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Introduction: Exploiting microbial natural products is a key pursuit of the
bioactive compound discovery field. Recent advances in modern analytical
techniques have increased the volume of microbial genomes and their encoded
biosynthetic products measured by mass spectrometry-based metabolomics.
However, connecting multi-omics data to uncover metabolic processes of
interest is still challenging. This results in a large portion of genes andmetabolites
remaining unannotated. Further exacerbating the annotation challenge,
databases and tools for annotation and omics integration are scattered, requiring
complex computations to annotate and integrate omics datasets.

Methods: Here we performed a two-way integrative analysis combining
genomics and metabolomics data to describe a new approach to characterize
the marine bacterial isolate BRA006 and to explore its biosynthetic gene cluster
(BGC) content as well as the bioactive compounds detected by metabolomics.

Results and Discussion: We described BRA006 genomic content and
structure by comparing Illumina and Oxford Nanopore MinION sequencing
approaches. Digital DNA:DNA hybridization (dDDH) taxonomically assigned
BRA006 as a potential new species of the Micromonospora genus.
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Starting from LC-ESI(+)-HRMS/MS data, and mapping the annotated enzymes
and metabolites belonging to the same pathways, our integrative analysis
allowed us to correlate the compound Brevianamide F to a new BGC, previously
assigned to other function.
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1 Introduction

The search for new bioactive compounds of natural origin from
different organisms coming from different biomes is an arduous
task. Since marine environments are poorly explored, they hold
the promise of a formidable source of rich metabolic potential for
the production of novel biosynthetic compounds, especially when
you consider the microorganisms that reach a billion strains in a
Gram of marine sediment (Fenical and Jensen, 2006). Considering
that more than 40% of pharmaceutical ingredients are derived
directly or indirectly from natural products derived from plants
or microorganisms, one can expect that thousands of unknown
potential medicines are expected to be discovered in marine
ecosystems (Newman andCragg, 2020;Kimet al., 2021).This feature
places Brazil under the spotlight since its coast is especially large,
ranging from tropical to temperate climate zones (Wilke et al., 2021).

The Micromonospora genus is composed by 177 Gram-
positive, spore-forming aerobic species found mainly in
marine environments. Also, this genus belongs to the phylum
Actinomycetota, which is responsible for 70% of natural compounds
under development or already in clinical use (Hifnawy et al., 2020).
The chemical diversity, in terms of natural products, that this genus
is capable of producing is enormous. Micromonospora natural
products are used as drugs against infections caused by fungi or
bacteria. The genera started to receive attention after the discovery
of gentamicin in 1963 and after that, more than 740 bioactive
compounds have been reported from Micromonospora strains.
Among this chemical diversity produced, as well as the different
locations where this genus can be found, there are reports in the
literature searching specifically for anticancer bioactive compounds
on Micromonospora sp. BRA006 (Sousa et al., 2012).

The evolution of bacterial genome organization clustered genes
that encode enzymes of the same metabolic pathway, which are
known as biosynthetic gene clusters (BGC) (Ruzzini and Clardy,
2016). For this reason, modern drug discovery from bacteria is
based on BGC identification as the starting point followed by an
experimental procedure that aims to detect, isolate, or produce
the compound (Domingues Vieira et al., 2022). However, searching
for novel natural bioactive compounds from microorganisms can
be a harsh task, mostly because the majority of the microbial life
cannot be cultured under laboratory conditions. Also, it is difficult
to obtain bioactive compounds in the desired concentrations
(Sun et al., 2019). Thus, bacterial bioactive compound discovery
requires a multidisciplinary approach, such as genomics and
metabolomics (Behsaz et al., 2021). Genomics enables the analysis
of the whole genome sequencing data and raises hypotheses about
metabolic pathways and compound products based on the genetic
content (Andrade, 2020). Then, metabolomic assays based on

mass spectrometry analysis, such as LC-MS/MS are performed to
validate them as well as be a important step in order to identify
new possible bioactive compounds. The integration of these two
omics sciences through multi-omics approaches opens up the
possibility of accessing how much of a given compound predicted
in a BGC is actually being produced and vice versa. And also
to search for new BGCs starting from the annotated metabolites.
Addtionaly, data integration has shown a promising resource in
the description of new bacterial strains, as it allows the study
and characterization of new microorganisms in a holistic way
(Kato et al., 2024).

In the present work, we used multi-omics approach to describe
the potential bioactive compounds of BRA006 (Figure 1), a
bacteria strain recovered from a marine environment collected
on the coast of Brazil. We performed our analysis in a two-
way direction, searching for metabolites by LC-MS/MS previously
predicted by antiSMASH, using two genome sequencing platforms,
as well as finding coding sequences (CDS) for enzymes that are
part of metabolic pathways for syntheses of BRA006s observed
metabolome.

2 Materials and methods

2.1 Collection, DNA extraction, and
sequencing

The BRA006, from MicroMarin collection (https://www.
labbmar.ufc.br/micromarinbr) was cultured in A1 medium [Starch
(10 g/L); Yeast extract (4 g/L); Peptone (2 g/L); Sea Water 75%]
in a volume of 100 mL in 250 mL Erlenmeyer flasks. The cultures
were centrifuged at 12.000 × g for 10 min and the cell pellets were
resuspended in 10 uL of lysozyme 0.05 g/mL for 500 ul of SET
buffer. The mixture was incubated at 37°C for 30 min. Then 14 ul
Proteinase K (20 mg/mL) and 60 uL SDS 10% were added to the cell
lysate and incubated for a further 1 h at 55°C. Then 200 uL NaCl
5 M was added and the temperature was raised to 37°C. 500uL of
chloroform was added and the system was centrifuged at 4,500 × g
for 10min at 20°C. 500uL was collected in a new tube and 300uL of
isopropanol was added and incubated overnight (16 h). The system
was centrifuged at 14,000 × g for 10 min at 4°C. The supernatant
was discarded and the DNA pellet was resuspended in TE buffer.
DNA libraries were prepared using the Oxford Nanopore Ligation
Sequencing Kit (SQK-LSK110) and library loading and sequencing
were performed according to the manufacturer’s instructions and
protocol for Flongle.
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FIGURE 1
Metabologenomics workflow. LC-MS/MS raw data was pre-processed using MZmine3. Spectral pairing and molecular network construction with
GNPS2. In silico annotations were performed with ChemWalker and SIRIUS. The annotated compounds were used to search KEGG pathway database.
KEGG pathway matches had the enzymes serarched in the genome. The genome assemblies for MInION and Illumina had gene annotation performed
by Prokka and AntiSMASH. From the prediction of metabolites, we searched the annotated metabolome.
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2.2 Genome sequencing and assembly
pipeline

For MinION data in use an in-house pipeline with tools
suggested by Oxford Nanopore. The acquisition of the raw data, a
series of processing steps were followed until these genomes were
assembled. The first stage of data processing consisted of converting
the raw signals into DNA base sequences (base calling) using the
Guppy tool (Wick et al., 2019) andDorado with super high accuracy
settings. With this data in hand, the quality of the readings obtained
in the previous step was assessed using the NanoStat software
(De Coster et al., 2018).With these results, the processing continued
with the removal of adapters from the base called reads to prepare
them for subsequent steps; this was done using the Porechop tool
(https://github.com/rrwick/Porechop), which also compressed the
resulting reads. Once the adapters had been removed, a new quality
analysis was carried out using the NanoStat tool. Once this step
was completed, the low-quality bases and short reads were trimmed
using the Chopper tool (De Coster and Rademakers, 2023), which
not only trimmed but also compressed the resulting reads. The next
step was to analyze the quality of the resulting sequence, again using
the NanoStat tool. With the resulting data, we then used the Flye
(Kolmogorov et al., 2019) and Unycicler (Wick et al., 2017a) tools to
assemble the genomes using filtered, high-quality reads.The genome
assembly was then refined using information from reads mapped
using the Racon tool (Vaser et al., 2017). Finally, with the final result
in hand, the quality of the final genome assembly was assessed using
the Quast tool (Gurevich et al., 2013) and BUSCO (Manni et al.,
2021). For Illumina procedures, BRA006 genome samples were
sequenced usingMiSeq technology atMacrogen facility (Seul, South
Korea), all the processing steps such as read mapping, trimming low
quality reads and de novo genome assembly were performed using
the proprietary software Geneious (Version 11) (Kearse et al., 2012).

2.3 Phylogenetic analysis

For phylogenetic inference, we choose a comprehensive method
called digital DNA:DNA hybridization (dDDH) available in the
Type Genome Server (TYGS) web tool (Meier-Kolthoff and Göker,
2019). We used both MinION and Illumina data as query sequences
with a standard parameter set.

2.4 BGCs analysis and functional
annotation

To reveal biosynthetic gene clusters (BGC) from the BRA006
genome, we used the antiSMASH tool (version 7.1.0) (Blin et al.,
2023) with relaxed detection strictness and all extra features
selection. Coding sequences (CDS) prediction of BRA006
assembliesweremade usingProkka (1.14.6) (Seemann, 2014), which
is based on prodigal (Hyatt et al., 2010) HMM models to identify
proteins by their family motifs. Finally, we combine Prokka and
antiSMASH results to obtain a better resolution of protein functions
within BGCs. We manually filtered antiSMASH “Most Similar
Known Cluster” feature and retrieved BGCs that matched MiBiG
clusters related to functions of interest (version 3.0) (Terlouw et al.,

2023). Thus, python scripts were used to convert CDS of GenBank
files from MiBiG and antiSMASH into fasta format in which the
MiBiG sequences were used to construct reference databases and
antiSMASH’s as query sequences for BLASTp. With the TSV files
from BLASTp, we grouped all possible matches by each query
sequence and selected the one with the lowest e-value. Finally, we
used BioPython to plot the comparisons with more than 70% of
similarity.

2.5 Metabolomics analysis

The BRA006 isolates were cultivated in 100 mL of the sterile A1
culture medium (Starch 10 g/L, Yeast extract 4 g/L, Peptone 2 g/L
and Sea Water 75%), in 250 mL Erlenmeyer flasks. After 5–7 days
under 120 rpmagitation and 28°C, the liquid cultureswere extracted
with ethyl acetate (1:1) under agitation for 2 h, and the organic
phase was dried under pressure and kept at 4°C. For the LC-MS/MS
analyses, the organic extracts were diluted in methanol, and the
extract solution to be injected was prepared in methanol:water
solution at a ratio of 1:1 (v/v) with a final concentration of
1.0 mg/mL (Bauermeister et al., 2016) .TheLC-MS/MS analysis itself
was conducted in the Acquity UPLC H-Class (Waters, Milford,
MA - US) hyphenated with Impact II mass spectrometer (Bruker
Daltonics, Billerica - US). The mobile phase (flow 0.3 mL.min-1)
consisted of water (A) and methanol (B) in the following gradient:
0.0–15.0 min (5%–20% B, curve 6); 15.0–30.0 min (20%–95% B,
curve 6); 30.0–33.0 min - (100 B, curve 1); 33.0–40.0 min (5% B,
curve 1). C18 - Luna (Phenomonex® - 100 mm × 2.1 mm × 2.6 μm)
and the temperature adjusted to 35°C. The parameters adjusted for
the spectrometer were: end plate offset of 500V; capillary voltage of
4.5kV; nitrogen (N2) was used as gas; drying gas flow at 5.0 L.min−1;
drying gas temperature at 180°C; 4 bar nebulizer gas pressure;
positive ESI mode. Spectra (m/z 30–2000) were recorded at a rate
of 8 Hz. The quadrupole ion energy was set to 5.0 eV. The collision
cell was set to 5.0 eV,with collision energies ranging from20 to 50 eV
(transfer time from20 to 70 μs), and absolute fragmentation cutoff of
1,000 counts. Ions below 200 Da were excluded from fragmentation.
The “active exclusion” function was enabled and with the following
settings: exclude after 3 spectra; release after 0.3 min; reconsider
precursor if the ratio current intensity to previous intensity was 1.8
(Bazzano et al., 2024). Accurate masses were obtained using sodium
formate solution (10 mM) as a calibrant (Hoang et al., 2024).

2.6 GNPS2 molecular networking and in
silico annotation

The .csv and .mgf files generated in MZmine3 (Schmid et al.,
2023) from the raw data of the metabolomic analysis were
imported into the GNPS2 platform (https://gnps2.org/), where
the molecular network and spectral pairing were performed using
the Feature Based Molecular Network (FBMN) (Nothias et al.,
2020) (https://gnps2.org/workflowinput?workflowname=feature_
based_molecular_networking_workflow). We used the standard
parameters for FBMN. Once the network was built, the annotations
were propagated using the ChemWalker (Borelli et al., 2023)
tool through GNPS2 interface (https://gnps2.org/workflowinput?
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TABLE 1 Summary information of Prokka and Busco tools applied on BRA006 genome.

Annotated proteins With COGa Hypothetical proteins tRNA rRNA ncRNA BUSCOb Technique

C F M

11072 1,529 8,318 65 6 1 201 93 62 MinION

6,080 1769 3,289 69 5 1 350 1 5 Illumina

6,474 1807 3,601 68 9 1 328 17 11 MinION - corrected

This table contains the summary information of Prokka and Busco tools from the assembly of Illumina and MiniON, data sequencing techniques. The name “MinION, corrected” refers to the
results of a troubleshooting process by Dorado and Unicycler, respectivly. To remove base calling errors from the original MiniION, sequencing data.
aComplete distributions of COG (Cluster of Orthologous Groups) functional categories for each assembly technique.
bAssembly completeness analysis based on near-universal single-copy orthologs gene content by BUSCO. The letters C, F, and M stand for complete, fragmented, and missing sequences,
respectively.

workflowname=chemwalker_nextflow_workflow). We used the
standard parameters for ChemWalker, including COCONUT
(Sorokina et al., 2021) as the reference database and 0 for the
component index to propagate information for the whole network.
For the nodes that could not be annotated from these two previous
methods, the MS/MS mass spectra of those compounds were
analyzed using the SIRIUS tool version 5.8.5. To use this tool,
we followed the annotation recommendations for Q-TOF mass
analyzers and adopt the following adducts [M + H]+, [M + K]+,
and [M + Na]+ as well as all the formulas available through the
tool access (Dührkop et al., 2019). For in silico annotation, both
ChemWalker and SIRIUS were used to annotate a structure with the
best ranked candidate.

3 Results

3.1 Genomic analysis

The isolate BRA006 exhibits very characteristic growth. The
colonies are orange in color with apical growth and a rough
appearance with the presence of individual dark-colored spores.
In solid medium, it releases as yet undetermined compounds
that diffuse into the agar, giving it a pink-purple color, as can
be seen in Supplementary Figure 1.

We compared Illumina and MinION whole genome sequence
techniques results from BRA006. While Illumina assembly yielded
10 contigs and 6,734,372 base pairs (6.73 Mb) in total, sequencing
by MinION showed higher genome completeness, with an assembly
resulting in 4 contigs with 6,762,267 base pairs (6.76 Mb) in total.
Functional annotation performed by Prokka showed a significant
increase in CDS predicted from MinION assembly data driven by a
high amount of hypothetical proteins.We corrected this issue adding
modiciations in MinION assembly pipeline and obainted similar
values to Illumina. The complete result is shown in (Table 1). The
CDS prediction followed the number of hypothetical proteins, with
more predictions from MinION than from Illumina.

3.2 Metabolic potential

Micromonospora is one of the largest genera of Actinomycetota
and possesses a large repertoire of bioactive secondary metabolites
(SM) with a broad spectrum of therapeutic effects (Yan et al., 2022),
for instance, aminoglycosides andmacrolactamantibiotics.Through
antiSMASH, we annotated the BGC content from Illumina and
MinION assemblies of BRA006. MinION assembly resulted in a
total of 15 BGCs (Table 2) that vary in similarity with antiSMASH
database. Among them, there are those with reported antimicrobial,
antifungal, and antitumor activities. For instance, quinolidomicin A
is a macrolide with antibiotic and anticancer effects isolated from
Micromonospora sp JY16 (Ruzzini and Clardy, 2016) and BRA006
presents a quinolidomicin BGC with 219 Mb in length and 67%
similarity with the most similar known cluster.

The type-III polyketide Loseolamycin was identified from
Micromonospora endolithica and inhibited the growth of the Gram-
positive Bacillus subtilis and also showed herbicidal activity against
the weed Agrostis stolonifera (Lasch et al., 2020). Cinerubins are
anthracycline antimicrobials produced by actinomycetota which
also present antitumor activity (Paderog et al., 2020; Silva et al.,
2020). BRA006 possesses highly similar clusters to cinerubin
B (74% by MinION and 80% by Illumina) and loseolamycin
(88% by MinION and 92% by Illumina) A1/A2. BRA006 also
has less similar BGCs for the biosynthesis of other natural
compounds with antitumoral activity such as bleomycins and
kedarcidin, isolated from Streptomyces verticillus and an unclassified
Actinomycetales strain (ATCC 53650) Actinomycetes, respectively
(Hecht, 2000; Hofstead et al., 1992).

AntiSMASH results from Illumina assembly yielded 18
BGCs (Table 2) in total, including clusters for the production of
quinolidomicyn, cinerubin B, and loseolamycin A1/A2 found in
both Illumina and MinION data. However, only by sequencing
with Illumina, it was possible to find a BGC 100% similar to the
production of sungeidines (Low et al., 2020), a group of metabolites
produced by pathways with close evolutionary relations with the
antitumor dynemicins (Unno et al., 1997).
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TABLE 2 Biosynthetic Gene Cluster from antiSMASH.

Region Type From To Most similar
known
cluster

Type from
most
simiilar
known
cluster

Similarity Technique

1.1 T1PKS 173,653 262,468 catenulisporolides NRP + Polyketide 12% Illumina

1.2 T3PKS 972,718 1,013,770 loseolamycin
A1/loseolamycin
A2

Polyketide 92%/88%a Both

1.3 thioamide-NRP 1,165,443 1,214,791 cadaside
A/cadaside B

NRP 19% Illumina

1.4 terpene 1,632,755 1,652,207 isorenieratene Terpene 25%/25%a Both

1.5 terpene 1,735,876 1,756,185 phosphonoglycans Saccharide 3% Illumina

1.9 T1PKS 3,818,978 3,889,418 quinolidomicin A Polyketide 45%/67%a Both

1.10 NI-siderophore 3,941,102 3,951,331 FW0622 Other 50% Illumina

1.11 NRPS-
like,NRPS,T1PKS,
PKS-like

3,956,633 4,058,605 sungeidine
C/sungeidine
B/sungeidine
D/sungeidine
H/sungeidine
A/sungeidine
E/sungeidine
F/sungeidine G

Polyketide 100% Illumina

1.12 NRPS-
like,NRPS,T1PKS

4,153,951 4,219,351 crochelin A NRP + Polyketide 12% Illumina

1.13 terpene 4,832,538 4,853,269 nocathiacin RiPP:Thiopeptide 4%/4%a Both

1.14 T2PKS 5,027,025 5,098,322 formicamycins
A-M

Polyketide 18% Illumina

1.15 oligosaccharide,
terpene

5,268,386 5,304,696 lobosamide
A/lobosamide
B/lobosamide C

Polyketide 13% Illumina

1.16 T2PKS,
oligosaccharide,
other,NRPS

5,309,290 5,436,713 cinerubin B Polyketide:Type II
polyketide

80%/74% Both

1.17 NI-siderophore 5,616,661 5,629,872 peucechelin NRP 10% Illumina

1.18 terpene,RiPP-like 5,837,876 5,861,979 lymphostin/
neolymphostinol
B/lymphostinol/
neolymphostin B

NRP + Polyketide 33% Illumina

1.19 terpene 5,994,482 6,015,432 tetrachlorizine Polyketide 13% Illumina

1.20 other,
ladderane,NRPS,
arylpolyene

6,201,575 6,311,984 kedarcidin NRP + Polyketide:
Iterative type I
polyketide +
Polyketide:Enediyne
type I polyketide

13%/6% Both

6.1 NRPS-
like,T1PKS

1 37,77 quinolidomicin A Polyketide 28,%/67% Both

(Continued on the following page)

Frontiers in Molecular Biosciences 06 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1515276
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Arini et al. 10.3389/fmolb.2025.1515276

TABLE 2 (Continued) Biosynthetic Gene Cluster from antiSMASH.

Region Type From To Most similar
known
cluster

Type from
most
simiilar
known
cluster

Similarity Technique

2.1 RiPP-like 136,664 147,482 lymphostin/
neolymphostinol
B/lymphostinol/
neolymphostin b

Polyketide + NRP 15% MinION

2.5 NI-siderophore 4,182,055 4,194,725 peucechelin NRP 10% MinION

3.2 NRPS-like 407,718 448,468 sarpeptin
A/sarpeptin B

NRP 25% MinION

3.4 oligosaccharide,
terpene

530,94 565,187 brasilicardin A Terpene +
Saccharide

38% MinION

3.5 T2PKS,NRPS-
like

732,357 804,659 pradimicin-A Polyketide 17% MinION

3.7 NRPS 1,520,332 1,559,968 bleomycin
A2/bleomycin B2

NRP + Polyketide
+ Saccharide

14% MinION

3.9 T1PKS 1,799,831 1,841,948 rakicidin
A/rakicidin B

NRP:Cyclic
depsipeptide +
Polyketide:Modular
type I polyketide

40% MinION

3.10 NI-siderophore 1,859,147 1,870,220 putrebactin/
avaroferrin

Other 50% MinION

aSimilarity data from Illumina and MinION, respectively.

3.3 Evolutionary relationships

Since both genome sequencing methods yielded identical
clusters with enzymes from pathways for synthesizing compounds
with medical applications, we decided to explore the evolutionary
relationship. According to digital DNA:DNA hybridization used by
Type Genome Server (TYGS) (Meier-Kolthoff and Göker, 2019) for
phylogenetic inferencing, these two assemblies were classified as
Micromonospora sp and pointed out as possible novel species due
to their relatively high genomic distance to its closest related group:
Micromonospora aurantiaca ATCC 27029 (Figure 2). However, the
BGC with higher similarity to the antiSMASH database is the one
for the production of loseolamycin A1/A2 in both MinION and
Illumina assemblies. Therefore we used BLASTp to compare the
proteins within those BGCs to the reference: BGC0002362 from
Micromonospora endolithica.

Figure 2B shows the protein similarity between loseolamycin-
producing BGC from BRA006 and M. endolithica. Both assembly
methods detected the complete inversion of this M. endolithica BGC
followedbya series of indels in theupstreamregionmajorly composed
of CDSs that encode proteins with no functional annotation. Other
BGCs with less similarity to the antiSMASH database were also
compared with the reference sequences. For the cinebubin B and
quinalidomicin A BGCs there were differences between antiSMASH
results regarding the sequencing method. In the case of cinerubin B
BGC, sequencing by Illumina resulted in a BGC with 172 Mb length

whileMinION’swith 71 Mb.Bothwith a fewhighly similar proteins to
the reference BGS (BGC0000212) (Supplementary Figure 2) original
from Streptomyces sp. SPBO074. On the other hand, quinolidomicin
ABGCs showed 219 Mb inMinION and 70 Mb in Illumina assembly.
QuinolidomicinABGC fromMinIONdata presentedmore similarity
(67% against 45% from the counterpart) to reference BGC0002520
original from Micromonospora sp (Supplementary Figure 3)
although with shorter CDSs.

3.4 Metabolomic analysis

From the analysis of potential BGCs found in BRA006, where
their potential to biosynthesize compounds with antibacterial
(loseolamycins A, quinolidomicin A, cinerubin B, and brasilicardin
A), antifungal (pradimicin A) and anticancer (bleomycin A2 and
kedarcidin) activity was identified, we investigated whether these
compoundswere present in themetabolome of this Actinomycetota.
To do so, and to extend the analysis to other compounds that
BRA006 might be able to produce, we performed a metabolomics
analysis in which the BRA006 extract was analyzed by LC-
ESI(+)-HRMS/MS. After the LC-MS/MS analysis, the obtained
raw data were converted into. mzXML format using Proteowizard
(Chambers et al., 2012), and feature finding was performed using
MZmine (Schmid et al., 2023). We then performed the annotations
sequentially, in three steps. In the first, the annotations were made
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FIGURE 2
(A) Digital DNA:DNA hybridization phylogenetic tree of the Illumina and MinION data from the isolate BRA006. The Type Genome Server displays the 16
closest related genomes present in its database based on the genomic distance of the whole genome sequencing data. (B) Protein BLASTp similarity
between BRA006 Loseolamycin BGC and reference BGC0002362 pointed by antiSMASH. All possible matches for every BRA006 match were filtered
by the smallest e-value (See complete BLAST data in Supplementary Tables 1A, B). (C) The distribution of CDS annotated by Prokka according to
Cluster of Orthologous Groups.

by spectral pairing and molecular network construction through
GNPS2 (https://gnps2.org/). As a result, we obtained 527 nodes with
at least one connection, of which 83 were annotated by GNPS2.
Based on this result, we propagated the annotations to the nodes that
did not present an annotation by spectral pairing usingChemWalker
(Borelli et al., 2023), increasing the annotations to 373 nodes. Finally,
for the nodes that could not be annotated by this tool, we used
a third in silico spectral annotation tool, SIRIUS (Dührkop et al.,
2019), increasing the annotations for an additional 67 nodes. Thus,
a total of 527 nodes were represented by the molecular network, of
which 523were annotated.With these results in hand, we performed

an automated chemical classification of each annotated compound
using ClassyFire (Djoumbou Feunang et al., 2016). The molecular
network was colored based on the superclasses to which each
annotated compound belonged (Figure 3).

The compounds could be grouped into 13 different chemical
superclasses, where 30.2% of the annotated compounds belong
to the superclass of lipids and lipid-like molecules, 19.5%
to organoheterocyclic compounds, 15.1% to organic acids and
derivatives, 9.9% to benzenoids, 7.6% to phenylpropanoids and
polyketides, 6.5% to organic oxygen compounds, 4.0% to organic
nitrogen compounds, 1.7% to alkaloids and derivatives, 0.6% to
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FIGURE 3
Molecular network constructed from BRA006 metabolomic data. Nodes were colored based on the superclass classification performed on the
molecules annotated by ClassyFire. The full description of the annotation set is presented in Supplementary Table 4. The cluster showing the node with
the annotation for brevianamide F is highlighted.

lignans, neolignans, and related compounds, 0.4% to hydrocarbon
derivatives, 0.2% to organic 1, 3-dipolar compounds, 0.2% to
hydrocarbons, 0.2% to organosulfur compounds, and 3.8% could

not be classified (None). The complete relationship between all
annotated compounds and their chemical hierarchical classification
intokingdom,superclass, andclass is showninSupplementary Table 4.
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From the entire set of annotations and classifications, we searched
for the seven compounds predicted by antiSMASH in the BRA006
metabolome. None of the seven compounds were found in the
annotation pool. Therefore, we took the molecular structure of these
seven compounds and performed their chemical classification using
ClassyFire; once we had their chemical class, we would search for
compounds annotated in the BRA006 metabolome that had the same
chemical class. From a pharmacological point of view, compounds
belonging to the same chemical class might belong to the same
biosynthetic pathway and or have similar effects, as is the case, for
example, with the class of peptidomimetics in the treatment of cancer
(de Valketal.,2020)andsteroids inthetreatmentofpain(Paulsenetal.,
2013). The seven compounds were organized into six different classes
of molecules, where loseolamycin A1 belongs to the phenol class,
cinerubin B belongs to the anthracycline class, brasilicardinA belongs
to the steroid and steroid derivative class, pradimicin A belongs to the
naphthacene class, bleomycinA2belongs to the peptidomimetic class,
andquinolidomycinAandkedarcidin areorganooxygencompounds.

Of these six chemical classes to which the compounds
of interest belong, the Phenols class presented 10 annotated
molecules, while the Organooxygen Compounds and Steroids and
Steroid Derivatives classes presented 34 compounds each and
Peptidomimetics presented two compounds in our analysis. Among
the 10 compounds belonging to the Phenol class, three of them had
bioactivity previously reported, but with a different action from the
antibiotic loseolamycins A1. The targeting offered by antiSMASH,
by searching for molecules belonging to the same class as those with
bioactive activity predicted by the tool, allowed us to find a larger
and more diverse range of compounds.

Using a reverse flow of integrative analysis, where we start
from what was annotated in the metabolome, we set out to
evaluate whether it would be possible to identify, from a given
metabolite, the enzymes that lead to its production in BRA006.
To this end, we first crossed the annotated metabolome with the
KEGG database (Kanehisa and Goto, 2000) to search within the
metabolome of this Actinomycetota for molecules with known
biosynthetic pathways. As a result, we found a molecule belonging
to the staurosporin biosynthetic pathway, brevianamide F. It should
be noted that of the three methods used in the annotation process,
brevianamide F was annotated by spectral pairing with the GNPS
spectral library (Wang et al., 2016), showing a MQScore of 0.97
and a m/z error of 2.47ppm. Since the topology of the molecular
network is given by the similarity between nodes, the node with an
annotation for brevianamide F is connected to seven other nodes
(Figure 3). All seven nodes have been annotated by ChemWalker.
Looking at the predicted structures, six of the seven share the
same indole-like nucleus as brevianamide F, suggesting that other
molecules may ultimately be produced, either by brevianamide F
BGC or by other intermediates belonging to the same pathway
as brevianamide F. Once identified, the enzymes that make up
the staurosporin biosynthetic pathway, we searched the BRA006
genome for which of these enzymes would be encoded. From
this search, 16 staurosporin pathway enzymes were identified in
the genome of this Actinomycetota (Supplementary Figure 4), and
11 overlap the region of the BGC 20 from Illumina (Figure 4).
Among them, we found an NRPK 2,3-dihydroxybenzoate-AMP
ligase functionally classified as a biosynthetic-additional enzyme
by antiSMASH. These results show that a dynamic integrative

approach, i.e., first combining spectral and in silico annotation,
assigning chemical classes, and then searching for metabolites from
the genome tomatch encoded proteins in the genome to the pathway
producing the putativemetabolite annotated, is an efficient approach
to characterize new species with the potential to produce bioactive
compounds.

4 Discussion

Themultiomics characterization of newMicromonospora strains,
especially those found in the marine environment, is a highly
relevant task given the potential for the discovery of new bioactive
compounds. Multiomics approaches allow combining information
from different sources and amplify the scope of features that can
be learnt (Kwoji et al., 2023). For instance, genomic annotation
are hypothesis on the proteins that a living organism can produce,
although there is no information about the levels nor the conditions
in which these proteins are expressed. On the other hand,
metabolomics inform the set of compounds conditionally produced
but without information on the enzymes or metabolic pathways
(O’Donell et al., 2020). Metabologenomics, integrates genomic and
metabolomics and relate the compounds found to the enzymes
encoded in the genome (Go et al., 2024).

In this sense, the use of dynamic integrative analytical
approaches seems to be a promising resource, both in the process
of characterizing new species and in the evaluation of the potential
for the production of natural products from a new microorganism.

In the present work, we characterized BRA006, a potential
new species of the genus Micromonospora in terms of secondary
metabolites production. We used both genomic and metabolomic
points of view, comparing two whole genome sequencing
approaches (Figure 2A) and a multiple-step metabolite annotation
workflow. This strategy introduces an innovative dynamic approach
tomultiomics analysis in which the annotated BGCs types predicted
by antiSMASH guided the search for bioactive compounds in
the metabolome content, as well as the compounds identified
in the metabolome (which match specific pathways) led to the
search for CDSs that encode enzymes from these pathways.
Among the various microbial genera described to date that
stand out for their ability to produce bioactive compounds, the
genus Micromonospora is an important model in natural products
research and a milestone in the discovery of new biocompounds
(Hifnawy et al., 2020). The potential to produce bioactive natural
products from bacterial isolates from the Brazilian coast is already
known, especially those with antitumor activity (Sousa et al., 2012;
Silva et al., 2017). Among these, the activity observed in crude
extracts of the genus Micromonospora was attributed to a group of
anthracyclinones (Sousa et al., 2012).

According to Yan et al. (2022), species from theMicromonospora
genus encode from 4,200 to 8,017 proteins and have genome
sizes from 5.07 to 9.24 Mb. BRA006 possesses a 6.7 Mb genome,
confirmed by two independent sequencing methods, although
MinION assembly annotated by Prokka showed up to 11.000 CDS
against 6,080 from Illumina. This gap between them is mostly
due to higher error rates from MinION assembly, which probably
causes artificial stop codons that could explain the higher number
of CDSs. We decreased this gap changing our basecaller and

Frontiers in Molecular Biosciences 10 frontiersin.org

https://doi.org/10.3389/fmolb.2025.1515276
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Arini et al. 10.3389/fmolb.2025.1515276

FIGURE 4
Circular representation of BRA006 genome according to the sequencing technique. (A) Each circle contains a track with the CDS predicted by prokka
with BGCs annotated by AntiSMASH and a underneath track highlighting the proteins present in the KO00404 map from KEGG (https://www.genome.
jp/pathway/ko00404). The pink-colored track contains results from MinION assembly pipeline with Guppy and Fly, whilst the green tracks refers to
pipeline with Dorado and Unicyler. (B) Comparison among BGC. We set BGC number 20 from Illumina data as que reference to show the fragmented
BGCs from MinION data. (C) Detailed visualization of Illumina BGC 20 and their respective corresponding from MinION.
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genome assembler tools from Gumpy to Dorado and from Flyer to
Unicycler, respectively. However, this still resulted in a fragmented
kedarcidin-producing BGC which overlaps with the genes that
encode enzymes that are also part of the staurosporin pathway.
An alternative to solve this issue would be to perform a hybrid
assembly (Wick et al., 2017b; Laver et al., 2015). Besides the
difference in CDS number, antiSMASH found the same BGCs in
both assemblies, such as Cinerubin B and Loseolamycins, with
high similarity to antiSMASH database. Also, the whole genome
sequence phylogeny placed both assemblies as amonophyletic group
dissimilar enough from Micromonispora aurantiaca ATCC27029
to TYGS to point BRA006 as a possible novel Micromonospora
species. As an example of genetic divergence of BRA006 from other
Micromonospora, we can cite the loseolamycin A1 BGC, where
it is possible to observe a complete inversion of the cluster and
several indels. According to Medema et al. (2014) NRPK clusters
evolved from gene duplication followed by differentiation, which
could explain the difference between BRA006 and M. endolithica.
Unfortunately, even with Prokka, annotating most of the proteins in
that BGC was not yet possible.

The approach “from genomics to metabolomics” yielded a
BGC that encodes pathways to compounds with pharmaceutical
applications, which confirms the importance of theMicromonospora
genus, although the compounds produced by these BGCs
were not found in metabolomic data. Their absence can be
explained by differences between laboratory culture media
and the original ecological niche, as well as the need for
improvements in the acquisition parameters. Genomic-guided
works often require heterologous expression of parts or the
entire BGC to obtain the active compound in the laboratory
(Xu and Wright, 2019). For instance, Lasch et al. (2020)
obtained loseolamycins from M. endolithica by heterologously
expressing type III polyketide synthase, Domingues Vieira et al.
increased the production of eponemycin and related epoxyketone
peptides by cloning the whole epn-tmc BGC from Streptomyces
sp. BRA346 (Domingues Vieira et al., 2022), and Yamanaka
produced Taraomycin A by editing regulators of this BGC from
Saccharomonospora sp. CNQ490 (Yamanaka et al., 2014).

Starting from metabolomics, the analysis of the BRA006
metabolome allowed us to identify annotated compounds belonging
to already well-established chemical classes whose biosynthesis
is reported in the literature for this genus, as in the case of
macrolides (Hifnawy et al., 2020). Of these, we were able to annotate
nine compounds belonging to this class (Supplementary Table 4),
two of which previously reported bioactivity: tricholide A, with
antibacterial activity (Bertin et al., 2017) and 11,12-dihydroxy-
6,14-dimethyl-1,7-dioxacyclotetradeca-3,9-diene-2,8-dione, with
immunosuppressive activity (Fujimoto et al., 1998). It should be
noted that two compounds were recorded as tricholide A. Both
presented the same m/z value but with very different retention
times, indicating the presence of isomers of this compound, as
both appear as neighboring nodes in the molecular network, and
also which can be seen by the extratec ion cromatogram (XIC)
(Supplementary Figure 5B). The annotation procedures and KEGG
pathway search identified Brevianamide F, a compound with
activity against Staphylococcus aureus (Ben Ameur Mehdi et al.,
2009) and an intermediate of well-established inducer of apoptosis,
Staurosporin (Belmokhtar et al., 2001). Among the three annotation

methods for a given molecule we used, spectral matching against
a reference library is the best available resource (Ausloos et al.,
1999). In addition, we used two other in silico annotation resources:
ChemWalker and SIRIUS. Of these two tools, SIRIUS has the
best accuracy, but it is very difficult to use when dealing with
large sets of spectra. This limitation is overcome by ChemWalker,
which allows greater annotation coverage, taking into account the
topology of the molecular network. We reached brevianamide F
annotation through two different annotation routes, which brings
robustness to the interpretation of the result obtained and highlights
the potential for a reverse flow in elucidating the biosynthetic
potential of a new non-model organism. The spectral library
match was reached through pairing spectra on GNPS2, where
the results on XIC as well as the mirrorplot for this annotated
compound is presented in Supplementary Figure 5. It is worth
highlighting that we also carried out an in silico prediction analysis
using SIRIUS for the seven nodes related to that of Brevianimide
F. However, the best candidates predicted by this tool had little
structural similarity with the compound itself, unlike the candidates
provided by ChemWalker. The advantage of ChemWalker is that it
uses the sample context given by the molecular network topology
on compound re-ranking. Eventually, this new proposed BGC
could synthesize the other molecules annotated and linked to
the brevianamide F’s node or, maybe, they are intermediates from
different pathways that had not been described yet. In both cases,
the knowledge of these analogues opens the possibilities to improve
the known bioactivity of Brevianamide F, which could be tested by
isolation or even by (bio)synthesizing the compounds.

Inspecting KEGG’s metabolic pathways, we found that
brevianamide F, a product of fungi metabolism (Mehetre et al.,
2019), is part of staurosporin biosynthesis (KO00404). Therefore,
we retrieved all EC numbers from the KO00404 pathway, connected
them to our Prokka data, and found three enzymes that can catalyze
the Brevianamide F synthesis reaction. In the KO00404 pathway,
brevianamide F biosynthesis requires tryptophan and proline as
substrates, being its core assembled by a non-ribosomal peptide
synthetase (COG1020), named brevianamide F synthase (EC:
6.3.2.-), which is encoded by the gene FtmA (NCBI ID Aspergillus
fumigatus (AFUA_8G00170) (Wang et al., 2023), and is also
reported in Streptomyces sp (Maiya et al., 2006). The isolate BRA006
has an NRPK mbtB_1 (MinION data) that matches with COG and
EC number of FtmA, but is not a component of any BGC found by
antiSMASH. However, examining the downstream and upstream
regions of 2,3-dihydroxybenzoate-AMP ligase CDS (Illumina data)
we found a genomic region that has the potential to be part of the
brevianemide F synthesis pathway BGC.

AntiSMASH identifies BGCs based on profiles of Hidden
Markov Models (pHMM) from PFAM (Mistry et al., 2021),
TIGRFAMs (Haft et al., 2013), SMART (Letunic et al., 2021), BAGEL
(van Heel et al., 2018; Yadav et al., 2009) and custom models
that recognize signature sequences of such conserved domains in
genomic query sequences (Biermann et al., 2022). However, there
are BGCs that lack universal class-specific signature sequences and
therefore are partially identified. To overcome this limitation, deep-
learning-based tools such as DeepBGC (Hannigan et al., 2019) have
been applied in genomic mining research to uncover new BGCs.

It is interesting to emphasize the innovative approach used
in the present work with a two-way analysis of the genome
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and metabolome. We started with the metabolome to see if
the biosynthetic gene clusters involved in the production of
a given metabolite could be identified in the genome. We
then analyzed the genome sequencing data, and from there,
by searching specific databases such as antiSMASH, we went
to the metabolome to check whether the compounds predicted
by antiSMASH were being produced (Domingues Vieira et al.,
2022). Traditionally, the search for potential new compounds with
bioactivity follows the latter linear flow of analysis, which in our
case did not result in the identification of 7 of the metabolites
predicted by genome mining. However, by using the chemical
classes of these compounds, we could find analogues in our
metabolomic data.

In addition, we present a new approach that integrates the
classical approach with a reverse analysis, starting from the
metabolome to the genome. For example, in neither short-
read (Illumina) nor long-read (minION) sequencing data, it
was possible to automatically detect the biosynthetic gene
cluster for brevianamide F or staurosporin production. By
using the two-way approach we could identify brevianamide F
(reported as an intermediate in the Staurosporin biosynthesis) in
BRA006 metabolome and, from there, we could identify some
of brevianamide F′ putative analogs and a BGC in the BRA006
genome, initially annotatedwith other function, that could represent
Brevianamide F biosynthetic pathway in BRA006. Therefore, the
approach presented in the present work allowed us to extend the
characterization of the potential of bioactive natural products
produced by BRA006.
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