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Dual targeting carbonic
anhydrase inhibitors as
promising therapeutic approach:
a structural overview

Katia D’Ambrosio, Anna Di Fiore* and Emma Langella*

Institute of Biostructures and Bioimaging - CNR, Napoli, Italy

The dual-target inhibitor strategy is an evolving approach that holds great
potential for treating complex diseases by addressing their multifactorial
nature. It can enhance therapeutic outcomes, reduce side effects and avoid
the emergence of drug resistance, particularly in conditions like cancer,
inflammation and neurological disorders, where multiple pathways contribute
to disease progression. Identifying suitable targets for a dual inhibitor approach
requires a deep understanding of disease biology, knowledge of critical
pathways, and selection of complementary or synergistic targets. Human
carbonic anhydrases (hCAs) have been recognized as suitable drug targets for
this therapeutic approach. These enzymes play a key role in maintaining pH
balance, ion transport, and fluid regulation across various tissues and organs
and their dysregulation has been associated to a variety of human pathologies.
Consequently, the inhibition of hCAs combined to the possibility tomodulate the
activity of a second molecular target represents a promising way for developing
more effective drugs. In this mini-review, we aim to present an overview of
the most significant structural results related to the development of novel
therapeutics employing hCA inhibitors as dual-targeting compounds for the
treatment of complex diseases.
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1 Introduction

Human carbonic anhydrases (hCAs) are zinc-containing metalloenzymes that catalyze
the reversible hydration reaction of carbon dioxide to bicarbonate and proton (Supuran,
2023). To date, fifteen distinct hCA isoforms have been identified, which vary in
their oligomeric structures, distribution across different organs and tissues, subcellular
localization, and catalytic performance (Alterio et al., 2012; Di Fiore et al., 2020;
Mishra et al., 2020). These enzymes play a crucial role in numerous physiological
functions, and disruptions in their expression or activity have been linked to a
variety of human disorders, such as epilepsy (hCA II, VII, XIV), obesity (hCA VA,
VB), and cancer (hCA II, IX, XII) (Langella et al., 2018; Langella et al., 2021;
Supuran et al., 2018; Supuran, 2021). Consequently, hCAs have become significant
targets for drug development (Angeli et al., 2020), with ongoing research focused on
discovering selective inhibitors for specific isoforms implicated in different diseases.
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Dual targeting inhibitors represent a promise as a viable
therapeutic strategy in drug design, aiming to modulate
simultaneously two different targets or pathways within a disease
context.This approach is particularly advantageous when redundant
or compensatory pathways limit the effectiveness of single-target
therapies, since it can lead to an increased drug efficacy by
preventing drug resistance development, reducing the required
dosage of single drugs, and limiting the risk of side effects (Lopez
and Banerji, 2017;Makhoba et al., 2020;Wang and Tortorella, 2022).

This strategy has been widely employed also in the case of hCAs,
leading to the design of compounds able to inhibit hCA alongside
another target. In particular, in the last years many studies focusing
on dual targeting inhibitors of hCA enzymes were reported for
the treatment of complex diseases, including cancer, inflammatory
conditions, glaucoma and neurological disorders (Meleddu et al.,
2018;Mincione et al., 2021; Angeli et al., 2023b; Ronca and Supuran,
2024). Numerous studies rely on in vitro, cellular, and in vivo assays
to demonstrate the effectiveness of these compounds.However, from
a structural standpoint, there is limited information in the literature
on how these compounds interact with their specific targets, and
the few available data are scattered. Nevertheless, such insights are
essential for designing new compounds with enhanced properties.

In this Mini Review, we aim to report the existing structural
information obtained through crystallographic studies to provide
an updated structural overview of state-of-the-art results in this
research field. In particular, we will present the various structural
data available for themost physiologically relevant hCA II isoform in
complex with compounds acting as dual-targeting agents and group
them on the basis of related pathologies.

2 Dual inhibitors used as
anti-glaucoma agents

Among the dual targeting hCA inhibitors (hCAIs), some
interesting molecules are those designed in 2018 by Nocentini et al
which are utilized for the treatment of glaucoma (Nocentini et al.,
2018). A β-adrenergic receptor (AR) blocker combined with a
hCAI in eye drops is one of the clinical options available for
antiglaucoma therapy. Indeed, both molecules decrease intraocular
pressure (IOP) reducing the production of aqueous humor, the first
by blocking the sympathetic nerve endings in the ciliary epithelium
(Brooks and Gillies, 1992), and the second by slowing the rate
of bicarbonate production and the consequent reduction of the
transport of water and osmotically obligated sodiumwithin the fluid
(Masini et al., 2013). The approach proposed by Nocentini consists
in designing compounds which possess two functional groups able
to interact concomitantly with the two target enzymes. In particular,
the benzenesulfonamide moiety represents the hCA inhibitory
fragment, while the aryloxy-2-hydroxypropylamine portion that
of β-blockers. Two subgroups of molecules were designed, one
in which the aryloxy-2-hydroxypropylamine portion was detached
with an ethylbenzamide spacer to the benzenesulfonamide scaffold
(compound 1), and another where the two pharmacophores were
directly attached to each other (compounds 2a-2c) (Figure 1A).

The resulting two series of compounds were investigated for
their inhibitory activity against hCAs I, II, IX, and XII and for their
effectiveness tomodulate the β1- and β2-ARs.Thefirst one exhibited

a notable inhibitory potency against hCAs (KIs 1.2–83.1 nM) at the
expense of zero affinity to β-ARs, while the second one showed a
slight worsening of hCA inhibition (KIs 3.5–1174.3 nM), with the
affinity for β-ARs increasing up to the micromolar range. The X-ray
structures of compounds 1 and 2a in complex with hCA II were also
determined, showing that both sulfonamide moieties participate
in the typical interactions of this class of hCAIs (Alterio et al.,
2012). In particular, the ionized nitrogen atom is tetrahedrally
coordinated to the zinc ion and is hydrogen bonded to Thr199-OG
atom. An additional interaction between one oxygen of sulfonamide
and Thr199-NH atom stabilizes the inhibitor binding (Figure 2A).
Both compounds form several van der Waals interactions, but only
compound 1 establishes also a hydrogen bondwithGln92 side chain,
thus explaining its higher binding affinity for hCA II compared to
compound 2a (Nocentini et al., 2018).

Some representative compounds selected among the best dual-
inhibitors of this hCAI class, i.e., 2a-2c, were also evaluated for
their IOP lowering properties in a rabbit model of glaucoma.
Notably, they induce the higher reduction of IOP with respect to
the clinically used dorzolamide, timolol, and their combination,
demonstrating that β-AR blocker–hCAI hybrids are potential
candidate drugs for antiglaucoma therapy with a novel mechanism
of action (Nocentini et al., 2018).

3 Dual inhibitors as anti-inflammatory
agents

In the last years many efforts have been dedicated to develop
Cyclooxygenase-2 (COX-2) specific inhibitors with the aim
to improve the therapeutic potency and reduce the gastro-
intestinal side effects of classical non-steroidal anti-inflammatory
drugs (NSAIDs), which instead inhibit both COX-1 and COX-2
isozymes (Scott and Lamb, 1999; de Leval et al., 2000; Croom and
Siddiqui, 2009; McCormack, 2011).

Some of these molecules incorporate in their chemical structure
a primary sulfonamide moiety, which is the key mediator of
the interaction of these agents also with several hCA isoforms
(de Leval et al., 2002; Dogné et al., 2005; Scozzafava et al., 2004;
Supuran et al., 2004; Supuran and Scozzafava, 2002). This ability
has been considered an important factor for the reduction of side
effects of these NSAID agents, since it has been hypothesized that
hCAs could act as “sponge”, decreasing COX-2 binding in the gastro-
intestinal tract and kidney (Kim et al., 2016).

Threemolecules of this type were biochemically and structurally
characterized, i.e., celecoxib, valdecoxib and polmacoxib
(Figure 1B) (Simon et al., 1999; Supuran et al., 2004; Weber et al.,
2004; Di Fiore et al., 2006; Kim et al., 2016).

Celecoxib and valdecoxib presented good inhibitory activity
against both the physiologically most relevant isoform hCA II
(KI of 21 and 43 nM, respectively), and the two tumor-associated
isoenzymes hCA IX (KIs 16 and 27 nM) and hCA XII (KIs 18
and 13 nM). In contrast, moderate potency was observed for the
membrane-bound hCA IV isoenzyme and weak efficacy for hCA
I (Di Fiore et al., 2006). In the case of polmacoxib, the obtained
IC50 values were compared with those of celecoxib, showing
that against hCA I polmacoxib presents a stronger inhibitory
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FIGURE 1
Chemical structures of dual inhibitors used as anti-glaucoma agents (A), anti-inflammatory agents (B), anti-cancer agents (C–E), and dual targeting
compounds for treating neurological diseases (F, G).

activity, while against hCA II its inhibitory activity was slightly
less potent (Kim et al., 2016).

The crystal structures of these compounds in complex with
hCA II were determined (Weber et al., 2004; Di Fiore et al.,
2006; Kim et al., 2016), showing that even though in all the
adducts the classical sulfonamide binding mode was observed
(Alterio et al., 2012), the position of the tail moieties was different
for each inhibitor (Figure 2B). In particular, the m-fluorophenyl of
polmacoxib and the phenyl ring of valdecoxib pointed towards
the same hydrophobic region of the protein active site, while were
rotated by approximately 45° and 90°, respectively, with respect to

the p-tolyl moiety of celecoxib, which was instead surrounded by
hydrophilic residues, i.e., Asn67, Glu69, and Gln92. Moreover, the
phenyl ring of valdecoxib formed a strong π-π interaction with
Phe131, which instead was lost by p-tolyl group of celecoxib due
to the 90° rotation, caused by steric hindrance between its methyl
substituent and Phe131 and Ile92 residues. In polmacoxib the m-
fluorophenyl moiety was located between the p-tolyl of celecoxib
and the phenyl of valdecoxib, due to the fluorine atom in meta
position. The peculiar characteristic of celecoxib of completely
filling hCA II active site, with its trifluoromethyl group in the
hydrophobic part of the cavity and the p-tolyl portion in the
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hydrophilic one, may explain why it is the most active hCA II
inhibitor among this subclass (Di Fiore et al., 2006).

4 Dual inhibitors acting as anti-cancer
agents

The therapeutic potential of molecules targeting tumor-
associated hCA IX and XII has emerged in the last decade, with
numerous studies reported on inhibitors able to affect several tumor
features, such as intra-cellular pH, drug availability, and redox
homeostasis cell cycle (Kumar et al., 2022; Ronca and Supuran,
2024). Due to the better cancer therapy outcomes predicted for a
dual-targeting approach, investigations on hCAIs able to interact
also with another cancer-related target were reported (Berrino et al.,
2020; Elzahhar et al., 2020; Zhang et al., 2021; Hefny et al., 2024).
At the moment, structural data on this type of dual-target inhibitors
are available only for two classes of hCAIs, namely, aryl sulfamate-
based molecules (Figure 1C) (Lloyd et al., 2005a; Lloyd et al., 2005b;
Leese et al., 2006a; 2008;Woo et al., 2008; 2010a; Cozier et al., 2010a)
and benzenesulfonamide derivatives containing an azidothymidine
moiety (Figures 1D, E) (Berrino et al., 2020; Plyasova et al., 2021).

Compounds of type 3a-3e were early used for the treatment
of hormone-dependent breast cancer since they lead to a
reduction of estrogenic steroids, responsible for the growth and
development of this type of cancer, via the steroid sulfatase (STS)
pathway (Reed et al., 2005; Stanway et al., 2006; Woo et al.,
2008). Their exceptional properties in vivo seem to be related
to their almost complete uptake by red blood cells after oral
administration and consequent protection against first pass
metabolism (Ireson et al., 2004). In particular, it has been
suggested that hCA II binds to sulfamate moiety, influencing oral
bioavailability and pharmacokinetics, thereby enhancing the overall
efficacy of these compounds.

The 3-O-EMATE (compound 3a) was the first and one of
the most potent STS inhibitors to be characterized. However, in
vivo studies showed that it was extremely estrogenic in rodents
and consequently not suitable for clinical use (Elger et al.,
1995). Starting from these results, other molecules were then
designed, including tricyclic nonsteroidal analogues (compound 4)
(Lloyd et al., 2005a; Stanway et al., 2006) and EMATE derivatives
obtained by modification of its scaffold and/or its substituent
pattern (compounds 3b-3e and 5) (Lloyd et al., 2005b; Leese et al.,
2006b; 2008; Woo et al., 2008; Cozier et al., 2010b). Inhibition
assays revealed that this hCAI series includes compounds showing
medium to high efficacy against hCA II (IC50 values in the
range 0.1–770 nM), whereas poorer inhibition was observed in the
presence of a substituent in position 2 (compounds 3b-3e) (IC50
> 1500 nM).

Crystal structures of hCA II in complex with these sulfamate-
based inhibitors indicated that this zinc binding group preserves
all the interactions described above for its sulfonamide bioisoster.
Interestingly, their steroidal backbone was accommodated into
the hydrophobic portion of active site cleft establishing a large
number of strong van der Waals interactions, thus stabilizing the
inhibitor binding (Figure 2C).

Another suitable strategy to counteract hormone dependent
tumors involves the reduction of estrogen levels by aromatase

inhibition using molecules that contain as active pharmacophore
a heme-chelating azole ring, such as triazole (Lloyd et al., 2005a;
Woo et al., 2010b). The presence of both triazole moiety and
sulfamate functionality on chemical scaffold (compounds 6a-6b and
7) leads to the development of very effective molecules possessing a
multi-targeting mechanism of action (Figure 1D).

A different series of dual-inhibitors acting against tumour-
associated hCAs and another challenging cancer target, namely,
human telomerase (hTL), was recently characterized. hTL supports
the unlimited proliferation of cancer cells and its catalytic subunit is
highly expressed in the majority of hypoxic tumours (Harley, 2008;
Wang et al., 2018). However, the employment of hTL inhibitors as
chemotherapeutics is limited by their heavy side effects (Guterres
and Villanueva, 2020), which could be reduced by a dual-target
based approach. At the moment, compounds of this subclass were
designed by combining the azidothymidine moiety, which binds to
hTL (Strahl and Blackburn, 1994), with different hCAI scaffolds
(i.e., benzesulfonamide, coumarine and solfocumarine) through
a linker containing the 1,2,3-triazole ring (Berrino et al., 2020)
(Figure 1E). Inhibition experiments indicated that they strongly
inhibited hCA XII (KI values in the range 2.8–78.9 nM), whereas
some of them possessed medium−high inhibition potency against
hCA IX (KI = 3.7–8047.1 nM). The most effective inhibitors of
hCA IX and XII were also tested for their antitelomerase properties
in PC3 and HT-29 cells, revealing that they were able to highly
reduce hTL activity (Berrino et al., 2020; Plyasova et al., 2021).
Further experiments on compound 8b, the top-performing hCA
IX inhibitor of the series, and compound 8c, possessing the most
favourable hCA XII/hCA IX inhibition ratio, highlighted that these
molecules suppressed hTL activity in human colorectal cancer cell
lines, while a prolonged incubation resulted in telomere shortening,
cell cycle arrest, replicative senescence, and apoptosis. Finally, in
vivo Colo-205 mouse xenograft studies demonstrated antitumor
activity only for compound 8c thus confirming the high theraupetic
potential of this type of molecules (Plyasova et al., 2021). Structural
analysis on three key representatives of hCA-hTL dual inhibitors
in complex with hCA II showed that sulfonamide moiety was
coordinated to Zn(II), while an intricate network of polar and
hydrophobic interactions contributed to stabilize inhibitor binding
and modulate its orientation within hCA active site (Berrino et al.,
2020; Plyasova et al., 2021). In particular, it was suggested that the
linker moiety could play a key role in determining hCA isoform
selectivity affecting the inhibitor tail orientation (Figure 2D).

5 Dual targeting compounds for
treating neurological diseases

Very recently two interesting studies employing dual targeting
hCAIs for the treatment of diverse neurological diseases, i.e.,
oxaliplatin-induced neuropathy (OINP) and Glucose Transporter
Type 1 Deficiency Syndrome (GLUT1-DS), were reported by
Angeli et al. (2023a, 2023b).

For the management of OINP (Lehky et al., 2004), the Authors
proposed a series of molecules that were capable of modulating both
hCAs and the Transient Receptor Potential Vanilloid 1 (TRPV1)
(Angeli et al., 2023b). TRPV1 recently assumed importance as
a potential analgesic target (Wang, 2008; Benítez-Angeles et al.,
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FIGURE 2
X-Ray structures of representative dual inhibitors bound to hCA II. (A) Superposition between hCA II/1 (green, PDB code 5WLV) and hCA II/2a (magenta,
PDB code 5WLT). The hydrogen bond between compound 1 and Gln92 is shown as a dotted black line. Zinc ion coordination and hydrogen bond
interactions between Thr199 and sulfonamide moiety are also reported. (B) Superposition of celecoxib (cyan, 1OQ5 PDB code), valdecoxib (magenta,
2AW1 PDB code) and palmacoxib (green, 5GMN PDB code) in complex with hCA II. The protein accessible surface is shown with hydrophobic residues
(Ile91, Val121, Phe131, Val135, Leu141, Leu198) coloured in red, and hydrophilic ones (Asn67, Glu69, Gln92) in blue. (C) Accessible surface of hCA II in
complex with compound 3b (PDB code 3BET), chosen as representative inhibitor of hCA/STS-dual inhibitors. Residues delimiting the hydrophobic and
hydrophilic regions of hCA II active site cavity were coloured in red and blue, respectively. (D) Superposition of hCA II bound to dual inhibitors targeting
hTL: hCA II/8a (cyan, PDB code 6YPW), hCA II/8b (magenta, PDB code 6WKA) and hCA II/8c (green, PDB code 7NH6). Accessible surface of hCA II is
also depicted. (E) Superposition between hCA II/(R)-10a (green, PDB code 8BJX) and hCA II/(S)-10b (magenta, PDB code 8BOE). Phe131 of both
adducts and the double conformation of thioureido moiety observed for compound (S)-10b are shown. Accessible surface of hCA II is also depicted
with residues delimiting the hydrophobic region of hCA II active site cavity in red. (F) Active site view of hCA II/12a (PDB code 7ZWB). Residues involved
into ligand binding are depicted, with hydrogen bonds shown as dotted black lines. Zinc ion coordination is also reported. Figures were made by using
PyMol. SASA was calculated with a default probe radius of 1.4 Å.
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2020) and its activation represents a promising strategy for pain
management (Bamps et al., 2021; Iftinca et al., 2021). These
compounds were designed introducing the sulfonamide moiety
into the TRPV1 antagonist modulator SB-705498 (Figure 1F) and
operating various modifications, such as substitutions of aromatic
rings, bio-isosteric switch between ureido and thioureido linkers
and the introduction of stereocenters (compounds 9, 10a-10b, 11a-
11b in Figure 1F). The resulting molecules were tested in vitro
against physiologically relevant hCA isoforms (I, II, IV, VII, IX,
XII) and TRPV1, showing to be effective toward hCAs, whereas
selected items reported moderate agonism of TRPV1. Moreover, the
data obtained showed that the presence of (R)- or (S)-stereocenters
within the synthesized compounds did not appear to significantly
impact the activity of both targets. The X-ray structures of the
adducts of two enantiomers (R)-10a and (S)-10b with hCA II
were also reported (Figure 2E). Although the compounds showed
comparable effectiveness towards hCA II, with KI values of 6.7
and 4.9 nM, respectively, their crystallographic structures revealed
some differences in their binding mode. Indeed, both molecules
preserved the typical benzenesulfonamide interactions with the
catalytic Zn(II) and active site residues, but revealed significant
differences in the conformation of the two tails, occupying
distinct hydrophobic subpockets that are separated by the Phe131
aminoacid (Figure 2E). Interestingly, in vivo studies of the top-
performing compounds ((R)-9, (R)-10a, (R)-11a, and (S)-11b
in Figure 1F) revealed prolonged pain-relief effects in a mouse
model of OINP (Angeli et al., 2023b). The Authors conclude that
the dual activity of these compounds as mild TRPV1 agonists and
potent hCAIs represents a promising strategy for managing OINP
symptoms, like pain.

In the case of GLUT1-DS, Angeli et al. (2023a) developed a
series of compounds with dual targeting capabilities, designed to
target either hCA isoforms or GLUT1 transporters as key targets of
GLUT1-DS associated seizures (Klepper et al., 2020).

GLUT1-DS is a mutational based genetic disorder resulting in
the aberrant expression of the transporter GLUT1, thus affecting
its ability to intake glucose (Klepper et al., 2020) and leading to
cognitive impairment, and drug resistant seizures. This series of
compounds was characterized by a hCA inhibiting moiety (i.e.,
sulfonamide) and a GLUT1 substrate, such as D-glucose and D-
galactose (Winum et al., 2009; Ung et al., 2016) (Figure 1G). All
compounds were evaluated in vitro on human-expressed CAs,
revealing a heterogeneous inhibition pattern. Crystallographic
studies were performed to determine the 3D structure of hCA II
in complex with compound 12a, having a particularly favourable
binding affinity for this isoform (KI value of 7.5 nM) (Figure 2F).
The primary sulfonamide moiety of compound 12a maintained
the classical anchoring to Zn(II), whereas the glucosyl hydroxyl
groups formed hydrogen bonds with Asn62, Asn67, and Gln92, thus
justifying the high binding affinity.

Interestingly, almost all the compounds tested demonstrated to
be effective activators of GLUT1 by in vitro glucose uptake assays.
The Authors suggested that these compounds act as stabilizers
of GLUT1 functional clusters on cellular membranes. Selected
compounds (12b, 12c, 13 in Figure 1G) were further investigated for
their ability to abolish the occurrence of seizures in vivo by means
of the induced maximal electroshock seizure model, revealing that
derivative 12c was particularly effective in suppressing seizures at a

specific dosage range, without inducing any side effects.This finding
supports a novel pharmacological approach for managing diseases
associated with GLUT1-DS.

6 Conclusion

hCAs are well-recognized human targets for the treatment
of serious diseases including glaucoma, inflammatory conditions,
cancer, and neurological disorders. In order to identify effective
hCAIs, many compounds exploring a wide range of chemotypes,
such as sulfonamides and their bioisosters, coumarines and
carboxylic acids, have been so far reported.

However, a promising strategy for newdrug development is based
on the identification of dual-target inhibitors able to affect different
pathways. In fact, many ongoing efforts in the field of medicinal
chemistry are directed towards the innovative emerging paradigm
of dual-targeting approach since it overcomes multiple limits of the
classic ‘one-molecule one-target’ strategy, including drug resistance,
dose toxicity and unpredictable pharmacokinetic properties. In this
context, molecules capable of interacting simultaneously with hCAs
and another protein target have been recently designed. Identification
of drug–target interactions plays an important role in drug discovery
and development, shedding light on the molecular determinants
responsible for the binding of an inhibitor with its targets. Since there
is little structural data currently available on the complexes that hCAs
form with molecules possessing a dual-target mechanism of action,
further studies are needed.
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