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Biomarkers in glioblastoma and
degenerative CNS diseases:
defining new advances in clinical
usefulness and therapeutic
molecular target

Fan Bu1, Jifa Zhong2 and Ruiqian Guan2*
1The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China, 2Heilongjiang
University of Chinese Medicine Affiliated Second Hospital, Harbin, China

Background: Discovering biomarkers is central to the research and treatment
of degenerative central nervous system (CNS) diseases, playing a crucial role in
early diagnosis, disease monitoring, and the development of new treatments,
particularly for challenging conditions like degenerative CNS diseases and
glioblastoma (GBM).

Methods: This study analyzed gene expression data from a public database,
employing differential expression analyses and Gene Co-expression Network
Analysis (WGCNA) to identify gene modules associated with degenerative
CNS diseases and GBM. Machine learning methods, including Random Forest,
Least Absolute Shrinkage and Selection Operator (LASSO), and Support Vector
Machine - Recursive Feature Elimination (SVM-RFE), were used for case-control
differentiation, complemented by functional enrichment analysis and external
validation of key genes.

Results: Ninety-five commonly altered genes related to degenerative CNS
diseases and GBMwere identified, with RELN andGSTO2 emerging as significant
through machine learning screening. Receiver operating characteristic (ROC)
analysis confirmed their diagnostic value, which was further validated externally,
indicating their elevated expression in controls.

Conclusion: The study’s integration of WGCNA and machine learning
uncovered RELN and GSTO2 as potential biomarkers for degenerative
CNS diseases and GBM, suggesting their utility in diagnostics
and as therapeutic targets. This contributes new perspectives on
the pathogenesis and treatment of these complex conditions.
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1 Introduction

Degenerative central nervous system (CNS) diseases
(Xu et al., 2022), such as Alzheimer's disease (AD), Parkinson’s
disease (PD), multiple sclerosis (MS), and amyotrophic lateral
sclerosis (ALS), as well as neurological tumors, particularly
glioblastoma (GBM) (Broekman et al., 2018), represent the
most challenging diseases in the field of neuroscience. These
diseases not only impose a heavy burden on patients and their
families, but also pose significant pressures on society and the
healthcare system (Wareham et al., 2022).

Despite the significant differences in clinical presentation and
pathology between degenerative CNS diseases and GBM, they
exhibit remarkable similarities in certain key biological processes,
such as ferroptosis, oxidative stress, and neuroinflammation.

Ferroptosis is a form of cell death dependent on iron
and lipid peroxidation, shown to play a critical role in both
degenerative CNS diseases and GBM. For example, iron
accumulation and the resulting oxidative damage are key
pathological processes in Parkinson’s disease (Yan et al., 2024).
Similarly, iron metabolism abnormalities have been observed
in GBM, suggesting that ferroptosis could be a common
pathological mechanism in these two types of diseases (Soo et al.,
2024). Oxidative stress is important in both degenerative CNS
diseases and GBM. Excess reactive oxygen species (ROS) can
cause cellular damage and death. In AD and PD, oxidative
stress is considered a major cause of neuronal damage (Isidro,
2018). In GBM, oxidative stress not only promotes tumor
cell proliferation and migration but may also influence tumor
progression by modulating interactions within the tumor
microenvironment (Lauryn E et al., 2017). Neuroinflammation
is common in degenerative CNS diseases. Inflammation plays
a key role in the progression of AD and PD (Pei-Lun et al.,
2024). In GBM, the inflammatory environment not only
promotes tumor cell growth and survival but may also affect
the tumor’s response to treatment by modulating immune
cell function (Ana Helena Larangeira et al., 2024).

Research indicates significant overlap in gene and epigenetic
regulation between degenerative CNS diseases and GBM. For
example, a study (Lu et al., 2023) analyzed the expression of
different isoforms (alternative splicing variants) of genes in brain
tissue and identified multiple gene regulatory sites associated
with neurological traits and diseases. These regulatory sites
may play similar roles in different degenerative CNS diseases
and GBM. Notably, isoform-ratio quantitative trait loci have
been shown to regulate gene expression in brain tissue, with
implications for various CNS conditions such as AD, mood
fluctuations, and sleep duration. Understanding these regulatory
mechanisms across degenerative CNS diseases and GBM could
provide new insights into shared molecular pathways and identify
novel therapeutic targets (Ashraf et al., 2023). Understanding
these common regulatory mechanisms helps elucidate the
shared genetic regulation in different diseases. In both brain
tumors and degenerative CNS diseases, cell-cell interactions are
crucial in disease development and progression. For instance,
the activation of astrocytes and microglia is critical in AD
progression, where microglial activation contributes to amyloid-
β plaque clearance or neuroinflammation, as reported in recent

study (Teresa et al., 2024). Similarly, abnormal activation of
astrocytes is a key driver of GBM proliferation and invasion,
as demonstrated in preclinical research (Jian and Shiwei, 2024).
Despite these shared mechanisms, degenerative CNS diseases
and GBM exhibit significant differences. Degenerative CNS
diseases, such as AD and Parkinson’s disease, are chronic
progressive conditions characterized by gradual neuronal damage
and death, leading to cognitive and motor function decline
(Andrea J. et al., 2020; M. et al., 2024).

In contrast, GBM is a highly invasive malignant brain tumor
characterized by rapid growth and extensive damage to surrounding
brain tissue. Therapeutically, the treatment of degenerative CNS
diseases mainly focuses on symptom management and slowing
disease progression, such as using dopamine replacement therapy
in Parkinson’s disease. In contrast, GBM treatment includes
surgical resection, radiotherapy, and chemotherapy, although these
methods often cannot completely eradicate the tumor and it
tends to recur.

Despite significant progress in understanding the molecular
mechanisms underlying these diseases over the last decades, these
findings are far from being fully translated into effective treatments.
Therefore, the search for novel biomarkers that can be used
as early diagnostic tools, indicators of disease progression, and
monitoringmeans of treatment response, aswell as the identification
of new therapeutic targets, has become a cutting-edge topic in
neuroscience research.

In recent years, the rapid advancements in bioinformatics
(Gauthier et al., 2019), genomics (Gangfuß et al., 2022), and
proteomics (Cui et al., 2022) have significantly deepened our
understanding of the molecular underpinnings of neurological
disorders. The application of high-throughput gene expression
analyses (Hrdlickova et al., 2017) and differential expression
analysis techniques (McDermaid et al., 2019) has emerged
as a powerful tool for identifying disease-associated genes
and pathways. By examining the gene expression patterns
in degenerative CNS diseases and GBM, we aim to uncover
potential common molecular mechanisms and cross-disease
biomarkers between these conditions. These cross-disease
biomarkers not only offer a new perspective for understanding
these seemingly disparate diseases, which may share certain
fundamental biological traits, but also hold promise for
the development of therapeutic approaches that transcend
specific diseases.

2 Data and methods

2.1 Design and methods

In this study, we aimed to identify potential biomarkers
and pathways implicated in the progression of degenerative CNS
diseases and glioblastoma. To achieve this, we integrated intersecting
genes from four primary degenerative CNS diseases, sourced
from GeneCards, with glioblastoma-related matrices obtained
from the Gene Expression Omnibus (GEO). Weighted Gene
Co-expression Network Analysis (WGCNA) was performed to
identify differentially expressed genes and key modules within
these diseases. Subsequently, we used intersecting genes and
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FIGURE 1
Flowchart.

three machine learning approaches to identify diagnostic genes,
GSTO2 and RELN, shared between the two diseases. These
genes demonstrated robust diagnostic performance and were
validated using external datasets. In addition, we performed
Single Sample Gene Set Enrichment Analysis (GSEA) for these
genes to identify common pathways associated with degenerative
CNS diseases and glioblastoma. Figure 1 provides an overview
of the workflow for data preparation, processing, analysis, and
validation.

2.2 Data acquisition

Genes related to AD, PD, MS, and ALS were retrieved from
GeneCards, with a selection threshold set for a relevance score
≥1. The genes at the intersection of these diseases were regarded

as representative of the genetic framework for degenerative CNS
diseases in our research.

Gene expression matrices for GBM were sourced from the
GEO database (GSE151352, Public on 29 May 2020). This dataset
was selected due to its focus on paired normal and tumor tissue
samples, providing a robust framework for comparing differential
gene expression in GBM. Utilizing the platform GPL23934 (Ion
Torrent S5), GSE151352 comprises RNA-seq data from 12 GBM
patients, each with matched fresh tumor and normal brain
tissue samples. The dataset’s design includes rigorous sample
validation via immunostaining, ensuring the accuracy of tissue
classification. These samples were processed using the Ion Ampliseq
Transcriptome Human Gene Expression Kit, and sequencing was
performed with the Ion S5 semiconductor sequencer. This high-
quality dataset provides critical insights into GBM’s molecular
heterogeneity, supporting the objectives of this study.
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2.3 Identification of DEGs

Utilizing R software (version 4.3.1), we identified DEGs of GBM
in serum samples from the patient and control groups. Considering
the small sample size of our study, we employed the limma package
to perform differential expression analysis. Specifically, we first fitted
a linear model using the lmFit () function and then applied the
empirical Bayes moderation via the eBayes () function to adjust
for random variance across genes. This moderated T-test approach
improves the reliability of DEG identification. For each gene, we
compared its average expression between the patient and control
groups using a statistical test. This test produced an adjusted p-
value, which indicates the likelihood that the observed difference
in expression occurred by chance, and a log2 fold change, which
quantifies the magnitude of the difference. Genes with an adjusted
p-value of 0.05 or less and an absolute log2 fold change of at least 1
were classified as differentially expressed. The log2 scale was applied
to make the expression differences easier to interpret and to align
with standard practices in gene expression analysis.

2.4 WGCNA analysis

To pinpoint pivotal genes, we employed the WGCNA within
the R programming environment, focusing on identifying hub
genes in highly correlated gene clusters, also known as modules.
Initially, we constructed a Topological Overlap Matrix (TOM) to
examine the correlations among genes. Subsequently, we calculated
the dissimilarity of the TOM (diss TOM = 1 - TOM), which was
used to generate a phylogenetic clustering tree. This allowed us to
group genes with similar expression patterns into modules through
a “TOM-based” approach. We set specific parameters for module
aggregation, requiringmodules to have at least 10 genes but nomore
than 500, and applied a clustering height cut-off of 0.25 to ensure
clear distinction among modules. Following this, we determined
module membership and assessed gene significance, selecting key
genes from the primary modules for further analysis.

2.5 Commonly altered genes

Utilizing the R programming language, we conducted a filtration
process on previously identified genes. This step was aimed at
discerning genes at the intersection of three critical categories:
genes within GBM’s pivotal WGCNA modules, DEGs in GBM, and
commonly altered genes associated with degenerative CNS diseases.
This methodological approach enabled us to pinpoint target genes
shared across these significant domains, offering potential insights
into shared molecular mechanisms and identifying targets for
further investigation and therapeutic development.

2.6 Enrichment analysis

We identified genes from relevantmodules and intersected them
with previously determined commonly altered genes to pinpoint
commonly altered genes. Subsequently, we utilized R software to
perform enrichment analyses on these commonly altered genes,

employing both the Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) frameworks.

2.7 Hub genes

To single out key candidate genes, we employed three advanced
machine learning techniques: Random Forest, Least Absolute
Shrinkage and Selection Operator (LASSO), and Support Vector
Machine - Recursive Feature Elimination (SVM-RFE). These
methods were used to refine the selection of hub genes from those
identified as co-expressed, focusing on genes that were consistently
highlighted across all three techniques. Each method was applied
to prioritize genes based on their relevance and potential as key
candidates.

2.8 Hub genes validation

To confirm the significance of the identified hub genes, we
assessed their diagnostic capabilities through the construction of
receiver operating characteristic (ROC) curves and examination of
their expression levels within the dataset. To accomplish this, we
employed ROC-specific packages in R, facilitating the creation of
these curves. We then determined the area under the curve (AUC)
for each gene. AnAUC value nearing 1 signifies enhanced predictive
accuracy, indicating that the gene in question possesses a high
potential for distinguishing between disease states. This validation
process is crucial for establishing the reliability of our findings, as
it directly tests the ability of the hub genes to serve as effective
markers for diagnosis. By leveraging the analytical power of R and
its ROC-related functionalities, we are able to quantitatively evaluate
the diagnostic performance of each gene, ensuring that only those
with significant discriminative power are considered in the context
of disease identification and analysis.

To validate the diagnostic accuracy of the two identified genes
further, we turned to the external dataset GSE196553, which
contains data for GBM. This dataset, comprising samples from
9 healthy controls and 61 GBM patients, served as our external
validation cohort. We depicted the expression patterns of the
diagnostic genes in cohort using boxplots and also computed AUC
to assess their diagnostic performance. This step is essential for
verifying the reliability and applicability of our findings in a broader
context, ensuring that the diagnostic genes maintain their predictive
power across different sample sets. By analyzing their expression in
an independent group of subjects, we solidify the evidence for these
genes’ roles as biomarkers, enhancing confidence in their potential
clinical utility.

2.9 Regulatory network construction

In our exploration of the hub genes’ functions, we utilized
the NetworkAnalyst platform (https://www.networkanalyst.ca/), a
dedicated tool for in-depth data analysis, available online. This
platform provided us access to essential resources such as the
ChEA database, which we used to predict transcription factors
(TFs) linked to our hub genes, and the TarBase database, which
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aided in identifying miRNAs associated with these genes. This
thoroughmethodology allowed us to delineate the intricate network
of interactions and regulatory pathways involving the hub genes,
offering insights into their roles within biological systems.

2.10 ssGSEA of hub genes

The Single-sample Gene Set Enrichment Analysis (ssGSEA)
approach is designed to evaluate the presence and activity level of
specific gene sets within individual samples, with a particular focus
on transcriptomic data. It sorts genes based on their expression
levels and generates enrichment scores for selected gene sets. This
method is instrumental in identifying potential biomarkers and
elucidating biological pathways relevant to disease and therapeutic
investigations. In our research, we applied ssGSEA to forecast the
expression profiles of key hub genes.

In order to comprehensively analyze gene expression and
their correlations with immune data, we first conducted Gene
Set Variation Analysis (GSVA) to quantify gene set enrichment
scores across different samples. This enabled us to assess the
biological variations in gene expression related to specific pathways
or processes. Subsequently, we focused on differential expression
analysis, comparing the gene expression patterns between the
control and disease groups. For correlation analysis, we calculated
Spearman correlation coefficients between individual gene
expression levels and immune data to identify potential associations.
These correlation coefficients and their significance were visualized
using heatmaps

This analysis is crucial for understanding how these hub
genes function within various biological contexts, enabling us to
uncover their roles in disease mechanisms and potential therapeutic
interventions. By leveraging ssGSEA, we gain detailed insights into
the gene expression patterns that characterize different states or
responses, enhancing our ability to pinpoint genes that are critical
for disease progression or response to treatment.

3 Results

3.1 Screening of DEGs

Following the specified screening criteria, a total of 1,309
differentially expressed genes (DEGs) were identified in normal and
tumor samples. Among these, 726 genes were downregulated, and
583 were upregulated (Supplementary Table S1). The distribution
and characteristics of these DEGs are illustrated in a volcano plot
(Figure 2A) and a heatmap (Figure 2B).

3.2 WGCNA analysis

WGCNA was employed to identify key modules associated with
glioblastoma. A sample clustering tree was constructed to visualize
the dataset structure (Figure 3A), and the soft threshold was set
to 10 to achieve scale-free topology (Figure 3B). After merging
similar modules (Figure 3C), seven modules were identified, with
their associations to disease traits depicted in Figure 3D. Among

these, the MEbrown module showed strong positive correlations,
while MEblack, MEturquoise, and MEyellow exhibited significant
negative correlations with glioblastoma traits (P < 0.05). These
four critical modules collectively encompassed 10,918 genes
(Figure 3E; Supplementary Table S2). These modules provided
an initial understanding of genes potentially associated with
glioblastoma and were used for further analysis.

3.3 Screening of genes of degenerative
CNS diseases

Using the GeneCards database, genes associated with AD,
PD, ALS, and MS were retrieved. Genes with a correlation score
≥1 were selected, and the intersection of these genes yielded
1,141 commonly altered genes for degenerative CNS diseases
(Supplementary Table S3; Figure 4A).

3.4 Commonly altered genes between
GBM and degenerative CNS diseases

To investigate shared molecular mechanisms between
glioblastoma and degenerative CNS diseases, we intersected three
gene sets: (1) genes from the critical WGCNA modules, (2) DEGs in
glioblastoma, and (3) degenerative CNS disease genes. This analysis
identified 95 commonly altered genes (Figure 4B).These genes serve
as a link between glioblastoma and degenerative CNS diseases,
forming the basis for downstream functional and pathway analyses.

3.5 Enrichment analysis

Functional enrichment analyses were performed to explore
the roles of these 95 genes in glioblastoma and degenerative
CNS diseases. Gene Ontology (GO) analysis revealed enrichment
in biological processes (e.g., synaptic transmission, axon
development), cellular components (e.g., myelin sheath, synaptic
vesicles), and molecular functions (e.g., low-density lipoprotein
receptor binding) (Figure 5A). KEGG analysis identified pathways
such as neurodegeneration, ALS, PD, and proteoglycans in cancer as
highly relevant to both glioblastoma and degenerative CNS diseases
(Figure 5B). These pathways were visualized through a network
diagram to elucidate their interconnected roles (Figures 5C, D).
The results of these analyses provide insights into shared
molecular mechanisms and highlight potential pathways for further
exploration.

3.6 Identification of hub genes

Machine learning approaches were used to refine the
identification of key genes. LASSO regression selected seven
genes using cross-validation (Figure 6A). Random Forest analysis
identified nine genes based on feature importance (Figures 6B, C),
while SVM-RFE highlighted 33 genes with an accuracy of 0.867
(Figure 6D). By intersecting the results of these methods, two
genes, RELN and GSTO2, emerged as shared biomarkers between
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FIGURE 2
Differential gene expression analysis revealed significant variations between conjunctiva and pterygium. (A) Volcano diagram shows that red points
indicate upregulated genes, while blue points indicate downregulated genes. Points with black circles represent genes meeting stricter criteria (P < 0.01
and |logFC| > 1), while points without black circles represent genes meeting standard criteria (P < 0.05 and |logFC| > 0.5). (B) DEGs heatmap shows the
expression of the all upregulated and downregulated genes.

glioblastoma and degenerative CNS diseases (Figure 7A). These two
genes showed robust potential for diagnostic applications and were
further validated in subsequent analyses.

3.7 Validation of hub genes and regulatory
network construction

To construct a hub gene nomogram model (Figure 7B), we
assessed the diagnostic potential of RELN and GSTO2 using ROC
curve analysis. In the primary dataset, both genes achieved an AUC
of 1, demonstrating excellent diagnostic accuracy (Figure 7C). The
expression levels of RELN and GSTO2 were significantly lower
in glioblastoma samples compared to controls (Figure 7D). For
external validation, we analyzed the GSE196533 dataset, where
both genes also exhibited high diagnostic performance with AUC
values exceeding 0.8 (Figure 7E). Similarly, expression levels of
RELN and GSTO2 significantly decreased glioblastoma samples
compared to controls (Figure 7F). Furthermore, regulatory network
analysis, leveraging the ChEA and TarBase databases, identified
key transcription factors and miRNAs that potentially interact with
RELN and GSTO2 (Figure 8A).

3.8 ssGSEA analysis

We performed single-gene GSEA analysis for each pivotal gene
(RELN and GSTO2) and visualized the top five upregulated and
downregulated pathways (Figure 8B).The results revealed that these
genes are enriched in pathways such asDNA replication, GABAergic

synapse, homologous recombination, and the synaptic vesicle cycle.
Furthermore, they are associated with pathways related to various
addictions, including morphine and nicotine addiction. These
findings highlight the involvement of RELN and GSTO2 in both
CNS functions and broader physiological processes. However, it is
important to note that GO analysis identifies commonly associated
mechanisms and does not confirm specific functional relationships
in the context of disease. Experimental validation is required to
establish such relationships.

To further understand the expression patterns of these genes,
boxplots were generated to illustrate their distribution across
different sample groups (Figure 9A). Compared to control samples,
glioblastoma samples exhibited increased expression of pathways
such as coagulation, p53 signaling, epithelial-mesenchymal
transition, and MYC targets V1/V2. These pathways, which are
linked to tumor progression, underscore the potential roles of RELN
and GSTO2 in glioblastoma biology.

We also examined the correlations between hub gene expression
levels and hallmark pathways to explore potential regulatory
linkages. Spearman correlation analysis revealed that RELN and
GSTO2 expression positively correlates with pathways such as
spermatogenesis, hememetabolism, and oxidative phosphorylation,
while negatively correlating with pathways like unfolded protein
response, TNFA signaling via NFKB, p53 signaling, and MYC
targets (Figure 9B). These correlations provide insights into the
functional roles of these genes in distinct biological processes and
their potential involvement in cancer development. The relationship
between these pathways and hub gene expression is further depicted
in a heatmap for intuitive visualization (Figure 9C), supporting
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FIGURE 3
Identification of gene co-expression modules and their relationships with GBM traits. (A) The sample dendrogram and trait heatmap show the
clustering of samples based on gene expression profiles. The trait heatmap highlights the correlation between samples and glioblastoma traits, aiding
in identifying relevant modules for further analysis. (B) Scale independence analysis determines the soft threshold power (β) for constructing a
scale-free network. The plot shows that a scale-free topology is achieved when β equals 10, ensuring the robustness of the network. (C) The dynamic
tree cut method is used to identify initial gene modules, which are then merged based on similarity. The plot illustrates the merging of modules to
create distinct clusters of commonly altered genes. (D) The module-trait relationship heatmap displays the correlation between identified modules and
glioblastoma traits. Modules with strong positive or negative correlations are highlighted for further investigation. (E) The plot shows the genes assigned
to each module and their respective module memberships. This provides an overview of gene clustering and their potential functional relevance.

the hypothesis that RELN and GSTO2 are critical mediators at
the intersection of glioblastoma and degenerative CNS disease
mechanisms.

4 Discussion

Nearly one-sixth of the world's population is affected by
CNS diseases (Zhou et al., 2021). These disorders range from
mild neurological impairment (which may manifest as motor,
sensory, visual, speech, cognitive impairment, or a combination
of these symptoms) to more severe conditions, such as coma
and brain death. The central nervous system, including the
brain and spinal cord, carries important tasks for processing
sensory information, controlling movement, and coordinating
all higher functions of the body, such as thinking, memory,
and affect (Capani et al., 2016).

In many CNS diseases, ongoing progressive neurological
damage is often caused by primary neuronal dysfunction. However,
not all central nervous system disorders are degenerative. For

example, although brain trauma or stroke affects the CNS, they
are usually acute events and differ from chronic degenerative
processes (Campbell and Khatri, 2020). In contrast, some CNS
diseases such as Alzheimer's disease, Parkinson’s disease, and
multiple sclerosis are indeed degenerative, and their main features
are gradual deterioration in the structure and function of nerve
cells, particularly neurons (Fan and Huo, 2021). These degenerative
diseases progress over time, and damage and death of nerve cells
lead to various dysfunctions. For example, cognitively function-
associated neurons are particularly affected in Alzheimer's disease
(Tiwari et al., 2019). Pathological mechanisms of these diseases may
include factors such as abnormal protein folding, mitochondrial
and energy metabolism disorders (Ferrer, 2018), oxidative stress
(Singh et al., 2019), inflammation (Voet et al., 2019), and imbalances
in neurotransmitter systems (Mahalakshmi et al., 2020). These
complex pathological processes not only lead to the decline and/or
death of neuronal function, but also further affect the overall
function of the brain and spinal cord.

In 2014, GBM represented 16% of all primary brain and central
nervous system tumors. The age-adjusted mean incidence rate was
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FIGURE 4
Identification of shared genes between degenerative CNS diseases and glioblastoma. (A) Venn diagram shows the overlap of genes associated with AD,
PD, MS, and ALS, revealing 1,141 commonly altered genes shared among these degenerative CNS diseases. (B) Venn diagram illustrates the intersection
of glioblastoma-related WGCNA modules, DEGs, and the shared genes from degenerative CNS diseases, identifying 95 commonly altered genes as
potential molecular links between glioblastoma and degenerative CNS diseases.

3.19 per 100,000 (Thakkar et al., 2014). By 2023, however, the
incidence of malignant brain tumors reached an alarming 7 cases
per 100,000 and increased with age. The 5-year survival rate is
approximately 36%. Older patients have a lower survival rate than
younger patients. Survival rates ranged from approximately 71.5%
in patients aged 15–39 years and 21% in patients aged 40 years
and older. About 49% of these primary malignant brain tumors
are glioblastomas (Schaff and Mellinghoff, 2023). Glioblastoma is
a very aggressive brain tumor classified as grade IV in malignant
glioma, which is the most severe grade. This tumor is characterized
by rapid growth and high invasiveness to surrounding brain tissue.
Symptoms of GBM include headache, seizures, neurocognitive
impairment, and focal neurological deficits (Ostrom et al., 2022).

Recent research has unveiled a novel therapeutic strategy against
cancer, drawing inspiration from treatments for neurodegenerative
disorders (Soragni et al., 2016). This approach involves the
development of ReACp53, a designed inhibitor that targets the
aggregation of the p53 protein, a common pathological feature
in various cancers, notably ovarian carcinomas. By preventing
p53 aggregation, ReACp53 restores its tumor-suppressive function,
leading to a reduction in tumor growth and an increase in cancer cell
apoptosis. This breakthrough highlights the potential of leveraging
neurodegenerative disease therapies to combat cancer, offering a
promising avenue for future cancer treatment research.

Our study employed a novel approach that integrates WGCNA,
multiple machine learning algorithms, and functional enrichment
analyses to identify biomarkers shared between GBM and
degenerative CNS diseases. This integrated pipeline offers several
advantages over conventional methods.

First, traditional biomarker discovery methods often rely
on a single dataset or apply univariate statistical methods to

identify significant genes. These approaches may overlook subtle
but biologically important interactions and fail to generalize
across datasets. By contrast, our method combines data from
multiple independent datasets, ensuring robustness andminimizing
potential biases. The WGCNA framework, in particular, enables
the identification of gene modules based on co-expression
patterns, providing a systems-level understanding of disease-
associated networks that traditional differential expression analyses
cannot capture (Oluwatosin A et al., 2025).

To further refine the identification of key candidate genes
from the WGCNA results, we integrated three machine learning
techniques: SVM-RFE, LASSO, and Random Forest. Each method
contributes unique strengths to the selection process. SVM-
RFE is well-known for its ability to select relevant features
while minimizing the risk of overfitting, making it particularly
useful for analyzing datasets with a high number of variables
(Hector et al., 2018). LASSO is effective in both feature selection
and regularization, promoting models that are sparse, interpretable,
and generalizable (Maike and Andreas, 2024). Random Forest,
on the other hand, is highly precise in handling large datasets,
managing data imbalance effectively, and providing valuable
insights into feature importance (Ibrahim et al., 2024). By
combining these methodologies, we capitalize on the unique
strengths of each: LASSO’s simplicity and interpretability, SVM-
RFE’s adaptability to complex datasets, and Random Forest’s
comprehensive evaluation of feature relevance. This integrated
strategy ensures thorough and reliable identification of crucial
genes, enhancing the predictive capabilities and robustness of
our analysis.

Traditional methods often neglect downstream functional
validation at the pathway level, limiting the understanding of
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FIGURE 5
Functional enrichment analysis of commonly altered genes (A) GO enrichment analysis shows the biological processes, cellular components, and
molecular functions significantly associated with the 95 commonly altered genes. Key enriched processes include synaptic transmission and axon
development. (B) KEGG pathway analysis identifies significantly enriched pathways. (C) KEGG cnetplot visualizes the connections between key
pathways and the commonly altered genes. (D) KEGG network plot depicts the relationships among enriched pathways, providing insights into the
molecular mechanisms linking glioblastoma and degenerative CNS diseases.

the broader biological context of identified biomarkers. In this
study, we addressed this limitation by incorporating functional
enrichment analyses (GO and KEGG) to link the identified
biomarkers with specific biological processes and pathways. This
approach not only strengthens the biological relevance of the
biomarkers but also provides insights into their potential roles
in disease mechanisms, paving the way for future experimental
validation (Nguyen et al., 2024).

Building on these analyses, we further explored the
biological context of the identified hub genes using the
NetworkAnalyst platform, an online tool for comprehensive
data analysis (Guangyan et al., 2019). This platform provided
access to resources such as the ChEA database to predict TFs
associated with the hub genes and the TarBase database to identify
miRNAs linked to these genes. By integrating these analyses,
our approach enhances the understanding of the pathways and
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FIGURE 6
Machine learning-based identification of key genes in glioblastoma and degenerative CNS diseases. (A) The LASSO regression plot shows the
coefficient profiles of the genes as the regularization parameter (log λ) changes, with the binomial deviance plot identifying the optimal λ value (log λ =
−3), where 7 genes were selected based on cross-validation, demonstrating high predictive performance for distinguishing disease states. (B) Random
Forest model performance is illustrated by the error plot, where the minimum error stabilizes after approximately 50 trees, and the importance scores
of the top 9 genes. (C) The Random Forest gene importance plot further emphasizes the contributions of top genes. (D) The SVM-RFE results depict
cross-validation error and accuracy as a function of the number of selected genes, with 33 features achieving the lowest error (0.133) and highest
accuracy (0.867), demonstrating the effectiveness of this method in selecting a concise yet predictive subset of genes.
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FIGURE 7
Identification and validation of hub genes in glioblastoma and degenerative CNS diseases (A) The Venn diagram shows the overlap of hub genes
identified by three machine learning methods (SVM-RFE, Random Forest, and LASSO), revealing two common hub genes: RELN and GSTO2. (B) The
nomogram prediction model integrates the two hub genes (RELN and GSTO2) to calculate the total points and predict the likelihood of disease,
providing a practical clinical tool. (C) The ROC curves for RELN and GSTO2 demonstrate their diagnostic performance in the training dataset, with AUC
values of 0.982 and 0.981, respectively, indicating high accuracy. (D) Box plots show the expression levels of RELN and GSTO2 in tumor (P) and control
(C) groups, with both genes showing significantly higher expression in the control group (p < 0.0001). (E) ROC curves for RELN and GSTO2 in the
out-group validation dataset confirm their diagnostic performance, with AUC values of 0.895 and 0.894, respectively. (F) Box plots of the out-group
validation dataset show consistent trends, with RELN and GSTO2 expression levels significantly higher in the control group compared to the
glioblastoma group (p = 0.012 and p = 0.014, respectively).

FIGURE 8
Regulatory network and pathway enrichment analysis of RELN and GSTO2 in glioblastoma and degenerative CNS diseases. (A) The genes-TFs-miRNAs
network illustrates the regulatory interactions among the two hub genes (RELN and GSTO2), their associated TFs, and miRNAs. (B) The ssGSEA analysis
results for RELN and GSTO2 reveal their involvement in key biological pathways.

regulatory networks in which the hub genes operate, shedding light
on the potential mechanisms through which they influence disease
processes.

When we delve into diseases of the central nervous system,
we find unexpected associations between GBM and degenerative
CNS diseases. Although there are clear differences in clinical
presentation and pathogenesis between these two types of diseases,
they show striking similarities in certain critical biological processes.

Ferroptosis, as a key mode of cell death, plays a crucial role in
both diseases. In degenerative neurological diseases such as PD, iron
deposition and consequent oxidative damage are among the critical
pathological processes (Martin-Bastida et al., 2017; Mitre et al.,
2022). Further studies have shown that intervening in the metabolic
pathway of iron can not only bring new therapeutic strategies for
Parkinson’s disease (Wang et al., 2023), but also provide new ideas
for the treatment of glioblastoma.
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FIGURE 9
ssGSEA analysis and correlation of RELN and GSTO2 with hallmark pathways. (A) Boxplots illustrate the differences in ssGSEA pathway enrichment
scores between glioblastoma (P) and control (C) samples. (B) Heatmap displays the Spearman correlation analysis between hallmark pathways and hub
gene expression levels. (C) Heatmap of gene-pathway correlations provides an intuitive depiction of the relationships between RELN, GSTO2, and
hallmark pathways.
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Lipid rafts serve as dynamic hubs for integrating signaling events
in both tumor and neuronal cells, including those associated with
RELN and Wnt signaling (Yunden and Ven, 2024). These lipid-rich
microdomains play a pivotal role in organizing and coordinating
the interaction of various signaling pathways, including the Wnt
pathway, which intersects with RELN signaling through LRP6. This
intersection is particularly significant in both tumor progression and
neurodevelopmentalprocesses(Lenzetal.,2024).Inthecaseoftumors,
including GBM, lipid rafts enable the integration of multiple pro-
survival and growth-promoting signals, enhancing cellular responses
to external stimuli (Reza et al., 2023; Pampa et al., 2024). Similarly,
in neuronal cells, lipid rafts facilitate the RELN-mediated signaling
crucial for processes like neuronal migration and synaptic plasticity,
by coordinating the activation of downstreammolecules such asDab1
(Matthew et al., 2022). Additionally, oxidative stress is modulated
within these lipid domains, influencing cellular fate decisions by
affectingbothWntandRELN pathways (Akiraetal., 2024).Alterations
in lipid raft composition or function have been shown to disrupt this
integration, contributing to both tumorigenesis (Momoko et al., 2023)
and neurodegeneration (Yi Sak et al., 2024). Therefore, lipid rafts are
indispensable for coordinating complex signaling networks in these
vital biological processes.

While glioblastoma and degenerative central nervous system
diseases differ fundamentally in their molecular mechanisms and
pathological outcomes—such as cell death in degenerative CNS
diseases (Salem et al., 2025) versus cell proliferation and resistance
to cell death in cancer (Talvard-Balland et al., 2024)—our findings
suggest that certainmolecular pathways, such as those involving iron
metabolism, may be shared (Brown et al., 2024). This observation
broadens our understanding of these distinct neurological disorders
and suggests potential overlapping therapeutic targets. Based on this,
we investigated markers common to degenerative CNS diseases and
GBM, identifying RELN and GSTO2 as key candidates.

RELN is a large extracellular matrix protein first identified
during brain development, crucial for regulating neuronalmigration
and cortical stratification. It involves processes like neuronal
migration, dendritic outgrowth, dendritic spine formation, synapse
generation, and synaptic plasticity (Khialeeva and Carpenter, 2017).
Research has shown that RELN is expressed in the adult brain and
plays roles in neuronal plasticity, memory formation, and various
neurological diseases. Additionally, RELN impacts the immune
system, liver fibrosis, and cancers (Canet-Pons et al., 2018).

In addition to their general role in cellular signaling, lipid
rafts are essential for the precise regulation of the RELN/ApoER2
signaling pathway, which is crucial for neuronal migration, synaptic
plasticity, and neurodevelopment (Ling Xiao et al., 2024). These
lipid-enriched microdomains serve as platforms that facilitate the
clustering of signaling receptors such as ApoER2, enhancing the
signal transduction efficiency. The interaction between RELN and
ApoER2within lipid rafts has been shown tomodulate the activation
of downstream signaling molecules, including Dab1, a key kinase
involved in neuronal migration (Mitsuki et al., 2024). Recent study
had demonstrated that lipid rafts play a pivotal role in ensuring
that this signaling cascade is both robust and specific, thereby
facilitating the proper formation of neural networks (Harald et al.,
2005). Moreover, lipid rafts may influence the trafficking and
internalization of ApoER2 receptors, which is necessary for effective
signal initiation.

Disruption of lipid rafts can lead to a failure in
receptor clustering and signaling efficiency, impairing essential
neurodevelopmental processes like synaptogenesis and axon
guidance. Emerging evidence suggests that such disruption could
contribute to various degenerative CNS diseases by altering synaptic
integrity and neuronal survival. Notably, research on AD and other
neurodegenerative conditions has revealed that the perturbation of
lipid raft domains can impair RELN/ApoER2 signaling, resulting in
deficits in memory, learning, and neuroplasticity (Christina M et al.,
2024). Furthermore, alterations in lipid raft composition and
function are thought to affect the balance between neuroprotection
and neurodegeneration, implicating lipid rafts as a key player in
both disease onset and progression. These findings underscore the
critical role of lipid rafts not only in the RELN/ApoER2 pathway
but also in the overall maintenance of neuronal function and
resilience (S Sakura et al., 2011).

RELN expression and function are crucial in degenerative
CNS diseases such as AD, PD, and Huntington’s disease. Research
indicates that RELN expression is typically decreased in these
diseases, contributing to pathological processes such as the loss
of neuronal connectivity, neuronal death, and cognitive decline.
These findings suggest that RELN ’s functional activity may be
inhibited, further exacerbating disease progression. (Lidón et al.,
2020). RELN ’s mechanism involves neurodevelopment and
neuronal plasticity. Core components of the RELN pathway
include VLDLR, ApoER2, Src family kinases, and Dab1 (Jossin,
2020). RELN binds to its receptors (LRP1/2 and ApoER2/VLDLR),
activating downstream pathways like Dab1. This activation is
essential for regulating intracellular calcium levels, reorganizing
the cytoskeleton, and maintaining synapses (Bock and May
2016). In AD and other neurodegenerative disorders, reduced
RELN signaling can alter synaptic structure and function,
affecting neural network stability and plasticity, leading to
cognitive decline. Reduced RELN signaling may impair NMDA
receptor function, crucial for learning and memory (Joly-
Amado et al., 2023).

The role of RELN in tumors is complex. Research shows that it
plays a role in regulating the invasion and proliferation of cancer,
and inhibits the migration and invasion of pancreatic cancer cells
(Ramaker et al., 2017). The expression of RELN decreased in
breast cancer, colorectal cancer and pancreatic cancer, but increased
in retinoblastoma, myeloma and prostate cancer (Ndoye et al.,
2021; Biamonte et al., 2021; Seigel et al., 2007; Qin et al., 2017).
Some studies have found that the expression level of RELN in
GBM is different from that of normal brain tissue or other types
of brain tumors, which may be related to tumor invasiveness,
growth rate, and treatment response. (Perrone et al., 2007).
Moreover, recent studies have suggested that inhibiting heparanase,
an enzyme involved in the remodeling of the extracellular matrix
(Minghong et al., 2025), may significantly affect the regulation
of autophagy and apoptosis in glioblastoma (Valeria et al., 2023).
Heparanase inhibition has been shown to alter the balance between
cell survival and cell death by modulating key signaling pathways
involved in these processes (Vy M et al., 2017). By interfering
with the autophagic flux and promoting apoptosis, heparanase
inhibitors may enhance the sensitivity of glioblastoma cells to
therapeutic agents, providing a promising approach for treatment
strategies (Carolyn G and Renato V, 2022).
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In GBM, the expression of RELN and its main downstream
effector molecule Dab1 is inhibited, and mRNA expression is
inversely proportional to the degree of malignancy (Talebian et al.,
2019). In addition, RELN expression was positively associated
with survival in patients in two large independent clinical
annotation datasets. Silencing of RELN occurs through promoter
hypermethylation (Serrano-Morales et al., 2017). At the functional
level, RELN regulates GBM cell migration in a Dab1 (tyrosine
phosphorylation) dependent and non dependent manner,
depending on the substrate provided. Activation of RELN signaling
significantly reduces the proliferation of GBM cells, a phenotype
dependent on RELN stimulation of Dab1. Mutants lacking all
RELN induced tyrosine phosphorylation sites (DAB1-5F) failed
to induce growth arrest. Proteomic analysis shows that these
effects are mediated by reducing the dephosphorylation of E2F
targets and ERK1/2. RELN may also indirectly affect tumor growth
and spread by affecting astrocytes and microglia in the tumor
microenvironment. This interaction is achieved by altering the
secretion of cytokines and chemokines, thereby affecting the
interaction between tumor cells and their microenvironment
(Jandial et al., 2017; Zeng et al., 2023).

GSTO2 is a member of GST family, belonging to the Omega
subfamily (Peng et al., 2023). This family plays a critical role in
cellular detoxification processes. GST enzymes, found in animals,
plants, and microorganisms, protect cells from oxidative stress and
chemical damage by facilitating the conjugation of glutathione with
various electrophilic compounds, including drugs, environmental
toxins, and metabolic by-products, thereby promoting their
excretion (Zhang et al., 2013).

Degenerative CNS diseases are often associated with increased
oxidative stress and inflammation (Schmuck et al., 2005). Oxidative
stress during these diseases can lead to cellular damage and death,
accelerating disease progression. GSTO2, through its antioxidative
activity, may help neutralize excess free radicals and reactive oxygen
species, alleviating oxidative stress-induced damage to neurons and
other brain cells. Studies suggest a significant correlation between
GSTO2 and the age of onset in AD and PD (Ozturk et al.,
2005). Cha et al. (2023) found that knocking down the GSTO2
gene in fruit flies leads to an age-related increase in Cabeza
protein levels in neurons. Cabeza, a homolog of the human FUS
protein associated with degenerative CNS diseases like ALS and
Frontotemporal Dementia, shows increased mislocalization and
aggregation in the cytoplasm of neurons and reduced solubility
in aging neurons when GSTO2 is knocked out. This suggests
GSTO2 plays a crucial role in regulating Cabeza localization
and aggregation, potentially impacting neurodegenerative disease
development (Machamer et al., 2018).

Abnormal expression ofGSTO2 is also related to the occurrence
and development of tumors. Interestingly, GSTO2 exhibits a
bidirectional regulatory role in tumors. Several studies (Peng et al.,
2023; Masoudi et al., 2009; Djukic et al., 2015) have discussed
the association of GSTO2 with cancers. Sumiya R (Sumiya et al.,
2022) revealed that GSTO2 is uniquely expressed in various lung
stem cells but silenced in lung squamous cell carcinoma (LSCC)
due to DNA hypermethylation. GSTO2 regulates cell growth, β-
catenin expression, and mitochondrial respiration through p38
phosphorylation. Activation of p38 MAPK by GSTO2 leads
to the downregulation of β-catenin, likely via ubiquitination,

contributing to lung tissue homeostasis and preventing malignant
transformation. Loss of GSTO2 in LSCC disrupts this mechanism,
allowing β-catenin to avoid degradation, leading to increased
mitochondrial oxidative phosphorylation and enhanced energy
production, promoting LSCC growth. These findings highlight
the potential importance of GSTO2 in preventing LSCC and
provide insights into lung carcinogenesis pathways. However, the
specific role and mechanism of GSTO2 in GBM require further
investigation. It is hypothesized that GSTO2, by regulating oxidative
stress responses and metabolic processes, could influence GBM
cell survival, proliferation, and treatment response. Upregulation of
GSTO2might enhance tumor cells’ ability to clear chemotherapeutic
drugs, reducing treatment efficacy. Conversely, reducing GSTO2
activity or expression could increase oxidative stress, promoting
cancer cell death, and potentially serving as a therapeutic strategy.

Although RELN and GSTO2 have different functions and
regulatory mechanisms, studies suggest they may have potential
interrelated mechanisms in certain diseases. RELN plays a crucial
role in neural development and synaptic plasticity, and its abnormal
expression is associated with degenerative CNS diseases. RELN
combats oxidative stress by regulating synapse formation and
stability (Sajjad et al., 2014), whileGSTO2 is important in the cellular
antioxidant response, helping to neutralize excess free radicals
and ROS, thereby reducing neuronal damage (Lauren E et al.,
2019). RELN and GSTO2 may jointly regulate oxidative stress
and inflammatory responses in neurons, protecting them from
damage. Additionally, RELN affects the stability and plasticity
of neural networks by regulating synapse structure and function
(Murat S et al., 2009), whereas GSTO2, through its antioxidant
activity, reduces apoptosis and autophagy induced by oxidative
stress, thus protecting neuronal survival. They may co-operate in
the pathways of neuronal apoptosis and autophagy, maintaining
normal neuronal function and survival (Xifeng et al., 2022). The
signaling pathways involving RELN and GSTO2 may interact at
certain points; for instance, RELN influences intracellular calcium
levels by regulating synaptic function and stability (Yehui et al.,
2019), while GSTO2 maintains cellular homeostasis by mitigating
oxidative stress (Tatjana et al., 2022). They may influence each
other in cellular signal transduction, jointly maintaining neuronal
function and survival.

Clinically, our findings indicate that RELN and GSTO2 show
significant expression changes in GBM, suggesting their potential
utility as biomarkers for this disease. Specifically, the observed
differential expression of these genes in GBM samples compared
to controls highlights their diagnostic relevance. However, we
acknowledge that further experimental and clinical validation is
essential to substantiate their roles in early diagnosis, disease
progression monitoring, and treatment response evaluation.

Regarding neurodegenerative CNS diseases, we did not evaluate
RELN and GSTO2 in relevant cohorts; thus, their potential roles in
neurodegenerative CNS diseases remain speculative. While shared
molecular mechanisms between neurodegenerative CNS diseases
and GBM suggest possible connections, we refrain from making
definitive claims about their biomarker or therapeutic potential in
these diseases without supporting evidence. Future research should
validate these findings in disease-specific cohorts and investigate
whether RELN and GSTO2 could serve as progression markers or
therapeutic targets for GBM and other CNS diseases.
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5 Conclusion

This study involves collecting cross-gene data for AD, PD,
MS, and ALS from the GeneCards database, and performing
differential expression analysis of GBM using GEO datasets.
Machine learning is used to analyze these data, aiming to find
common molecular biomarkers between degenerative CNS diseases
and GBM. This approach could uncover novel biomarkers and
shared pathological processes in these disorders, guiding future
therapy strategies. The study integrates molecular characteristics
with clinical features to improve understanding of these disorders
and to identify molecular targets for diagnosis, monitoring, and
treatment. The results could also support personalized medicine
based on molecular mechanisms. In this study, we identified co-
expressed biomarkers for degenerative CNS diseases and GBM:
RELN and GSTO2. Validated experimental results indicated that, in
GBM patient samples, the expression levels of RELN and GSTO2
were significantly reduced compared to healthy controls. Based on
these findings, we hypothesize that RELN and GSTO2 may act as
protective factors against the development of these neurological
disorders.

Overall, the study seeks to advance the diagnosis, treatment, and
prognosis of degenerative CNS diseases and GBM by identifying
biomarkers, using cross-disease analysis, and applying machine
learning, potentially benefiting patients.
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