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Urinary marker of oxidative stress
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Real-time breath analysis has shown potential as a non-invasive method for
detecting oxidative stress and airway inflammation. However, there is a lack of
data on the association of full-breath profileswith established urinary biomarkers
of oxidative stress and respiratory inflammation, which could help advance the
implementation of this method in clinical practice. We analyzed breath profiles
of 25 tobacco smoke-exposed and 103 non-exposed children via real-time
secondary electrospray ionization high-resolution mass spectrometry (SESI-
HRMS) and determined in parallel the urinary concentrations of biomarkers
of oxidative stress and respiratory inflammation. We evaluated the correlation
between breath features and urinary biomarkers and tested the prediction of
these biomarkers by exhaled breath. We found 71 breath features that correlated
significantly with the urinary oxidative stress marker 8-iso-prostaglandin F2α
(8-iso-PGF2α). The agreement (mean ± standard deviation) (Lin’s concordance
correlation) between breath-predicted and actual urinary 8-iso-PGF2α levels
was 0.37 (0.05). In conclusion, our results suggest that the real-time breath
analysis via SESI-HRMS has promising potential to gauge oxidative stress.
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Introduction

Oxidative stress and airway inflammation increase the risk for the development and
progression of respiratory disease in children (Cheraghi and Salvi, 2009; Noutsios Georgios
and Floros, 2014). Therefore, sensitive diagnostic methods are needed to detect these
biochemical processes. However, most established methods for detecting oxidative stress
or airway inflammation are invasive or have limited specificity for the airways, requiring
induced sputum, tissue, blood, or urine samples. Breath-based analytical methods offer an
attractive opportunity for non-invasive and lung-specific assessments of oxidative stress
(Amann et al., 2014) and airway inflammation (Dweik et al., 2011) at the molecular
level. Nevertheless, except for the measurement of exhaled nitric oxide (FeNO) to assess
endobronchial inflammation, the majority of these methods are not yet used in clinical
practice. Particularly attractive are breath analysis methods that allow real-time and parallel
evaluation of multiple biomarkers without any sample pretreatment that could compromise
the results (e.g., proton-transfer-reaction mass spectrometry, PTR-MS (Blake et al.,
2009); selected-ion flow-tube mass spectrometry, SIFT-MS (Španěl and Smith, 2011);
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and secondary electrospray ionization high-resolution mass
spectrometry, SESI-HRMS (Li et al., 2006)). Previous studies have
already shown that features related to oxidative stress and airway
inflammation can be detected in breath using such real-time breath
analysis methods (García-Gómez et al., 2015). However, no study to
date has further explored the potential of real-time breath analysis
to detect oxidative stress and airway inflammation by parallelly
assessing breath features and already established urinary biomarkers
for these processes (e.g., 8-iso-prostaglandin F2α (8-iso-PGF2α)
(van 't Erve et al., 2015; Zhang et al., 2010), cysteinyl leukotriene
receptor 1 (CysLTR1) (Hui and Funk, 2002), and 11β-prostaglandin
F2α (11β-PGF2α) (Ricciotti and FitzGerald, 2011)) in a population
where different biomarker levels can be expected. The comparison
with established urinary tests can help validate the breath test,
which benefits fromnot requiring sample preparation and providing
diagnostic results almost in real time.

Our primary aim was to assess the correlation of breath
features with the urinary biomarkers of oxidative stress and airway
inflammation in tobacco smoke-exposed and unexposed children,
for whom we expect different concentrations of these biomarkers.
Our secondary aim was to test the prediction of urinary biomarker
concentrations by exhaled breath captured via real-time SESI-
HRMS, which allows for the contemporaneous detection of a broad
spectrum of exhaled features.

Materials and methods

Study population and design

In total, 48 children from smoking households and 112
children from non-smoking households were enrolled in this
observational study between April 2018 and August 2021 (online
Supplementary Figure S1). Children older than 18 years and those
with acute asthma exacerbation, acute inflammatory disease, renal
failure or renal replacement, or acute or chronic liver disease
were excluded. The sample size was determined while controlling
for the false discovery rate (FDR). Assuming a 5% FDR, a 0.7
expected standardized mean difference (Δ/σ) in breath (García-
Gómez et al., 2016; Martinez-Lozano Sinues et al., 2014), and
90% power, a sample size of 50 subjects per arm was required.
In accordance with the fraction of smokers in the population,
twice as many children not exposed to ETS were recruited
to ensure a contemporaneous assessment of exposed and non-
exposed children. The Ethics Committee of Nordwestern and
Central Switzerland approved the study (ID 2017–02038 and
EKBB-Nr. 360/11), and written informed consent was obtained
during enrollment.

Breath samples

For each child, a breath sample was acquired via
real-time SESI-HRMS in the same room, adhering to a
standardized protocol (Gisler et al., 2022). Each measurement
included six prolonged exhalations, both in positive and negative
ionization mode. Children were instructed to remove cosmetics,
fast, and refrain from chewing gum or using toothpaste for at least

1 h prior to the measurement to minimize confounding from these
factors. The analytical platform consisted of an ion source (SUPER
SESI, FIT Spain) coupled to a high-resolutionmass spectrometer (Q
Exactive Plus,ThermoFisher Scientific,Germany) and an exhalation
interface (Exhalion, FIT Spain) for the parallel assessment of
CO2, flow rate, exhaled volume, and pressure drop. Commercially
available bacterial filters (MicroGard, VyaireMedical, United States)
were used as mouthpieces. Mass spectra were acquired in the full
scan mode over a range of m/z 100–400 with a resolution of 140,000
for positive and negative ionization mode. Two microscans, an
automatic gain control (ACG) target of 1∗106, and a maximum
injection time of 500 ms were applied. For electrospray formation,
a 20-µm ID non-coated TaperTip silica capillary emitter (New
Objective, Woburn, MA) and 0.1% formic acid in water were used.
The SUPER SESI solvent reservoir pressure was set to 1.3 bar.
The temperature of the ion chamber was set to 90°C, and the
sampling line temperature was set to 130°C. To further minimize
the adsorption of analytes on the systemwalls, the sampling line and
the core of the ionization chamber were coated with silica. A stream
of clean nitrogen (filtered through a built-in active charcoal filter)
was used to flush the ion source between breath measurements.
The exhaust mass flow controller was set at 0.7 L/min, and the
nitrogen mass flow through the source was 0.35 L/min to ensure
a constant fraction of breath entering the ionizer (0.3 L/min).
Internal and external calibration of the mass spectrometer were
performed regularly.

Urinary samples

During the same visit when the breath sample was taken, a
urine sample was collected. Urine samples were collected in 2-
mL sterile microtubes (Sarstedt, Nümbrecht, Germany) and stored
at −80°C until further analysis. Enzyme-linked immunosorbent
assays (ELISAs) were used to assess the following: a) levels of
cotinine (BioVision, United States) to classify ETS exposure (urine
cotinine≥1800 pg/mg creatinine), b) levels of 8-iso-PGF2α (Cell
Biolabs, United States), c) levels of CysLTR1 (Reddot Biotech,
Canada), and d) levels of 11β-PGF2α (Cayman Chemicals, United
States). The following limits of detection (LOD) were applied to
the ELISAs (mean measured blanks + 3 standard deviations):
cotinine, 2.864 ng/mL; 8-iso-PGF2α, 158.796 pg/mL; CysLTR1,
0.264 ng/mL; and 11β-PGF2α, 0.134 pg/mL. All ELISA kits were
used according to the manufacturer’s protocols. For all urinary
markers, a blank was subtracted from the measured concentration.
Concentrations were set to 0 when blank concentration > measured
concentration. All zeros were then replaced using regression on
order statistics (ROS) using the NADA package in R. Consequently,
creatinine levels assessed using ELISA (Invitrogen, Thermo
Fisher, United States) were used to adjust the concentrations
of all urinary biomarkers, which were then reported in
units of pg/mg.

Data analysis

Data preprocessing and statistical analyses were performed
using MATLAB (version 2022a, MathWorks Inc., United States).
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Preprocessing breath data
Untargeted analysis was performed formass spectral breath data

to evaluate the entire exhaled metabolic profile. RAW files were
converted to MATLAB structure using Thermo’s RawFileReader.
Peak alignment and mass calibration were ensured by i) performing
internal and external calibration before data acquisition (lock
masses and room air) and ii) further calibrating the mass spectra
during post-acquisition using reference peaks. The feature list was
generated from the centroid peak list via binning using ksdensity.
Exhalation time windows were defined by CO2 concentrations
above 2.5% (as measured by Exhalion). Subsequently, average mass
spectra were computed for the corresponding exhalation scans
using Thermo’s RawFileReader. Only peak centroids with signal
intensity above 10 a.u. in Thermo’s signal intensity scale were
selected to define the feature list. Subsequently, features occurring
in >80% of the samples from ETS-exposed children were considered
for further analysis. For those features, molecular formulas were
assigned based on the accurate mass, considering the elements C, H,
N, O, and S (Kind and Fiehn, 2007), and the following adducts: [H],
[-H2O+ H], and [-H2O- H]. Zeros in the signal intensity of selected
features were replaced using regression on order statistics using the
NADA package in R.

Statistical tests
Correlations between urinary biomarkers themselves and

between urinary biomarkers and breath features were calculated
using Spearman’s correlation (ρ). Wilcoxon signed-rank tests were
used to compare the levels of urinary biomarkers and breath
profiles between ETS-exposed and non-exposed children. The false
discovery rate (FDR) for multiple tests was controlled using the
Benjamini–Hochberg (BH) method.

Prediction of urinary biomarkers
The breath-based prediction was evaluated for urinary

biomarkers that revealed significant correlations (BH-adjusted p-
values from Spearman’s correlation ≤0.01) with multiple breath
features. For the prediction of urinary biomarker concentrations,
we divided the study population into a training set (n = 90) and a
test set (n = 38). To identify the best predictors, automatic variable
selection was performed in the training set using the MATLAB
algorithms ReliefF and TreeBagger. For the final prediction models,
we screened 16 different regression models in the training set
using the top 30 predictors identified in≥9000 out of 10,000
iterations. Finally, mean (± SD) Lin’s concordance correlation
coefficient (CCC) (Lin, 1989) was calculated in the test set for
the best-performing regression models to quantify the agreement
between the actual and the breath-predicted urinary biomarker
concentrations.

Results

In total, 128 out of 160 children were included in the final
analysis. From the final study sample of 128 children (online
Supplementary Figure S1), 25 were exposed to ETS according to
their cotinine level (urine cotinine≥1800 pg/mg creatinine). Details
on the study design, study population, and urinary biomarker
concentrations are outlined in Figure 1 and Table 1.

We identified 71 breath features that correlated significantly
(BH-adjusted p-values from Spearman’s correlation ≤0.01)
with the urinary oxidative stress marker 8-iso-PGF2α (online
Supplementary Table S2). Of those breath features, 28 correlated
positively and 43 correlated negatively with urinary 8-iso-
PGF2α. We found no correlations between breath features
and any of the other urinary biomarkers—cotinine, CysLTR1,
11β-PGF2α (Figure 2B; BH-adjusted p-values from Spearman’s
correlation >0.01).

Because several breath features correlated significantly (BH-
adjusted p-values from Spearman’s correlation ≤ 0.01) with urinary
8-iso-PGF2α, we tested the prediction of this biomarker by exhaled
breath. The agreement (mean (± SD) Lin’s CCC) between breath-
predicted and actual concentrations of urinary 8-iso-PGF2α was
0.37 (0.05).

Concentrations of urinary 8-iso-PGF2α, CysLTR1, and 11β-
PGF2α did not correlate with those of urinary cotinine (Spearman’s
correlation p-values >0.05; online Supplementary Table S1) and
consequently did not differ between ETS-exposed and non-
exposed children (Figure 2A; p-values from Wilcoxon signed-rank
test: 8-iso-PGF2α = 0.287, 11β-PGF2α = 0.160, and CysLTR1 =
0.333). We also found that the breath profiles of ETS-exposed and
non-exposed individuals did not differ (BH-adjusted p-values from
the Wilcoxon signed-rank test >0.05).

Discussion

In this study,we analyzed full breath profiles of ETS-exposed and
non-exposed children alongside established urinary biomarkers of
oxidative stress and airway inflammation to evaluate the correlation
between the two modalities. We found multiple breath features
correlating with the urinary oxidative stress marker 8-iso-PGF2α
and showed that this biomarker could be predicted reasonably well
by exhaled breath. To the best of our knowledge, this is the first
study to evaluate correlations between the concentrations of urinary
oxidative stress and airway inflammation markers and exhaled
breath profiles acquired via real-time SESI-HRMS.

We found no correlations between the urinary biomarkers
(8-iso-PGF2α, 11β-PGF2α, and CysLTR1) and the level of ETS
exposure, as measured by the creatinine-adjusted cotinine level.
We assume that, in general, the ETS exposure was too low
(median cotinine in ETS-exposed group: 11,286 pg/mg creatinine)
to cause an effect that is measurable in the urine. Nevertheless,
and independent of ETS exposure, we observed low but varying
concentrations of the oxidative stress marker 8-iso-PGF2α in our
study population. Interestingly, even these very low concentrations
of 8-iso-PGF2α correlated significantly with the signal intensity of
71 breath features.We assume that this correlation can also be found
for clinically relevant concentrations of this oxidative stress marker.

In addition, we observed that urinary 8-iso-PGF2α
concentrations can be predicted reasonably well (mean Lin’s CCC:
0.37) by several metabolites in breath. These findings support the
previously identified potential of SESI-HRMS to gauge oxidative
stress non-invasively and in real-time (García-Gómez et al., 2015).
To further evaluate these results, a study in a population with a
broader range of oxidative stress levels, including children with
typically elevated concentrations (e.g., pulmonary diseases), is
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FIGURE 1
Overview of the study design (created with BioRender.com).

TABLE 1 Study population and distribution of urinary biomarkers.

Total ETS non-exposeda ETS exposeda

Sample size 128 103 25

Self-reported ETS exposure, n (%) 41 (32) 18 (17) 23 (92)

Female individuals, n (%) 63 (49) 47 (46) 16 (64)

Age in years, mean (SD) 8.7 (3.5) 8.6 (3.5) 9.5 (3.6)

Cough this week, n (%) 28 (22) 18 (17) 10 (40)

Cough last 12 months, n (%) 68 (54) 60 (58) 8 (32)

Wheeze this week, n (%) 7 (6) 3 (3) 4 (16)

Wheeze last 12 months, n (%) 24 (20) 21 (20) 3 (12)

Inhalative steroidsb n (%) 11 (9) 7 (7) 4 (16)

Cotinine pg/mg creatinine, median (IQR) 197 (1069) 128 (290) 11,286 (17,667)

8-iso-PGF2α pg/mg creatinine, median (IQR) 1439 (1443) 1475 (1387) 1192 (1495)

11β-PGF2α pg/mg creatinine, median (IQR) 1056 (1009) 1028 (985) 1386 (976)

CysLTR1 pg/mg creatinine, median (IQR) 187 (564) 180 (539) 255 (671)

aETS non-exposed: urine cotinine <1800 pg/mg creatinine; ETS exposed: urine cotinine≥1800 pg/mg creatinine.
bNumber (%) of children who used inhalative steroids in the past 12 months.

needed. We did not detect correlations between breath and the
airway inflammation markers 11β-PGF2α and CysLTR1. Possibly,
the signal intensity of the correlating metabolites in the breath was
too low, or the corresponding metabolites were not volatile and
therefore could not be detected in exhaled breath.

The limitations of this study include i) a thorough compound
identification for correlating breath features that remains to
be accomplished. ii) The prediction of urinary biomarkers
by exhaled breath has not been externally validated in an
independent cohort of children.
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FIGURE 2
(a) Distribution of urinary biomarker concentrations in ETS exposed vs. non-exposed children. (b) Distribution of Benjamini–Hochberg (BH)-adjusted
p-values from Spearman’s correlation of 3,126 breath mass spectral features and 4 urinary biomarkers (namely, cotinine, 8-iso-PGF2α, 11β-PGF2α, and
CysLTR1); the red vertical line indicates the applied threshold for significance (adjusted p-value ≤0.01).

In conclusion, our results suggest that the real-time
breath analysis via SESI-HRMS has promising potential as
an adjunct to existing diagnostic methods for monitoring
oxidative stress, even at relatively low levels. Our findings
may open new opportunities for the non-invasive detection of
respiratory disease, which is particularly relevant to the pediatric
population.
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