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Although estrogen-related receptor α (ERRα) holds significant therapeutic
potential for treating various disorders, developing selective agonists remains
challenging due to the poor pharmacokinetics and limited selectivity of current
ligands. This study presents unconstrained molecular dynamics simulations of
ERRα bound to an agonist ligand, uncovering dynamic ligand-binding behavior
as the ligand shifts between two orientations: one in the orthosteric pocket
and another in a newly identified trench adjacent to this site. The free energy
landscape reveals that both binding orientations are comparably populated,
with an accessible transition pathway between them. The identification of
this novel binding trench expands our understanding of ERRα′s ligand binding
domain, offering new avenues for small-molecule drug discovery and selective
modulation of ERRα activity.
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1 Introduction

Estrogen-related receptor α (ERRα) is an orphan nuclear hormone receptor
that regulates gene expressions related to anti-inflammatory activities, oxidative
phosphorylation, biogenesis, and fatty acid metabolism (Audet-Walsh and Giguére, 2015;
Huss et al., 2015; Mootha et al., 2003; Ranhotra, 2015). Recent studies reported the
promising therapeutic importance of ERRα in the treatment of heart failure, kidney
diseases, and metabolic disorders (Xu et al., 2024; Wang et al., 2023; Billon et al., 2023).
The ligand binding domain (LBD) comprises 12 helices that harbor a hydrophobic
ligand-binding pocket referred to as the orthosteric site (Figure 1A) (Greschik et al.,
2002; Kallen et al., 2007). Despite numerous attempts to develop synthetic agonists
for ERRα, the current ligands exhibit inadequate pharmacokinetic characteristics and
a lack of selectivity (Shinozuka et al., 2021; Kallen et al., 2007; Shahien et al., 2020).
These limitations impede research efforts aimed at unraveling the pharmacological
behavior of this receptor. A greater understanding of the mechanistic events associated
with ERRα binding is critical for the design of novel and selective agonists of this
receptor. The current understanding of ligand binding implies that ligands exhibit
a stronger binding to specific conformations within the dynamic ensemble of their
protein targets. This process of binding, known as conformational selection, drives the
selection of higher affinity conformers, forming energetically more stable complexes
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FIGURE 1
(A) Initial structure of the ligand binding domain ERRα shown in blue;
helices 3,4, 11, and 12 are labeled in black; and the ligand, SLUPP332, is
modeled in the ligand binding pocket (LBP) shown in the sphere (pink
carbons). (B) Chemical structure of SLUPP332. (C) Overlay of two
distinct ligand-binding orientations identified in MD simulations of
ERRα. The receptor’s secondary structure and side chains are depicted
in pink. The ligand orientation within the orthosteric site is shown in
green, while the orientation in the novel binding trench (Site 2, S2) is
shown in blue.

that dissociate in the presence of substantial conformational changes
(Miller and Dill, 1997; Du et al., 2016; Seo et al., 2014; Boehr et al.,
2009; Wei et al., 2016). There is a prevalent belief supported
by a diverse range of structural data that ligands bind in a
singular orientation in the target protein (Popovych et al., 2006;
Boehr et al., 2006; Vogt and Di Cera, 2013; Onuchic et al., 1997).
In contrast, a recent set of studies reported several targets where
ligands could bind in several orientations instead of only one
singular orientation in a notion referred to as dynamic ligand
binding (Bruning et al., 2010; Bock et al., 2014; Hughes et al.,
2012). The phenomenon of dynamic ligand binding was initially
discovered in estrogen receptors, and it was later reported for
the muscarinic M2 receptor and peroxisome proliferator-activated
receptor gamma (PPARγ) (Bock et al., 2014; Bruning et al., 2010;
Hughes et al., 2012). Further studies reported that ligand-binding
dynamics directs unique pharmacological and signaling pathways
(Bock et al., 2014; Srinivasan et al., 2013).

As part of our ongoing efforts to elucidate the molecular basis
of ligand recognition and binding in nuclear hormone receptors
(Kchouk and Hegazy, 2022; Griffett et al., 2020; Elgendy et al., 2022;
Shahien et al., 2020; Du et al., 2017; Yu et al., 2017; Lou et al.,
2014; Murray et al., 2022; Griffett et al., 2020), we carried out
molecular dynamics simulations on ERRα in complex with the

agonist SLUPP332 (Billon et al., 2023). SLUPP332 is a synthetic
pan-agonist for estrogen-related receptors, recognized for its ability
to mimic the effects of physical exercise, and is referred to as an
“exercise mimetic.” Additionally, it has been shown to improve
mitochondrial function in conditions such as heart failure and
aging-related kidney dysfunction (Wang et al., 2023; Xu et al.,
2024). These simulations revealed a dynamic interconversion of the
ligand between two distinct binding orientations on a nanosecond
timescale, a phenomenon that can be referred to as dynamic ligand
binding (Figure 1C). Interestingly, one of these binding modes
uncovers a novel binding trench within the ERRα Ligand binding
domain (LBD) (Figure 1C), presenting new opportunities for small-
molecule drug discovery.

2 Materials and methods

A set of three independent molecular dynamics trajectories of
ERRα bound with SLUPP332 were modeled. Each simulation ran
for 1,000 ns, with a total sampling time of 3,000 ns. The stability
of the simulations was evaluated using the root mean square
deviation (RMSD) and root mean square fluctuation (RMSF)
of protein backbone atoms, as well as the RMSD of the ligand
(Supplementary Figures S1–S3). The initial coordinates of the ERRα
were taken from the apo ERRα crystal structure (PDB:1XB7)
(Kallen et al., 2004). The ligand SLUPP332 was constructed by
superimposing the protein backbone with the protein backbone of
the ERRγ-GSK4716 complex (PDB:2GPP) (Wang L. et al., 2006;
Pettersen et al., 2004). SLUPP332 was modeled by modifying
the structurally similar GSK4716 compound using Maestro
(Schrödinger, 2021). Molecular dynamics (MD) simulations were
performed with the AMBER18 software package (Case et al., 2018).
Ligand parameters were assigned according to the general AMBER
force field (GAFF) and the corresponding AM1BCC charges
using Antechamber (Wang et al., 2004; Wang J. et al., 2006). The
FF14SB forcefield parameters were used for all receptor residues
(Maier et al., 2015). The Tleap module was used to neutralize and
solvate the complexes using an octahedral water box of TIP3P water
molecules (Jorgensen et al., 1983).

The system was first energy-minimized using the steepest
descent and conjugate gradient methods. After minimization, the
system is gradually heated to 300 K over 100 Ps while keeping
weak restraints on the solute and the ligand. The system was then
equilibrated in the isothermal−isobaric ensemble (NPT) for 100 ps
with restraints on the ligand.ThreeMD trajectories were propagated
using the NVT ensemble with no restraints for 100 ns each using the
GPU-accelerated version of the PMEMD program. All production
simulations were performed at 1 atm and 300 K, maintained with
the Berendsen barostat and thermostat, respectively. The periodic
boundary conditions and the particle mesh Ewald method (grid
spacing of 1 Å) were used for treating long-range electrostatic
interactions with a uniform neutralizing plasma. The SHAKE
algorithm was used to keep bonds involving H atoms at their
equilibrium length, allowing the use of a 2fs time step for the
integration of Newton’s equations. The 2D free energy map and the
per residue RMSD of protein and ligand atoms and amino acid
residues Phe328 and Phe382 were calculated using the CPPTRAJ
module (Roe and Cheatham, 2013). Pictures were generated using
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FIGURE 2
Ligand-binding orientation in (A) the orthosteric site (S1) and (B) the novel binding trench (S2). (C–H) Time course behavior of the ligand’s C-N-N-C
dihedral angle rotation and corresponding histogram plots of the ligand’s C-N-N-C and x1 angles of Phe328 and Phe382 in Simulation 1 (C, D),
Simulation 2 (E, F), and Simulation 3 (G, H).
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FIGURE 3
Free energy surface for ligand dynamic orientation in the LBP of ERRα.
The points labeled S1 and S2 represent ligand orientation in the
orthosteric site and Site 2, respectively.

UCSF Chimera and Maestro (Pettersen et al., 2004; Schrödinger,
2019). All plots were performed using Gnuplot, version 5.4 (http://
gnuplot.info).

3 Results

Three separate molecular dynamics simulations (one
microsecond each) were performed on ERRα bound with the
pan-agonist SLUPP332 (Figure 1B). Simulations revealed dynamic
ligand binding of SLUPP332, where the ligand’s naphthalene group
flipped its initial orientation spontaneously (Figure 2A) into a novel
binding trench that will be referred to as Site 2 (S2) (Figure 2B).
Ligand orientation was monitored by measuring the dihedral angle
rotation around the ligand’s C-N-N-C dihedral angle (Figure 2).
In Simulation 1, the ligand maintained its orientation mainly in
the orthosteric site with the C-N-N-C dihedral angle holding
a value of ∼250° (Figure 2C). Conversely, in Simulation 2, the
ligand’s naphthalene group transitioned to Site 2, maintaining a
predominantly dihedral angle of ∼120° throughout most of the
simulation. The third simulation exhibited spontaneous rotation
of the ligand’s naphthalene group between both orientations
(Figure 2G). The change of the ligand’s orientation is correlated with
the conformational change of either Phe328 or Phe382 (Figure 2).
In Simulation 1, where the ligand is predominantly stable in the
orthosteric site, the Phe328 side chain flipped away from the
orthosteric site, closer to helix 12 (Figure 2A), and the Phe328 x1
angle occupied predominantly a value of 175° while the Phe382
x1 angle occupied predominantly a value of 290°. The flexibility
of the Phe328 side chain was observed previously in the X-ray
structure of ERRα-boundwith the inverse agonist cyclohexylmethyl
amine, where the side chain of Phe328 changed its conformation to
accommodate the inverse agonist binding (PDB: 2PJL) (Kallen et al.,
2007). The same amino acid residue Phe328 on helix 3 in the ligand-
binding pocket was also reported to be essential for the constitutive
activity of ERRα and its mutation to alanine, leading to the loss of
the ERRα constitutive activity (Chen et al., 2001). In Simulation 2,
the ligand’s naphthalene group flipped almost 180° from the
initial binding mode into a novel binding trench, S2 (Figure 2B).
In accordance with the ligand’s orientation change, Phe382 was

FIGURE 4
Detailed view of the Site 2 region. (A) Snapshot from MD simulations
of ERRα bound with SLUPP332 (shown in sphere representation). The
corresponding region is depicted in the X-ray structures of ERRβ (B)
and ERRγ (C).

observed to move downward, providing the necessary space for the
ligand’s naphthalene group to bind in this orientation (Figure 2B
and Supplementary Video 1). The Phe382 x1 angle had a value of
200° while the Phe328 x1 angle had a value of 125° (Figure 2F).
In Simulation 3, the ligand’s naphthalene group underwent a
spontaneous orientation shift between both orientations. The side
chain of Phe382 predominantly adopted a conformation resembling
that in Simulation 1, with an x1 angle primarily approximately
290°, indicating a predominantly open pocket at Site 2. Meanwhile,
Phe328 alternated between two conformations similar to those
observed in Simulations 1 and 2 (Supplementary Video 2). From
our simulation results, a 2D relative free energy map was generated
by analyzing the combined trajectory of all three simulations. This
map is based on the rotation of the ligand’s C-N-N-C dihedral angle
and the x1 angle of Phe328 (Figure 3). It reveals the presence of two
distinct low-energy populations of two ligand-bound orientations
stabilized by one dynamic ligand. Both ligands’ bound states have
comparable ∆G values, and the transition between them is facile,
with an activation barrier of no more than 3.5 kcal mol−1. The
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variation in ligand-binding orientation between the orthosteric site
(S1) and the newly identified trench (S2) correlates with the rotation
of the Phe328 x1 angle (Figure 3). Specifically, the orientation of the
ligandwithin the novel binding trench, S2, is energetically preferable
when the Phe328 x1 angle is approximately 300°, Whereas ligand
orientation is favorable in the orthosteric site (S1) when the Phe328
x1 angle is around 170°.

Analysis of theX-ray structures of the other ERR isoforms, ERRβ
and ERRγ, indicates that the newly discovered site is unique to
ERRα. In ERRα, this site is gated by two amino acid residues, Phe382
and Gly402, which correspond to Tyr301 and Tyr321 in ERRβ and
Tyr326 and Asn346 in ERRγ, respectively (Figure 4). The presence
of Gly402 in ERRα, instead of Tyr321 and Asn346 in ERRβ and
ERRγ, creates a vacant space in ERRα that becomes more favorable
for ligand binding as the x1 angle of Phe382 predominantly adopts a
value of 290° (Figures 1B, D).

4 Discussion

Through classical molecular dynamics simulations, we show that
the ERRα agonist, SLUPP332, dynamically switches between two
distinct binding orientations. Furthermore, the simulations unveiled
a previously uncharacterized trench adjacent to the orthosteric site
that opens because of conformational changes of the ligand, Phe328,
and Phe382. This dynamic behavior of ligand binding was previously
observed using hydrogen–deuterium exchange and solution NMR
experiments in other nuclear receptors (PPARγ and ERα) as well
as in a GPCR receptor, indicating a novel mechanism of allosteric
signaling (Bock et al., 2014; Hughes et al., 2012; Bruning et al., 2010).
Further experimental data indicate that the orientation of the ligand
influences receptor-graded activity and cellular response, presenting
new opportunities for designing drugs with targeted pharmacological
effects (Bock et al., 2014; Bruning et al., 2010). These insights
provide a detailed understanding of the molecular mechanisms
underlying the agonist ligand binding SLUPP332 to ERRα, facilitating
innovative strategies for designing modulators that specifically target
ligand dynamics and flexibility. Notably, this unique feature of
ERRα underscores the importance of molecular simulations in
elucidating crucial insights into ligand-binding dynamics. Molecular
simulations have proven pivotal in the characterization of various
conformational states of proteins, particularly in essential drug
discovery initiatives, such as in the cases ofHIV-1 protease and urease
(Hornak et al., 2006; Roberts et al., 2012).
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