstrated significant prognostic associations in our
study, further underscoring their potential role in CRC progression
and response to treatment.

One such gene is BCKDHB, which encodes a subunit of
branched-chain keto acid (BCKA) dehydrogenase. In our study,
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higher BCKDHB expression was linked to both lower IC50 of
oxaliplatin in vitro and reduced mortality among metastatic CRC
patients. BCKDHB is a critical component of themultimeric enzyme
BCKDH, which catalyzes the oxidative decarboxylation of BCKA,
producing acyl-CoA derivatives and playing an essential role in
the catabolism of branched-chain amino acids (BCAA) (Xu et al.,
2023). Notably, previous research found BCKDHB expression to be
upregulated in breast cancer compared to normal tissue (Zhang
and Han, 2017). Additionally, a recent study employing a Cox
proportional-hazards model indicated that a higher post-diagnostic
intake of dietary BCAAs is associated with increased all-cause
mortality risk in CRC patients (Long et al., 2021). However,
BCKDHB has not yet been included in prognostic classifiers for
CRC patient outcomes, nor has its role in oxaliplatin resistance been
previously explored.

Another notable gene linked to oxaliplatin resistance and
incorporated into one of the prognostic classifiers is UBTF. Our
results indicate that higher expression of UBTF is associated with
greater oxaliplatin sensitivity in vitro and improved prognosis
in Stage II/III CRC patients. Given UBTF’s essential role in
ribosomal RNA transcription, it’s unsurprising that its knockdown
has previously been shown to suppress colon cancer cell proliferation
(Tsoi et al., 2017). Additionally, UBTF has a known high affinity
for cisplatin-DNA adducts, which may act as molecular decoys,
redirectingUBTF from ribosomal RNAgenes and thereby inhibiting
their transcription (Hamdane et al., 2015). These findings suggest
UBTF’s potential importance in CRC progression and drug
resistance, although its precise mechanism of action remains
uncertain and warrants further investigation.

Interestingly, five genes identified in our correlation analysis
were associated with responses to both 5-FU and oxaliplatin. One
of these genes showed a positive correlation with the IC50 values
of both drugs, while the others exhibited negative correlations with
IC50s. Although none of these genes were incorporated into the
final gene signatures, they present intriguing targets for further
investigation in the context of drug resistance.

The only gene identified to show a positive correlation between
its expression and IC50 values for both 5-FU and oxaliplatin was
AVPI1 (arginine vasopressin induced 1). Notably, high levels of
AVPI1 expression were detected in association with cell cycle entry
(Kiessling et al., 2010) and its involvement in MAPK pathway
activation (Nicod et al., 2002). Although existing research has
associated AVPI1 with the development and progression of cancers
like melanoma (Motwani et al., 2021) and prostate cancer (Li et al.,
2024), its role in colorectal cancer and resistance to chemotherapy
agents such as 5-FU and oxaliplatin has not yet been investigated.On
the other hand, a recent study on colorectal cancer cell lines showed
that AVPI1 expression was significantly increased after cisplatin
treatment (Saini et al., 2023).

The DHX33 gene, identified in our correlation analysis, plays a
pivotal role in cancer cell proliferation and growth. Regulated by
the Wnt/β-catenin pathway, RNA helicase DHX33 transcriptionally
controls key genes involved in the cell cycle, apoptosis, and
migration. Previous research has shown that DHX33 is highly
expressed in colon cancer tissues and cell lines, while its deficiency
resulted in tumor growth retardation in colon cancer cells in
an in vivo xenograft model (Wang et al., 2019a; Zhu et al.,
2020). Additionally, DHX33 has been found to stimulate Bcl-2

transcription in many human cancer cell lines. At the same time,
the acute knockdown of DHX33 resulted in decreased Bcl-2 protein
levels, which ultimately caused mitochondria-mediated cellular
apoptosis (Wang et al., 2019b).The fact that cancer cells demonstrate
heightened sensitivity to DHX33 downregulation, highlights its
potential as a promising target for cancer therapy (Zhu et al.,
2020). However, the connection between DHX33 expression levels
and resistance to standard chemotherapy in colorectal cancer has
not been thoroughly investigated, introducing a potentially novel
perspective in our findings.

Two other genes, LYRM2 and WRAP53, also emerged from our
analysis with expression negatively correlated to sensitivity of CRC
organoids and cell lines to 5-FU and oxaliplatin. Both are well-
established biomarkers of colorectal cancer. LYRM2 is upregulated
in colorectal cancer, where it promotes tumor growth both in vivo
and in vitro. Localized within the inner mitochondrial membrane
and matrix, LYRM2 directly interacts with complex I of the
electron transport chain, enhancing its activity and driving oxidative
phosphorylation in colorectal cancer cells (Huang et al., 2019).

Similarly, WRAP53, a gene encoding a protein critical for DNA
repair, is overexpressed in CRC tissues and cell lines (Zhang et al.,
2012; Wang et al., 2015). Its knockdown has been shown to
suppress tumor cell proliferation and invasion while increasing
apoptosis and causing G1 cell cycle arrest (Zhu et al., 2018).
The effects of WRAP53 on cancer prognosis are contradictory
and may vary depending on the cancer type and treatment
approach. For instance, low WRAP53 protein levels have been
linked to poor outcomes in breast cancer and are associated
with decreased effects of radiotherapy (Egelberg et al., 2023).
Conversely, in rectal cancer, high WRAP53 expression in primary
tumors and metastases was associated with poor prognosis,
except in patients receiving radiotherapy, where it correlated
with improved survival (Zhang et al., 2012). Furthermore, while
WRAP53 expression is associated with radiotherapy resistance,
there is insufficient evidence to establish a direct connection to
chemotherapy resistance.

Finally, the RANGRF gene, previously linked to
Brugada syndrome, represents a novel finding in
this context (Campuzano et al., 2014). It has not been previously
associated with drug resistance, disease prognosis, or colorectal
cancer, making it an intriguing candidate for further investigation.

The third compound examined in this study is SN-38, the active
metabolite of irinotecan. It is formed through metabolic conversion
primarily facilitated by carboxylesterase 1 and 2 in the liver. SN-38
exerts its anticancer effects by targeting the DNA-topoisomerase I
complex, disrupting its catalytic activity, and inducingDNAdamage,
replication arrest, and subsequent cell death. During its metabolism,
SN-38 undergoes glucuronidation by UGT1A1 in the liver, forming
the inactive compound SN-38G. Additionally, ABC transporters
are critical for the transport and resistance mechanisms of SN-
38 (Yu et al., 2005).

Several studies have explored genes associated with
CRC resistance to irinotecan and, by extension, SN-38
(Makondi et al., 2017; Kryczka and Boncela, 2022). Unsurprisingly,
many of these genes are linked to SN-38 metabolism or its
mechanism of action. In this study, we identified several novel
genes associated with SN-38 resistance, some of which also have
prognostic relevance for CRC patients.
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One notable gene is CD9, whose expression demonstrated a
positive correlation with resistance to SN-38. According to our
classifier, higher CD9 expression in metastatic tissue is associated
with poorer overall survival in Stage IV CRC patients. Interestingly,
previous studies showed that reduced CD9 expression in primary
tumor tissue was linked to poorer prognosis in CRC (Mori et al.,
1998; Kim et al., 2016), while increased CD9 expression inhibited
colon carcinoma cell growth (Ovalle et al., 2007). These contrasting
findings highlight the complex role of CD9 in cancer progression
and drug resistance, suggesting its effects may vary based on
tumor stage, tissue context, or metastatic status. Further research
is warranted to clarify CD9’s function in SN-38 response and its
potential as a therapeutic target in CRC.

Another noteworthy gene is TAS2R4, encoding Taste 2 Receptor
Member 4, involved in various Taste Receptor Pathways, defined
in our pathways analysis. The potential role of bitter signaling
in cancer progression and drug resistance is an emerging area
of research. Bitter taste receptors, including TAS2R4, have been
implicated in the progression of various cancer types (Costa et al.,
2023). It is worth noting that the activation of bitter taste receptors
in cancer cells is predominantly associated with anti-cancer effects,
and decreased expression of some TAS2Rs, such as TAS2R4, 5, 9,
10 or 14, is associated with poor prognosis (Zehentner et al., 2021),
while increased expression counteracts carcinogenesis (Seo et al.,
2017). Notably, bitter taste receptorsmay regulate ABC transporters,
proteins that play a known role in irinotecan and SN-38 resistance
(Yu et al., 2005). Moreover, bitter taste compounds can be either
substrates or inhibitors of ABC transporters and thus play the
role of reliable targets for reversing chemoresistance in cells of
different types of cancer (Huang et al., 2014; Stern et al., 2018;
Ravisankar et al., 2019). Our analysis revealed that elevated TAS2R4
expression was associated with reduced resistance to SN-38 and
a more favorable prognosis in CRC patients. While no studies
directly link TAS2R4 to CRC, its involvement in breast cancer
progression has been discussed (Singh et al., 2014; 2020). Our
findings underscore the importance of further studies to elucidate
the function of bitter taste receptors, particularly TAS2R4, in CRC
and its response to chemotherapy.

Studying the role of individual genes in metastasis and
therapy resistance is crucial for advancing our understanding of
the molecular mechanisms cancer cells use to evade treatment.
These insights can also help identify novel therapeutic targets.
However, single genes rarely offer sufficient predictive accuracy for
determining patient outcomes. In contrast, multi-gene expression
signatures provide a more comprehensive and reliable approach to
predict individual outcomes.

Current research in this field predominantly focuses on stages
II and III colorectal cancer. Adjuvant chemotherapy is a standard
treatment for stage III CRC, yet its absolute benefit is limited,
with only an estimated 30% of patients experiencing a meaningful
survival advantage (Taieb and Gallois, 2020). For stage II CRC,
the role of adjuvant chemotherapy remains controversial due to
its minimal survival improvement, combined with significant side
effects and substantial financial costs (Chan and Chee, 2019). These
challenges underscore the urgent need for precise biomarkers to
optimize treatment strategies.

The effort to predict CRC outcomes using gene expression
signatures began in the era of microarray technology (Wang et al.,

2004; Barrier et al., 2006; Smith et al., 2010). Despite significant
progress, recent studies continue to highlight the importance
and relevance of this approach (Oki et al., 2021; Ren et al.,
2022; Peixoto et al., 2023; Rokavec et al., 2023). Most classifiers
developed to date focus on genes associated with the metastatic
potential of cancer cells and relapse risk. However, successful clinical
implementation of gene expression-based classifiers will require
extensive validation and the creation of more accurate and robust
signatures (Ahluwalia et al., 2021). These tools should aim to
refine therapy selection by distinguishing responders from non-
responders and facilitating personalized treatment plans. As these
methodologies are refined, they hold the potential to revolutionize
CRC management by improving patient outcomes and minimizing
unnecessary treatment burdens.

In this study, we developed a gene expression signature based on
the expression of genes linked to sensitivity to key chemotherapeutic
agents used in colorectal cancer treatment, identified through in
vitro experiments. This signature demonstrated a robust ability to
differentiate between Stage II/III CRC patients treated with adjuvant
chemotherapy who had favorable versus unfavorable prognoses.
Remarkably, in multivariate analysis, the predicted status derived
from this signature emerged as the only significant factor influencing
relapse risk. Our proposed 12-gene classifier was directly compared
to TNM staging and the CIT classification (Marisa et al., 2013) in
a multivariate analysis, where it demonstrated superior prognostic
accuracy in the cohort of treated Stage II/III CRC patients. Notably,
it emerged as the only significant prognostic factor, with HR of
7.12 (95% CI: 3.73–13.6). Furthermore, the HR values observed for
our classifier were markedly higher than those reported for another
widely used molecular classification system, CMS (Guinney et al.,
2015).This indirect comparison suggests that our classifiermay offer
enhanced utility for assessing recurrence risk specifically within the
population of treated CRC patients.

In contrast, the same gene expression signature, as expected,
showed poor predictive performance in a cohort of untreated Stage
II/III CRC patients. In this group, the stage of the disease—a
well-established risk factor—was the sole significant predictor of
outcomes. These results underscore that the prognosis of treated
Stage II/III CRC patients is primarily determined by their response
to therapy. This study highlights the importance of integrating
genes associated with treatment response, in addition to those
related to metastatic potential, into gene expression signatures. Such
an approach could significantly enhance the precision of existing
prognostic tools and provide more actionable insights for guiding
adjuvant therapy decisions, paving the way for more personalized
and effective treatment strategies in Stage II/III colorectal cancer.

Compared to the extensive efforts dedicated to developing
gene expression signatures to predict outcomes for Stage II/III
colorectal cancer patients, relatively few studies have focused on
similar classifiers for Stage IV CRC patients (Wada et al., 2022).
One possible explanation is the established and substantial benefit
of chemotherapy in metastatic CRC, making it standard practice for
all patients.However, despite this, treatment outcomes formetastatic
CRC remain suboptimal, highlighting the urgent need for more
personalized therapeutic approaches.

In this study, the gene expression signature developed for
metastatic CRC patients demonstrated excellent performance,
reinforcing the idea that chemotherapy response is a critical
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determinant of treatment success in Stage IV CRC. Notably, patients
classified as having a favorable prognosis exhibited remarkably
high survival rates for metastatic CRC. Our analysis suggests that
only about one-third of metastatic CRC patients derive significant
benefit from chemotherapy. This finding raises the critical question
of how to effectively treat the remaining two-thirds who show an
unfavorable response to standard therapy.

For these patients, alternative treatments such as targeted
therapies or immunotherapies may be necessary. The development
of specific biomarkers to guide these therapies is an area of active
research (Shiravand et al., 2022; Mustafa et al., 2024b). For targeted
therapy, particularly involving off-label drugs (Liu et al., 2024),
next-generation sequencing (NGS) (Jan et al., 2022) and in vitro
functional assays using tumor organoids have shown promise
(Ooft et al., 2021; Jensen et al., 2023; Martini et al., 2023).

Similarly, for immunotherapy, various strategies are emerging.
These include assays based on gene expression profiling, circulating
tumor DNA analysis, and other innovative approaches (Hou et al.,
2022). The integration of such tools with gene expression signatures
could enable more precise and effective therapeutic decisions,
transforming the management of Stage IV CRC by tailoring
treatment to individual patient profiles.

Furthermore, additional analyses were conducted to elucidate
the biological mechanisms underlying our prognostic classifiers.
Our findings reveal distinct stage-specific mechanisms driving
prognostic differences in CRC. In Stages II-III, tumors with
an unfavorable prognosis were enriched in pathways related
to oxidative phosphorylation, thermogenesis, and extracellular
matrix (ECM) organization, reflecting increased metabolic activity
and structural remodeling that support tumor progression
(Mao et al., 2018). In contrast, Stage IV tumors demonstrated
enrichment in immune-related and stress-response pathways,
indicative of the adaptive and inflammatory characteristics of
metastatic cancer (Burgos-Molina et al., 2024).

Immune and stromal scores effectively distinguished prognosis
groups at early stages, with favorable cases exhibiting lower scores
and higher tumor purity. This suggests a less complex and less
immunologically active tumor microenvironment in favorable
prognosis tumors. However, in advanced CRC, these scores showed
no significant differences between prognosis groups, indicating
a stable, immune-enriched microenvironment irrespective of
prognosis.

These findings underscore the dynamic influence of the
tumor microenvironment across CRC stages. While immune and
stromal components play a pivotal role in shaping prognosis
at early stages, their impact diminishes as tumors adapt and
progress. This highlights the necessity for stage-specific therapeutic
approaches to effectively target the evolving biological and immune
landscapes of CRC (Huijbers et al., 2013).

5 Conclusion

This study highlights the potential of integrating gene expression
signatures based on in vitro drug sensitivity data into the clinical
management of colorectal cancer. By focusing on genes linked to
chemotherapeutic response, our classifiers effectively distinguished
favorable and unfavorable prognoses in both Stage II/III and

Stage IV CRC patients. Notably, chemotherapy response emerged
as a major determinant of survival, underscoring the value of
treatment-response-based signatures. In Stage II/III CRC, these
classifiers could guide adjuvant therapy decisions by identifying
patients who are most likely to benefit from treatment, thereby
optimizing therapeutic strategies and minimizing unnecessary
toxicity. For metastatic CRC the classifiers can help identify non-
responders and underscore the need for alternative therapies, such
as targeted or immunotherapy. While our results demonstrate that
in vitro sensitivity data can inform clinical decisions, reproducibility
remains a challenge. Combining data from various models, such
as organoids and cell lines, is essential to enhance robustness and
predictive accuracy. Continued refinement and validation of these
approaches will pave the way for more personalized and effective
treatments of CRC.
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