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Introduction: Breast cancer continues to be a primary cause of cancer-related
mortality among women globally. Identifying novel biomarkers is essential for
enhancing patient prognosis and informing therapeutic decisions. The PRR13
gene, associated with taxol resistance and the progression of various cancers,
remains under-characterized in breast cancer. This study aimed to investigate
the role of PRR13 in breast cancer and its potential as a prognostic biomarker.

Methods: We performed a comparative analysis of PRR13 gene expression
utilizing the TCGA database against non-cancerous tissues and employed
STRING to evaluate PRR13’s protein-protein interactions and associated
pathways. Additionally, we investigated the relationship between PRR13 mRNA
expression and immune cell infiltration in breast cancer (BRCA) using two
methodologies. Furthermore, a retrospective analysis of 160 patients was
conducted, wherein clinical data were collected and PRR13 expression was
evaluated through immunohistochemistry and qRT-PCR to determine its
association with clinicopathological features and patient survival.

Results: Analysis of the TCGA database revealed significant upregulation of
PRR13 expression across 12 different cancer types, including breast cancer.
High PRR13 expression was positively correlated with various immune cells,
including NK cells, eosinophils, Th17 cells, and mast cells, whereas a negative
correlation was observed with B cells, macrophages, and other immune
subsets. Enrichment analysis of PRR13 and its 50 interacting proteins revealed
significant associations with biological processes such as cell adhesion and
migration, and pathways including ECMreceptor interaction and PI3K-Akt
signaling. Single-cell analysis demonstrated associations between PRR13 and
pathways pertinent to inflammation and apoptosis. Validation studies confirmed
elevated PRR13 expression in tumor tissue compared to adjacent non-
cancerous tissue. Immunohistochemistry demonstrated high PRR13 expression
in 55.6% of cancer cases, particularly associated with advanced clinical stage
and lymph node metastasis. Moreover, high PRR13 expression significantly
correlated with shorter overall survival and served as an independent prognostic
factor. Subgroup analysis underscored the prognostic significance of PRR13 in
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aggressive tumor subtypes, with particularly strong associations observed in T3,
N1-3, and moderately to poorly differentiated tumors.

Discussion: In conclusion, PRR13 expression is upregulated in breast cancer
tissues and may serve as a valuable prognostic indicator for breast cancer
patients, potentially impacting patient survival and therapeutic strategies.

KEYWORDS

PRR13, biomarker, immune infiltration, breast cancer, prognosis

1 Introduction

Breast cancer is one of the most common malignancies in
gynaecology and remains the leading cause of cancer-related
mortality in women worldwide (Siegel et al., 2024). Breast
cancer is diagnosed in developing countries at an average age of
40–50 years, probably 20 years earlier, compared to 50–70 years
in developed countries. However, Africa and Central Asia have
the lowest incidence rates of breast cancer, a phenomenon
probably due to inadequate screening and diagnostic practices
(Ng et al., 2015; Dlamini et al., 2024). It has been reported
that 1 in 8 women will be diagnosed with breast cancer in her
lifetime, and one in 38 breast cancer patients will lose their
lives (Waks and Winer, 2019).

Breast cancer consists of diverse tumors, each presenting unique
clinical, histological, and molecular-biological characteristics
(Harbeck et al., 2019; Xia et al., 2023). The fundamental histological
categorization of breast cancer includes pre-invasive and invasive
types. Pre-invasive breast cancer has two distinct entities,
ductal carcinoma in-situ (DCIS), and lobular carcinoma in-situ
(LCIS). The invasive BC subtypes can be further characterized
into invasive lobular carcinoma and invasive carcinoma of no
special type (formerly known as invasive ductal carcinoma).
Invasive carcinoma of no special type accounts for 70–75% of
all breast cancer, followed by invasive lobular carcinomas with
10–15% and the remaining form 17 rare histological subtypes
(Harbeck et al., 2019; Sinn and Kreipe, 2013). Only up to 10%
of all diagnosed breast cancers are non-invasive (Ward et al.,
2015). Despite significant advances in therapeutic strategies,
recurrence and metastasis remain the major obstacles to successful
breast cancer management (Tang et al., 2016; Marinello et al.,
2019). Improving the management of breast cancer requires the
identification of novel biomarkers that are critical for refining
risk categorisation, assessing patient outcomes and informing
therapeutic decisions.

The proline-rich protein PRR13 has a molecular weight of
18.8 kDa and lacks identifiable functional domains or protein
motifs. This protein has a significant serine sequence in its C-
terminal region, with proline making up approximately 30% of its
composition. Studies have shown that PRR13 plays an important
role in chemotherapeutic resistance by reducing the expression
of the pro-apoptotic gene thrombospondin-1 (TSP1), thereby
inhibiting taxol-induced apoptosis in cancer cells (Verleih et al.,
2010). In addition, inhibition of PRR13 by CD47 or stimulation
of TSP1 has been shown to enhance the cytotoxic effects of taxol
in malignant cells. Therefore, PRR13 is considered a promising
target for therapeutic intervention (Waddell et al., 2014). The

expression levels of PRR13 have been observed to vary in different
types of cancer, including nasopharyngeal carcinoma, gastric cancer
and non-small cell lung cancer, with its mRNA levels in tumour
tissue serving as a reliable prognostic marker (Bai et al., 2010;
Papadaki et al., 2009; Peng et al., 2010; Liu et al., 2023a).
However, the role of PRR13 in breast cancer remains to be
fully elucidated.

In our current research, we observed an increase in the
expression of PRR13 in breast cancer tissue. In addition, we found
that a reduced presence of PRR13 correlated with more favourable
outcomes in terms of prognosis.

2 Materials and methods

2.1 Patients and tissue specimens

In this study, we assembled a cohort of 160 breast cancer
patients who received curative surgical treatment at the Third
Affiliated Hospital of Sun Yat-sen University between 2001 and
2012. These cases were used to generate tissue microarrays (TMAs).
We performed a retrospective review of medical records to collect
clinicopathological data including age, tumour dimensions, lymph
node (N) classification, tumour grade, and estrogen receptor (ER),
progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER2) status. Malignancies were categorised according
to the American Joint Committee on Cancer (AJCC) staging system,
8th edition, and further assessed for histological type and grade.
A summary of the demographic and clinical characteristics of the
160 participants is shown in Table 1. We also documented patient
outcomes, specifically the interval from surgery to cancer-related
mortality or the last follow-up appointment. The median duration
of follow-up for these individuals was 111 months, ranging from 2
to 131 months. In addition, we obtained 20 sets of adjacent non-
neoplastic tissue at least 2 cm from the tumour margin immediately
after surgery. The study protocol was approved by the Institutional
Review Board of Sun Yat-sen University, and all tissue samples
were collected with the written consent of the participants for
research use.

2.2 RNA isolation and real-time
quantitative polymerase chain reaction
(qRT-PCR) analysis

During surgery, cancerous and healthy breast tissue was
removed and stored in liquid nitrogen for future analysis. Tissue
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TABLE 1 Correlation of PRR13 expression with clinicopathologic features.

Characteristics Total PRR13 expression P value

(n = 160) Low (n = 71) High (n = 89)

Age (years) 0.046

 ≥60 76 (47.5%) 40 (52.6%) 36 (47.4%)

 <60 84 (52.5%) 31 (36.9%) 53 (63.1%)

Clinical stage 0.001

 Ⅰ 16 (10.0%) 10 (62.5%) 6 (37.5%)

 Ⅱ 95 (59.4%) 50 (52.6%) 45 (47.4%)

 Ⅲ 49 (30.6%) 11 (22.4%) 38 (77.6%)

T classification 0.186

 T1 37 (23.1%) 21 (56.8%) 16 (43.2%)

 T2 108 (67.5%) 45 (41.7%) 63 (58.3%)

 T3 15 (9.4%) 5 (33.3%) 10 (66.7%)

N classification 0.000

 N0 66 (41.3%) 27 (40.9%) 39 (59.1%)

 N1 49 (30.6%) 35 (71.4%) 14 (28.6%)

 N2 37 (23.1%) 9 (24.3%) 28 (75.7%)

 N3 8 (5.0%) 0 (0.0%) 8 (100.0%)

Differentiation 0.200

 Well 44 (27.5%) 24 (54.5%) 20 (45.5%)

 Moderate 115 (71.9%) 47 (40.9%) 68 (59.1%)

 Poor 1 (1.6%) 0 (0.0%) 1 (100.0%)

Expression of ER 0.808

 Negative 48 (30.0%) 22 (45.8%) 26 (54.2%)

 Positive 112 (70.0%) 49 (43.8%) 63 (56.2%)

Expression of PR 0.705

 Negative 68 (42.5%) 29 (42.6%) 39 (57.4%)

 Positive 92 (57.5%) 42 (45.7%) 50 (54.3%)

Expression of HER2 0.472

 Negative 115 (71.9%) 49 (42.6%) 66 (57.4%)

 Positive 45 (28.1%) 22 (48.9%) 23 (51.1%)

ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor-2.
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homogenisation was performed using the Tissue Lyser LT adapter
from Qiagen, United Kingdom. Total RNA was extracted from
the homogenised samples using Trizol reagent, a product of
Invitrogen, part of Thermo Fisher Scientific, Inc., according to the
manufacturer’s recommended guidelines. An amount of 2.0 μg of
total RNA, treated with DNase to remove contaminating DNA,
was used as a template for complementary DNA (cDNA) synthesis.
This process was carried out using the Super Script III First-Strand
Synthesis System from Invitrogen. The synthesised cDNA was then
prepared for quantitative real-time polymerase chain reaction (qRT-
PCR) analysis, whichwas performed on a Bio-Rad Laboratories, Inc.
CFX384 Real-Time System using iQ SYBR Green Supermix, also
supplied by Bio-Rad Laboratories, Inc.

For the qRT-PCR procedure, a diluted cDNA solution was
used as template in a reaction mixture containing Fast SYBR
Green Master Mix from Life Technologies, Germany, with a
total volume of 10 μL. The housekeeping gene glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was selected as an endogenous
control to normalise the data. The primer sequences were as
follows: PRR13 sense 5′- GACTGCGAAGGAGAACGCAG-3′,
antisense 5′- GGGGATATGGATTTGGCCCTG-3′, “GAPDH
sense 5”-TGTTGCC ATCAATGACCCCTT-3′, antisense 5′-
CTCCACGACGTACTCAGCG-3’. Relative mRNA expression was
quantified by the comparative 2-ΔΔCq method.

2.3 Immunohistochemistry (IHC) staining
and scoring

TMAs were baked at 60°C for 3 h, deparaffinised in xylene
and rehydrated in graded ethanol. Heat-induced antigen retrieval
was performed by immersing the TMA in citrate buffer (pH =
6.0) in a water bath for 30 min. Endogenous peroxidase activity
was blocked with 0.3% hydrogen peroxide for 20 min at room
temperature. The TMA slides were incubated with rabbit polyclonal
antibody against PRR13 (Abnova) at 1:50 dilution in a humid
chamber at 4°C overnight. The slides were then incubated with
horseradish peroxidase (DAKO ChemMate™ EnVision™ Detection
Kit, Copenhagen, Danmark) for 30 min at 37°C. Staining patterns
were visualised by exposure to 3,3′-diaminobenzidine (DAB)
solution for 2 min at room temperature and counterstained with
Mayer’s haematoxylin. Slides were then dehydrated in ethanol,
cleared in xylene and mounted for examination. Negative control
was obtained by replacing the primary antibody with polyclonal
non-immune rabbit IgG.

IHC staining was evaluated by three independent pathologists
blinded to patient outcome and clinicopathological data. Scoring
criteria for the staining intensity of PRR13 in cancer cells were
graded as follows: 0 (negative), 1 (weak), 2 (moderate) and 3
(strong). The number of PRR13 (+) cells was graded according
to the percentage of cells in 3-5 microscopic fields: 0 (less
than 5%), 1(6–25%), 2(26–50%), 3(51–75%), 4(more than 76%).
The sum of two grades was defined as PRR13 staining score.
The optimal cut-off value was determined as follows: a score
≤4 was defined as low PRR13 expression and a score >4 was
defined as high PRR13 expression.

2.4 Protein-protein interaction analysis

The online STRING database (https://string-db.org/, V11.0)
(accessed 20 February 2024) is used to analyse all publicly available
information sources and to predict protein-protein interactions in
the organism (Yang et al., 2022; Szklarczyk et al., 2016; Liu et al.,
2023b). STRING analysis data are analysed using the R package
igraph (version 1.4.1) and visualised using ggraph (version 2.1.0).
In this study, an interaction module consisting of PRR13 and its
50 network interacting genes is constructed using protein-protein
interactions.

2.5 Immune infiltration analysis

To determine the abundance of immune cells in the
tumour microenvironment (TME), two primary algorithms,
ssGSEA and CIBERSORT, were used to analyse the relationship
between immune cells and PRR13. CIBERSORT uses a linear
support vector regression model to estimate the “relative”
proportions of 22 immune cell types (Chen et al., 2018).
For ssGSEA analysis, the GSVA package was used to assess
the infiltration of 24 immune cells based on ssGSEA scores
(Hänzelmann et al., 2013; Bindea et al., 2013).

2.6 Enrichment analysis

The KEGG database provides comprehensive information on
genomes and biological pathways, while GO annotation analysis is a
widely used enrichmentmethod (Kanehisa, 2002; Consortium et al.,
2004). After identifying 50 genes closely related to PRR13 through
STRING, to further investigate these genes, enrichment and analysis
were conducted using the clusterProfiler, GO, and KEGG functions
of the R software package.

2.7 Statistical analysis

Overall survival (OS) was measured from the date of
surgery to the date of death from any cause. For patients who
survived, follow-up was censored at the date of the last recorded
contact. Data are expressed as either the number of events
(percentage) or the mean with standard deviation (SD). Statistical
significance of PRR13 mRNA levels was evaluated using Student's
t-test. The association between PRR13 expression and various
clinicopathological characteristics was assessed using the chi-
squared test or, when appropriate, Fisher’s exact test. Survival
probabilities were estimated using the Kaplan-Meier method,
and group differences were assessed using the log-rank test.
Relative risks (RRs) associated with PRR13 expression and other
clinicopathological variables were analysed using univariate and
multivariate Cox regression models. Statistical analyses were
performed using a software package (SPSS version 22.0, Chicago,
IL). A p-value of less than 0.05 was set as the threshold for statistical
significance.
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3 Results

3.1 Pan-cancer analysis revealed increased
levels of PRR13

By analyzing the gene expression of 37 types of cancers inTCGA,
we demonstrate the potential role of PRR13 in carcinogenesis. As
shown in Figure 1A, in non-paired samples, the expression of PRR13
is significantly elevated in 12 types of cancers compared to normal
tissues, including BLCA (Bladder Urothelial Carcinoma), BRCA
(breast Invasive carcinoma), CHOL (cholangiocarcinoma), ESCA
(esophageal carcinoma), GBM (glioblastoma multiforme), HNSC
(head and neck squamous cell carcinoma), KIRC (kidney renal
clear cell carcinoma), LIHC (liver hepatocellular carcinoma), PRAD
(prostate adenocarcinoma), STAD (stomach adenocarcinoma),
THCA (thyroid carcinoma), andUCEC (uterine corpus endometrial
carcinoma) (Figure 1A); while in paired samples, the expression of
PRR13 is significantly increased in 9 types of cancers compared
to normal tissues, including BLCA, BRCA, CHOL, ESCA, HNSC,
LIHC, LUSC, STAD, and THCA (Figure 1B). Using TCGAdatabase,
we compared the expression of the PRR13 gene between BRCA
and adjacent tissues. When conducting non-paired and paired
differential expression analyses, significantly higher expression
of PRR13 was observed in tumors compared to normal tissues
(Figures 1C, D). ROC analysis shows that the expression of
PRR13 mRNA in BRCA is 0.848 (95% confidence interval:
0.822–0.875) (Figure 1E), with a cut-off value for PRR13 set at
5.782 (TPM).

3.2 Functional insights from PRR13 and its
interacting proteins

After identifying the potential role of PRR13 in carcinogenesis
through gene expression analysis, we further explored its protein-
protein interaction (PPI) network using the STRING database
to elucidate its functional associations. The top 50 interacting
proteins with PRR13 were selected based on confidence scores
provided by the STRING database (Figure 2A). Subsequently, we
conducted enrichment analysis using a set of 51 genes, including
PRR13, to gain insights into the biological processes and pathways
associated with these genes. The enrichment analysis results, as
depicted in Figures 2B–E, revealed significant associations with
various biological processes (BP), cellular components (CC),
molecular functions (MF), and KEGG pathways. In terms of
biological processes, these genes were implicated in cell-substrate
adhesion, cell-matrix adhesion, integrin-mediated signaling
pathway, cell adhesion mediated by integrin, leukocyte migration,
regulation of angiogenesis, regulation of leukocyte migration,
nucleosome disassembly, granulocyte chemotaxis, and transforming
growth factor beta activation. Furthermore, enrichment analysis of
KEGG pathways highlighted significant associations with ECM-
receptor interaction, focal adhesion, PI3K-Akt signaling pathway,
cell adhesion molecules, hepatocellular carcinoma, small cell lung
cancer, proteoglycans in cancer, and bladder cancer. These findings
provide valuable insights into the potential functional roles and
pathways involving PRR13 and its associated genes in cancer
development and progression.

3.3 The correlation between PRR13
expression and the infiltration of immune
cells

Considering that GO and KEGG enrichment analysis showed
that PRR13 may be involved in tumour immune response,
we further analysed the relationship between PRR13 mRNA
expression and the level of immune cell infiltration in BRCA
using ssGSEA and CIBERSORT. The correlation between immune
cell infiltration and PRR13 mRNA expression in ssGSEA is
shown in Figure 3B. The results show a significant positive
correlation (p < 0.001) between PRR13 mRNA expression and
NK CD56bright cells, eosinophils, Th17 cells, mast cells and NK
cells. Conversely, PRR13 expression showed a significant negative
correlation (p < 0.001) with B cells, Tem, Th1 cells, macrophages,
DC, Tgd, T cells, aDC and Tcm. When PRR13 expression was
divided into high and low expression groups, we found that the
proportion of immune cells in the high and low expression groups
corresponded to the levels analysed in the Spearman correlation
in Figure 3A.

In CIBERSORT analysis, PRR13 mRNA expression showed
a positive correlation with resting mast cells, M2 macrophages,
neutrophils and gamma delta T cells, and a negative correlation
with CD4 memory activated T cells, activated dendritic cells,
M0 macrophages and plasma cells (p < 0.05), as shown in
Figure 3D. Notably, the proportion of M2 macrophages, resting
mast cells and gamma delta T cells was higher in the high
expression group compared to the low expression group,
while the proportion of CD4 memory activated T cells was
lower (Figure 3C).

3.4 Single‐cell analysis of PRR13

Following an examination of the correlation between PRR13
expression and immune cell infiltration levels, our research
endeavors shifted towards investigating its expression profile
and associated pathways at the single-cell level. Through single-
cell analysis, our objective is to elucidate the dynamics of
PRR13 expression across various cell types and uncover any
potential signaling pathways linked to its expression. Analysis of
various BRCA datasets from the TISCH database (Sun et al.,
2021) revealed high expression of PRR13 in CD4Tconv, Treg,
Tprolif, CD8T, and CD8Tex cells in the GSE114727 dataset
(Figures 4C, D). Additionally, high expression of PRR13 was
observed in Mono/Macro cells across the GSE114727, GSE138536,
and GSE143423 datasets, with elevated expression in Epithelial cells
observed in the GSE138536 dataset (Figure 4A). UMAP clustering
of cells from the GSE114727 dataset, depicted in Figure 4B,
primarily consisted of CD4Tconv, Treg, Tprolif, CD8T, and
CD8Tex cells.

To further analyze the relationship between PRR13 and
pathways at the single-cell level, we analyzed expression patterns
of PRR13 across different datasets from the CancerSEA database
(Yuan et al., 2019). UMAP clustering of cells from datasets
GSE77308, GSE75688, GSE75367, and GSE86978 are shown in
Figures 5A, D, G, J, respectively. Box diagrams depicting PRR13
expression in these datasets are presented in Figures 5B, E, H, K.
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FIGURE 1
PRR13 mRNA in BRCA and other types of human cancers from TCGA data. PRR13 expression levels in different tumor types from TCGA database, (A)
unpaired sample, (B) paired samples. (C) Expression levels of PRR13 in BRCA and normal tissue. (D) The expression of PRR13 in BRCA and its paired
adjacent tissues. (E) Receiver operating characteristic analysis (ROC) of PRR13 in BRCA.

T-SNE plots describing the distribution of cells from datasets
GSE77308, GSE75688, GSE75367, and GSE86978, with each point
representing an individual cell and colored by PRR13 expression
levels, are shown in Figures 5C, F, I, L. Results revealed high
expression of PRR13 in almost all cells within the GSE77308 and
GSE75688 datasets. Subsequent analysis of the relationship between
PRR13 expression and pathways showed positive correlations
between PRR13 expression and inflammation, DNA repair, and
cell cycle in GSE77308 (EXPID: EXP0052); stemness in GSE75688
(EXPID: EXP0053); DNA repair, hypoxia, DNA damage, and
apoptosis in GSE75367 (EXPID: EXP0054); and DNA damage,
invasion, and DNA repair in GSE86978 (EXPID: EXP0055)
(Figure 5M). Correlation heatmaps depicting the relationship
between PRR13 expression and different pathways in the GSE77308

dataset are shown in Figure 5N, while Figure 5O illustrates
the correlation between PRR13 expression and inflammation
in GSE77308.

3.5 The expression of PRR13 is elevated in
breast cancer tissues

To determine the functions of PRR13 in breast cancer, we
first investigated the expression of PRR13 in 20 breast cancer
tissues and 20 adjacent non-cancerous tissues by RT-qPCR. The
results revealed that compared with adjacent non-cancerous tissues,
the expression level of PRR13 mRNA was elevated in breast
cancer tissues. (Figure 6A).
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FIGURE 2
Functional Insights from PRR13 and Its Interacting Proteins. (A) An interaction network between PRR13 and 50 co-interaction proteins. GO and KEGG
enrichment analysis of the PRR13 and 50 co-interaction genes show the enriched biological functions (B), cellular components (C), molecular
functions (D) and Kyoto Encyclopedia of Genes and Genomes (E).

3.6 PRR13 overexpression is associated
with other clinical features and patient
survival

PRR13 protein expression was analyzed by IHC on 160
specimens that were assembled primarily on TMAs. The different
intensities of staining are shown in Figure 6B. 71 of 160 (44.4%)
breast cancer tissues showed low expression of PRR13, while 89 of
160 (55.6%) breast cancer tissues showed high expression of PRR13.
The clinic-pathological characteristics of the 160 patients are shown
in Table 1. PRR13 expression was significantly associated with age
(p = 0.046), clinical stage (p = 0.001), and N classification (p <
0.001), while there was no statistical difference in, T classification
(p = 0.186), differentiation (p = 0.200), expression of ER (p = 0.808),
expression of PR (p = 0.705) and expression of Her-2 (p = 0.472)
between PRR13 high and low expression groups. (Table 1). Kaplan-
Meier curve and log-rank test indicated that patients with high
PRR13 expression had a shorter OS (p = 0.036) than patients with
low PRR13 expression (Figure 7A). The univariate analysis model
revealed that clinical stage (HR = 0.595, p = 0.039), ER expression
(HR = 2.192, p = 0.008), PR expression (HR = 2.137, p = 0.011),
and PRR13 expression (HR = 0.449, p = 0.008) showed prognostic

implication for the predication of breast cancer. In the multivariate
Cox regression model, ER expression (HR = 2.276, p = 0.006),
and PRR13 expression (HR = 0.502, p = 0.029) were independent
prognostic factors for OS (Table 2).

Further, we analyzed the prognostic value of PRR13 in selective
patient subgroups stratified by Clinical stage, T classification, N
classification and Grade respectively. For patients in T3 subgroups,
the expression of PRR13 was strongly associated with OS duration
(Figure 7C; log-rank test, p = 0.041), but not for patients in T1-
2 subgroups (Figure 7B; log-rank test, p = 0.173). For patients in
N1-3 subgroups, the expression of PRR13 was strongly associated
with OS duration (Figure 7E; log-rank test, p = 0.005), but not
for patients in N0 subgroups (Figure 7D; log-rank test, p = 0.878).
The expression of PRR13 was associated with OS duration of the
patients with either Stage I-II subgroups (Figure 7F; log-rank test,
p = 0.302), nor Stage III subgroup (Figure 7G; log-rank test, p =
0.289). When it was evaluated according to Grade, the impact on
the OS associated with the expression of PRR13 continued to be
no statistical significance in well differentiated tumors (Figure 7H;
log-rank test, p = 0.637), but showed a strong association with
moderately and poor differentiated tumors (Figure 7I; log-rank
test, p = 0.037).
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FIGURE 3
Analysis of immune infiltration and PRR13 expression. (A) Infiltration level of immune cells in groups with high and low PRR13 expression in ssGSEA
algorithm. (B) Correlation between immune cell infiltration and PRR13 expression in ssGSEA algorithm. (C) Infiltration level of immune cells in groups
with high and low PRR13 expression in CIBERSORT algorithm. (D) Correlation between immune cell infiltration and PRR13 expression in CIBERSORT
algorithm.

4 Discussion

Malignant breast tumours account for approximately 30% of
all cancers in women and are responsible for 15%–20% of cancer-
related deaths in women (Siegel et al., 2021). Despite an increasing
trend in the incidence of breast cancer (DeSantis et al., 2019),
there has been a marked improvement in the prognosis of this
disease, with the predicted 5-year survival rate increasing from
40% to approximately 90% over the past half century (Siegel et al.,
2021). However, the majority of breast cancer deaths are due to
metastatic disease.

While breast cancers that are hormone receptor positive (HR+)
at diagnosis are associated with a more favourable prognosis than
those that are hormone receptor negative (HR-), the incidence of
recurrence after 5 years is significantly higher for HR + tumours
(Zhang et al., 2013). Recurrent breast cancer is typically resistant
to curative treatment, and the 5-year survival rate is less than
50%. To date, no diagnostic method has been identified that can
accurately predict the long-term recurrence of breast cancer. Initial
therapeutic interventions are often less effective against metastatic
breast cancer, which is often resistant to additional treatments

(Lee et al., 2018; Ignatiadis and Sotiriou, 2013). The fact that the
majority of breast cancer patients are at risk of relapse, even if the
disease has initially responded to advanced treatments, highlights
the need for a deeper understanding of disease progression.

Breast cancer, recognised as a diverse disease, is classified into
five unique molecular subtypes using the PAM50 gene expression
profile, including luminal A (LABC), luminal B (LBBC), HER2-
enriched (HER2+), basal-like and normal-like (Sinn and Kreipe,
2013; Ward et al., 2015; Tang et al., 2016; Marinello et al., 2019).
These subtypes have different clinical characteristics, therapeutic
approaches and outcomes. In addition, other subtypes such as
molecular apocrine, claudin-low and interferon-rich have been
identified. However, molecular taxonomy is an evolving field
and is not yet fully established (Hu et al., 2006; Parker et al.,
2009; Fougner et al., 2020; Zhang et al., 2016; Suo et al.,
2015; Shlien et al., 2016). While these classifications provide
insight into the characteristics of different tumour types and
help predict disease progression, current molecular categorisations
are often complex and require further methodological refinement
(Hu et al., 2006; Parker et al., 2009; Fougner et al., 2020;
Zhang et al., 2016; Suo et al., 2015; Shlien et al., 2016). Routine
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FIGURE 4
Single cell gene expression analysis. (A) The heatmap shows the expression of PRR13 in different cell types in different data sets. (B) UMAP clustering of
cells from BRCA dataset GSE114727. (C) Expression of PRR13 in 5 subpopulations of cells in the GSE114727 data set of BRCA. (D) The violin map of
PRR13 expressed in 5 cell subsets in the GSE114727 data set of BRCA.

assessment of new biomarkers remains fundamental in guiding early
diagnosis, prognostic prediction, clinical decision-making regarding
personalization of adjuvant chemotherapy, endocrinotherapy and
targeted therapies to increase toxicity to the cancer cells while
minimizing unnecessary burden to the patient.

This research provides an important understanding of the
potential function of PRR13 in the development and prediction
of breast cancer outcome. The increased presence of PRR13 in
malignant breast tissue compared to surrounding healthy tissue
suggests a role in cancer progression.This is consistent with previous
studies linking PRR13 to taxol resistance and its elevated levels
in a variety of malignancies. The observed association of elevated
PRR13 levels with more severe pathological features, including
later stage disease and lymph node metastasis, underscores its
potential as a prognostic biomarker to help identify patients
with more virulent tumour profiles. Notably, PRR13 expression
demonstrated independent prognostic significance for overall
survival, underscoring its potential clinical utility in predicting
patient outcomes. Subgroup analysis revealed differential prognostic
implications of PRR13 expression in distinct tumor subtypes,
further emphasizing its role in tumor progression. The association
between elevated PRR13 levels and reduced survival in patients with
aggressive forms of cancer suggests that PRR13 may be a promising
target for therapeutic intervention in such cases.

Our study provides new insights into howPRR13overexpression
affects the cancer immune landscape. Our ssGSEA andCIBERSORT

analyses show that PRR13 expression is intricately linked to the
tumor microenvironment. We found that PRR13 overexpression
positively correlates with the infiltration of innate immune cells
like eosinophils, Th17 cells, mast cells, and M2 macrophages, but
negatively correlates with B cells, macrophages, Th1 cells, and
activated dendritic cells. The infiltration of eosinophils, which we
found to be positively correlated with PRR13 expression, has been
associated with increased malignancy in tumors. Eosinophils may
contribute to tumor progression by promoting the polarization of
tumor-associated macrophages (TAMs) towards an M2 phenotype,
which is known to facilitate tumor growth and metastasis.
Specifically, eosinophils can secrete chemokines such as IL-8,
attracting M2 macrophages, which in turn promote tumor cell
growth and metastasis (Maeda et al., 2019; Valeta-Magara et al.,
2019; Ye et al., 2017; Cao et al., 2014). Th17 cells, which were also
positively correlated with PRR13 expression, are considered to be
pro-tumorigenic immune cell types in the context of breast cancer.
They participate in the modulation of the tumor microenvironment
through the secretion of various pro-inflammatory cytokines,
thereby influencing tumorigenesis and cancer progression. Studies
have shown a significant association between Th17 cell infiltration
and tumor aggressiveness and prognosis, particularly in triple-
negative breast cancer (TNBC) (Wu et al., 2018). Neutrophils,
another immune cell type that we found to be positively correlated
with PRR13, play a significant role in breast cancer development.
Evidence is mounting that neutrophils not only participate in
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FIGURE 5
Single cell analysis. UMAP clustering of GSE77308 (A), GSE75688 (D), GSE75367 (G) and GSE86978 (J) cells in CancerSEA database. The box diagram of
PRR13 expression in GSE77308 (B), GSE75688 (E), GSE75367 (H), and GSE86978 (K). T-SNE describes the distribution of cells in GSE77308 (C),
GSE75688 (F), GSE75367 (I) and GSE86978 (L) and the expression level of PRR13 in cells. (M) Correlations between the PRR13 of interest and functional
states in different single-cell datasets. (N) Correlation between PRR13 expression and different pathways in GSE77308. (O) Correlation between PRR13
expression and inflammation.

Frontiers in Molecular Biosciences 10 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1518031
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Meng et al. 10.3389/fmolb.2025.1518031

FIGURE 6
Expression of PRR13 is elevated in breast cancer tissues. (A) RT-qPCR was performed to determine the expression of PRR13 in the breast cancer and
adjacent non-cancerous tissues. (B) Immunochemistry analyses of PRR13 expression in breast cancer tissues. Representative images of Negative
staining, (C) weakly positive staining (+), (D) positive staining (++), and (E) strongly positive staining (+++) of PRR13. The magnification was 400×.

tumor immune responses but may also promote tumor growth
and progression, with their role in the tumor microenvironment
being closely linked to chronic inflammation, a known promoter
of tumor development (Yang et al., 2019; Galdiero et al., 2018).
Mast cells, which showed a positive correlation with PRR13, are
known to be involved in both tumor proliferation and survival,
as well as in the promotion of tumor invasion and metastasis
(Gou et al., 2021; Lichterman and Reddy, 2021). Conversely, the
negative correlation between PRR13 andTh1 cells, which are known
to enhance anti-tumor immune responses through the production
of interferon-γ (IFN-γ) and other cytokines (Gunderson et al.,
2020), suggests that PRR13 overexpression might suppress the
function of these anti-tumor immune cells. Similarly, the negative
correlation with CD4+ memory T cells, which play a crucial
role in anti-tumor immunity and can suppress tumor growth by
enhancing anti-tumor immune responses (Kim and Cantor, 2014;
Seung et al., 2022; Krueger et al., 2021), indicates that PRR13
might inhibit their function within the tumor microenvironment.
In conclusion, our findings suggest that PRR13 overexpression is

associated with an immunosuppressive phenotype in breast cancer,
potentially promoting tumor progression through the modulation
of immune cell infiltration.

Single-cell analysis revealed a positive correlation between
the expression of this gene and key biological processes such as
inflammation, DNA repair, and the cell cycle. This suggests that
the gene may be involved in regulating these processes, influencing
the biological behavior of breast cancer cells. Inflammation,
closely intertwined with apoptosis and DNA repair processes,
significantly contributes to the development and progression of
breast cancer, with DNA repair and the cell cycle playing pivotal
roles in determining breast cancer susceptibility and progression
(Geeleher et al., 2018; Russell et al., 2010; Voskarides, 2018).

The PRR13 gene is composed of four coding regions (exons) and
three non-coding regions (introns). Its complete complementary
DNA (cDNA) sequence encompasses 1,101 nucleotides, featuring
an open reading frame of 563 base pairs that translates into a
protein consisting of 187 amino acids. This protein has a molecular
weight of 18.8 kilodaltons (kD). A distinctive feature of PRR13 is
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FIGURE 7
Kaplan-Meier survival curves with log-rank test of breast cancer patients. (A) OS rates for cases with high PRR13 expression vs. low PRR13 expression in
all patients, (B) OS rates for cases with high PRR13 expression vs. cases with low PRR13 expression levels in patients with T1-2-grade breast tumors, (C)
OS rates for cases with high PRR13 expression vs. cases with low PRR13 expression levels in patients with T3-grade breast tumors. (D) OS rates for
cases with high PRR13 expression vs. cases with low PRR13expression level in patients without lymphatic metastasis (N0), (E) OS rates for cases with
high PRR13 expression vs. cases with low PRR13 expression levels in patients with lymphatic metastasis (N1-3), (F) OS rates for early clinical stage cases
(stage I/Ⅱ) with high PRR13 expression vs those with low PRR13 expression levels, (G) OS rates for late-stage cases (stageⅢ) with high PRR13
expression vs. those with low PRR13 expression levels, (H) OS rates for cases with high PRR13 expression vs. cases with low PRR13 expression levels in
patients with Grade1 breast tumors, (I). OS rates for cases with high PRR13 expression vs. cases with low PRR13 expression levels in patients with
Grade2-3 breast tumors.

a highly conserved sequence of ten serine residues located at its
C-terminus, which is unique to PRR13 among known proline-rich
proteins (Verleih et al., 2010). Initially, Cohen et al. described the
PRR13 gene as encoding a protein rich in proline and serine, and
identified its involvement in resistance to the chemotherapeutic

agent taxol. PRR13 has been shown to suppress the expression of
thrombospondin-1 (TSP1), an anti-angiogenic and pro-apoptotic
glycoprotein, at the transcriptional level. This suppression prevents
apoptosis induced by taxol in cancer cells, leading to the gene’s
alternative name, taxol-resistant gene 1 (Txr1). Furthermore, the
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TABLE 2 Cox-regression analysis of various prognostic parameters in
patients for all patients.

Factor Univariate Multivariate

HR (95%
CI)

P value HR (95%
CI)

P value

Age

 <60 References

 ≥60 0.623
(0.342–1.134)

0.122 ― ―

Clinical stage

 Ⅰ References 0.039

 Ⅱ 0.595
(0.223–1.586)

0.299 ― ―

 Ⅲ 0.453
(0.246–0.836)

0.011 ― ―

T classification

 T1 References 0.360

 T2 0.567
(0.209–1.537)

0.265 ― ―

 T3 0.527
(0.218–1.272)

0.154 ― ―

N classification

 N0 References 0.057

 N1 0.591
(0.174–2.007)

0.399 ― ―

 N2 0.405
(0.110–1.496)

0.175 ― ―

 N3 1.152
(0.335–3.958)

0.822 ― ―

Differentiation

 Well References 0.448

 Moderate 0.269
(0.035–2.076)

0.208 ― ―

 Poor 0.312
(0.043–2.283)

0.251 ― ―

Expression of ER

 Negative References References

 Positive 2.192
(1.222–3.932)

0.008 2.276
(1.268–4.086)

0.006

Expression of PR

 Negative References

(Continued on the following page)

TABLE 2 (Continued) Cox-regression analysis of various prognostic
parameters in patients for all patients.

Factor Univariate Multivariate

HR (95%
CI)

P value HR (95%
CI)

P value

 Positive 2.137
(1.191–3.837)

0.011 ― ―

Expression of HER2

 Negative References

 Positive 1.088
(0.563–2.100)

0.803 ― ―

PRR13 expression

 Low References References

 High 0.449
(0.248–0.812)

0.008 0.502
(0.270–0.931)

0.029

susceptibility of cancer cells to taxane-based chemotherapy can be
enhanced by either silencing TXR1 with small interfering RNA or
by stimulating CD47 (also referred to as IAP, for integrin-associated
protein) through TSP-1 or a TSP-1 peptidemimic in human prostate
cancer cell lines (Lih et al., 2006). Other researchers reported in
succession that Txr1 upregulation may induce taxol resistance in
lung (Papadaki et al., 2009), cervical (Bi et al., 2014a), gastric
(Bai et al., 2010) and breast (Bai et al., 2012) cancer cells.

TXR1 regulates not only taxol resistance but also cisplatin and
oxaliplatin response in gastric cancer (Bi et al., 2014b; Liu et al.,
2016). Bai et al. (2010), Papadaki et al. (2009) reported that in
patients with gastric cancer, the 5-year OS rate of patients with high
Txr1 expression was lower compared with patients demonstrating
the converse. Papadaki et al. (2009) reported that, in patients with
lung adenocarcinoma, the survival rates of patients demonstrating
low Txr1 and high TSP1 expression levels were higher than those
with high Txr1 and low TSP1 expression. Similar results were
demonstrated in non-small cell lung cancer patients (Papadaki et al.,
2011). However, to the best of our knowledge, PRR13 expression and
function in breast cancer has not been elucidated.

In this study, the PRR13 gene was found to be overexpressed
in malignant breast tissue compared to healthy breast tissue,
suggesting a significant role for PRR13 in breast cancer progression.
Immunohistochemistry showed that 44.4% of breast cancer samples
had decreased levels of PRR13, while 55.6% had increased levels.
Notably, 77.6% of patients with advanced (stage III) disease had
high levels of PRR13, compared to 37.5% of patients with early
(stage I) disease. Our study further investigated the relationship
between PRR13 expression and various clinical and pathological
characteristics of breast cancer patients. Within the study cohort,
an increase in PRR13 levels was significantly associated with
patient age, TNM stage and N classification. Conversely, no
significant correlation was found between PRR13 expression and T
classification, tumour differentiation or expression of the estrogen
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receptor (ER), progesterone receptor (PR) or human epidermal
growth factor receptor 2 (HER2). These results revealed that higher
PRR13 expression was related to more aggressive tumor behavior.
These studies indicated that a high level of PRR13 might contribute
to the invasion of breast cancer.

Furthermore, Cox regression analyses showed that patients with
high PRR13 expression had significantly worse overall survival
than those with low PRR13 expression and that PRR13 status
was an independent prognostic index influencing overall survival.
The prognostic value of PRR13 was further analysed in selected
patient subgroups stratified by clinical stage, T-classification, N-
classification and differentiation. PRR13 expression was strongly
associated with OS duration in patients in the T3, N1-3 and grade
2–3 subgroups, but not in patients in the T1-2, N0 and grade
1 subgroups, suggesting that PRR13 may play a more important
prognostic role in patients with more aggressive tumour behaviour.

This study provides the first evidence of the clinical significance
of PRR13 in breast cancer, suggesting that PRR13 may be involved
in the initiation and progression of breast cancer and may
therefore be useful in stratifying patients with more aggressive
behaviour and may serve as an important prognostic index and
potential therapeutic target. Further studies are needed to elucidate
the mechanisms by which PPR13 is involved in breast cancer
progression.

5 Conclusion

PRR13 is overexpressed in patients with breast cancer and
is associated with patient survival. It might serve as a valuable
prognostic indicator for breast cancer patients.
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