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Background: Pterygium is a complex ocular surface disease characterized
by the abnormal proliferation and growth of conjunctival and fibrovascular
tissues at the corneal-scleral margin. Understanding the underlying molecular
mechanisms of pterygium is crucial for developing effective diagnostic and
therapeutic strategies.

Methods: To elucidate the molecular mechanisms of pterygium, we conducted
a differential gene expression analysis between pterygium and normal
conjunctival tissues using high-throughput RNA sequencing. We identified
differentially expressed genes (DEGs) with statistical significance (adjust p <
0.05, |logFC| > 1). Enrichment analyses were performed to assess the biological
processes and signaling pathways associated with these DEGs. Additionally,
we utilized weighted correlation network analysis (WGCNA) to select module
genes and applied Random Forest (RF) and Support Vector Machine (SVM)
algorithms to identify pivotal feature genes influencing pterygium progression.
The diagnostic potential of these genes was validated using external datasets
(GSE2513 and GSE51995). Immune cell infiltration analysis was conducted using
CIBERSORT to compare immune cell populations between pterygium and
normal conjunctival tissues. Quantitative PCR (qPCR) was used to confirm the
expression levels of the identified feature genes. Furthermore, we identified key
miRNAs and candidate drugs targeting these feature genes.

Results: A total of 718 DEGs were identified in pterygium tissues compared
to normal conjunctival tissues, with 254 genes showing upregulated
expression and 464 genes exhibiting downregulated expression. Enrichment
analyses revealed that these DEGs were significantly associated with
inflammatory processes and key signaling pathways, notably leukocyte
migration and IL-17 signaling. Using WGCNA, RF, and SVM, we identified
KRT10 and NGEF as pivotal feature genes influencing pterygium
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progression. The diagnostic potential of these geneswas validated using external
datasets. Immune cell infiltration analysis demonstrated significant differences in
immune cell populations between pterygium and normal conjunctival tissues,
with an increased presence of M1 macrophages and resting dendritic cells in
pterygium samples. qPCR analysis confirmed the elevated expression of KRT10
and NGEF in pterygium tissues.

Conclusion: Our findings emphasize the importance of gene expression
profiling in unraveling the pathogenesis of pterygium. The identification of
pivotal feature gene KRT10 and NGEF provide valuable insights into the
molecular mechanisms underlying pterygium progression.

KEYWORDS

pterygium, RNA sequencing, bioinformatics, WCGNA, machine learning, immuno-
infiltration

Introduction

Pterygium, a multiple ocular surface disease, arises from
abnormal proliferation and growth of conjunctival and fibrovascular
tissues at the corneal scleral margin, subsequently invading the
cornea (Singh et al., 1988; Guimares et al., 2022). This condition
significantly impacts visual health, altering appearance, destabilizing
the tear film, and inducing discomfort. Furthermore, pterygium
severely affects corneal astigmatism, leading to decreased vision,
and in extreme cases, can cause eye movement disorders and
blindness (Chu et al., 2020). The prevalence of pterygium varies
globally, from 0.074% in Saudi Arabia to 53% in Taiwan, China.
Combined with global data (Alqahtani, 2013; Rezvan et al.,
2018), the overall prevalence of pterygium is 12% (Rezvan et al.,
2018). Numerous studies, both domestic and international, have
established a strong correlation between ultraviolet radiation and
the onset as well as progression of pterygium (Moran and Hollows,
1984; Modenese et al., 2023). There have also been studies on the
relationship between surface air pollution and the publication
of pterygium (Lu et al., 2023; Taylor, 2013). Epidemiological
research further supports this finding, indicating a higher incidence
among rural populations and individuals who engage in frequent
outdoor activities, potentially due to increased exposure to
ultraviolet radiation. The prevalence and postsurgical recurrence
rate of pterygium are notably high, posing a significant threat to
human visual health, as untreated cases may result in blindness
(Prabhasawat et al., 1997; Chang et al., 2023). Surgical resection is
the main treatment of pterygium. However, there are some serious
complications in this treatment, such as postoperative recurrence
and secondary infection (Hacıoğlu and Erdöl, 2017). Ocular
demodicosis, environment pollution and ultraviolet radiation are
risk factors for pterygium recurrence (Huang et al., 2013).

Current research on pterygium has largely focused on its
clinical manifestations and surgical management. However, the
molecular mechanisms underlying pterygium development remain
poorly understood, creating a gap in knowledge that could inform
future therapeutic strategies. In addition, there are also immune
inflammation, cell proliferation and apoptosis disorders and lipid
metabolism disorders and other related mechanisms involved in
the development of pterygium (Shahraki et al., 2021; Chalkia et al.,
2019; Kalogeropoulos et al., 2020; Rubeshkumar et al., 2020). Recent

studies have highlighted the importance of inflammatory processes
in pterygium pathology, revealing that the disease is associated
with a heightened inflammatory response and altered immune
cell infiltration within the conjunctival tissue (Labbé et al., 2010).
This suggests that targeting inflammatory pathways may offer new
avenues for intervention.

Currently, there is a lack of consensus regarding the risk factors
and clear molecular mechanisms underlying pterygium. Our study
aims to contribute to a deeper understanding of pterygium by
exploring these risk factors and potential molecular mechanisms.
High-throughput RNA sequencing technologies have emerged as
powerful tools for investigating gene expression profiles associated
with various diseases, including pterygium. Studies employing
RNA sequencing have demonstrated significant differences in
gene expression between pterygium and normal conjunctival
tissues, providing insights into the molecular pathways involved in
pterygium development (Yoon et al., 2023). Furthermore, machine
learning techniques such as random forests (RF) and support
vector machines (SVM) have been applied to identify key gene
signatures associated with pterygium, enhancing the predictive
power of genomic data (Uddin et al., 2019). Figure 1 depicts our
research protocol.

Therefore, an in-depth exploration of themolecularmechanisms
underlying pterygiumpathogenesis holds significant importance for
disease prevention, treatment, and the identification of potential
drug targets. Given the complexity and uncertainty surrounding
the risk factors and molecular mechanisms of pterygium, we
aim to screen for differentially expressed genes in pterygium
and bulbar conjunctiva tissues through transcriptomics research.
Additionally, we seek to identify module gene sets associated with
the pterygium phenotype and analyze their biological functions.
On a cellular level, we will assess differences in immune cell
infiltration between pterygium and bulbar conjunctiva groups. This
comprehensive approach not only advances our understanding
of the molecular mechanisms of pterygium but also offers new
insights into its transcription profile. Ultimately, this research
strives to identify novel treatment methods and therapeutic targets,
aiming to optimize disease prevention, treatment, and reduce the
postoperative recurrence rate, thereby carrying substantial clinical
significance.
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FIGURE 1
Flow chart of this study design.

Materials and methods

Patients and specimens

The research protocol was approved by the Ethics Review
Committee of the Affiliated Hospital of Yunnan University, and
all study participants gave written informed consent (approval
number: 2022198). The study was carried out in accordance
with the Declaration of Helsinki. All surgical procedures were
performed under local anesthesia by the same surgeon. Thirty-four
patients underwent elective pterygium surgery, including 5 males
and 29 females. The average age was 56.8 years and the average
duration of illness was 4.19 years (Supplementary Figure S1).
During the surgical procedure, the affected pterygium tissue was
removed alongside the surrounding excess loose conjunctiva.
The integrity of the total RNA extracted from both pterygium
and bulbar conjunctiva samples was evaluated using an Agilent
2,100 bioanalyzer. Subsequently, rRNA was eliminated from the
total RNA to isolate the sample mRNA. This mRNA was then
subjected to random fragmentation using divalent cations in NEB
Fragmentation Buffer, followed by chain-specific fragmentation for
mRNA construction. Initial library quantification was carried out
with a Qubit2.0 Fluorometer, and the library was subsequently
diluted to a concentration of 1.5 ng/ul. The size of the library
inserts was determined using an Agilent 2,100 bioanalyzer,
and QRT-PCR was utilized to accurately quantify the library’s
effective concentration, which needed to exceed 2 nM. After
assessing the quality of the genomic DNA, it was fragmented

through mechanical interruption (ultrasound). The fragmented
DNA then underwent purification, end-repair, 3′end adenylation,
ligation to a sequencing adapter, and size-selection using agarose
gel electrophoresis. The resulting polymerase chain reaction
(PCR) product was amplified to generate the sequencing library.
Sequencing was conducted on the Illumina NovaSeq 6,000 platform
with a read length of 150 bp. Through quality control, trimming,
deduplication, and alignment of the original fastq data by a high-
throughput sequencing service provider, we obtained the gene
expression matrix of transcriptome sequencing. The data presented
in this publication has been archived in NCBI’s Sequence Read
Archive (SRA) database (accession number: PRJNA1147595,
URL: https://dataview.ncbi.nlm.nih.gov/object/PRJNA1147595?
reviewer=3k3nnr66jke53qo77la1sbt91b). Supplementary datasets
can be found inNCBI’sGeneExpressionOmnibus (GEO) (accession
numbers: GSE2513, URL: https://www.ncbi.nlm.nih.gov/geo/).
GSE2513 includes four conjunctival samples and eight matched
pairs of pterygium and control conjunctival samples (Wong et al.,
2006). GSE51995 includes four conjunctival samples and four pairs
of pterygium and control conjunctival samples (Hou et al., 2014).

Detection of differentially expressed genes
(DEGs) in conjunctiva versus pterygium
samples

To detect DEGs, we employed the “DESeq2” R package. The
DESeq2 package was used for difference analysis of the original
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Counts matrix, and the analysis was carried out according to the
standard process. The Variance Stabilizing Transformations (VST)
method provided by package DESeq2 was used to Normalize the
original Counts matrix. A Wilcoxon rank sum test was conducted
to assess gene expression differences between the conjunctiva
and pterygium samples. Genes were considered significantly
differentially expressed if they met the criteria of adjusted p < 0.05
and |logFC| >1. For data visualization, we utilized the “pheatmap”,
“ggpubr” and “ggplot2” R packages.

Functional annotation and enrichment
analysis of DEGs

To analyze the DEGs, we employed the R tool known as
“clusterProfiler.” (Yu et al., 2012) Using the “clusterProfiler” R
package, we carried out bothGeneOntology (GO) (Ashburner et al.,
2000) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses (Ogata et al., 1999). Gene set enrichment analysis (GSEA)
was conducted on all genes (previously ranked based on their
log2FC between analyzed groups) using the cluster profiler package.
Enrichmentwas considered significant if the nominal false discovery
rate (FDR) was <0.25 and the P-value was <0.05, referencing
the ‘c2. cp.all.v2022.1. Hs.symbols.gmt’ gene set. Additionally, we
conducted Gene Set Variation Analysis (GSVA) by utilizing the
“GSEABase” and “GSVA” R packages (Hänzelmann et al., 2013)
and referencing the ‘h.all.v2023.2. Hs.symbols.gmt’ gene set. These
packages offer utilities for evaluating the enrichment or variability of
gene sets within gene expression data, thereby enabling a thorough
examination of pathway or gene set activities across different
samples. P-values were calculated with the Benjamini–Hochberg
method, and the terms with P-values <0.05 were considered to be
significant.

Weighted gene co-expression network
analysis

For the construction of expression networks within the
PRJNA1147595 dataset, we utilized theweighted gene co-expression
network analysis (WGCNA) approach. This method was steered
by adhering to the scale-free topology criterion, ensuring that the
resultant network displayed a scale-free structure characterized
by a power-law distribution of node connections. To ascertain
the appropriate soft threshold power and establish adjacencies,
we employed the “pickSoftThreshold” function from the WGCNA
package. Once determined, the adjacency matrix was transformed
into a topological overlap matrix (TOM). Hierarchical clustering
analysis was then conducted based on the dissimilarity derived
from the TOM.

To delineate co-expressed gene modules, we adopted the
dynamic tree cutting technique, setting a minimum module size
of 50. This approach allowed us to categorize genes into distinct
modules according to their expression patterns. Subsequently, we
evaluated the relationship between these gene modules and the trait
of interest, pterygium, by considering both gene significance (GS)
and module membership (MM) values. GS reflects the correlation
between gene expression and pterygium, whereasMMmeasures the

extent of co-expression within a given module. By integrating GS
andMMvalues, we pinpointed the keymodules linked to pterygium,
suggesting their potential functional importance in the context of
the disease.

Identification of hub genes based on
machine learning methods

The gene sets of the significant difference modules analyzed
by WCGNA were intersected with the expression difference genes
obtained by DESeq2 analysis. To identify the key hub genes, two
distinctmachine learning algorithmswere employed: support vector
machine (SVM) and random forest (RF). The SVM algorithm was
executed using the “e1071”package, offering a comprehensive toolkit
for SVM model training and classification. The RF algorithm was
applied using the “randomForest” package, where the error rate
was computed across 1 to 500 trees. The optimal tree count was
determined by selecting the value that minimized the error rate
while ensuring stability. Subsequently, theRF classifierwas leveraged
to compute feature importance scores. This selection utilized the
Gini coefficient method to pinpoint the most pertinent genes. The
intersection of the top five feature genes from both the SVM and
RF models was used to pinpoint crucial hub genes involved in the
disease process.

Utilizing the R programming language, receiver operating
characteristic (ROC) curves were generated for the hub genes. To
evaluate the distinctive capabilities between pterygium tissues and
conjunctiva tissues, the area under the curve (AUC) was calculated
for the respective ROC curves of these hub genes.

Analysis of immune cells infiltration

According to the CIBERSORT deconvolution algorithm
(Newman et al., 2015), we analyzed the infiltration of 22 kinds of
immune cells in pterygium and conjunctival tissues, and compared
whether there was a significant difference between the two groups.
To assess the degrees of immune cell infiltration in both conjunctiva
and pterygium samples, we utilized theCIBERSORT technique.This
method enabled us to measure gene expression levels quantitatively
and ascertain the infiltration levels among patients.The immune cell
populations encompassed both immune-stimulating and immune-
inhibiting cells. To examine the relationships between these immune
cells, we conducted a correlation analysis using the Spearman
coefficient and depicted the results via correlation heatmaps. At
the same time, we also analyzed the correlation between hub gene
and immune cells. We considered findings statistically significant if
they met the threshold of p < 0.05.

Validation of the mRNA expression of hub
genes by quantitative real-time PCR

Patient Sample Preparation. There were 4 primary pterygium
specimens obtained in Affiliated Hospital of Yunnan University
during pterygium surgery. The control conjunctival tissues were
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derived from healthy conjunctival tissues on the temporal side of
the surgical eye of the same patient, with a size of 1.5 mm × 1.5 mm.

Tissue RNA Extraction and RT-qPCR. All specimens were
collected during the operation and immediately placed in RNA
protective agent, stored at −20°C for usage. RNA was extracted
from 80 mg specimen tissue using TRIZOL reagent. The relative
expression of hub genes was measured using a reverse kit (HiScript
®III RT SuperMix for qPCR (+gDNA wiper)) and ChamQ™
Universal SYBR®qPCR Master Mix (Vazyme company, Nanjing,
China) on CFX96 fluorescence qPCR instrument. And the PCR
reaction was carried as follows: predenaturation at 95°C for 30 s,
denaturation at 95°C for 3–10 s, and annealing extension at 60°C
for 10–30 s, for 40 cycles. Using GAPDH as internal references, the
relative expression of genes was calculated by the 2-△Ct method.

Identification of key miRNAs and potential
drug candidates

The identification of key miRNAs targeting the two
characteristic genes, as well as the screening of potential drug
candidates, was conducted through a rigorous and comprehensive
process. We utilized the Targetscan database (version 7.2,
accessed via the Enrichr platform at http://amp.pharm.mssm.
edu/Enrichr/) to forecast miRNAs that could potentially target
the selected genes (Agarwal et al., 2015). This involved inputting
the gene symbols into the Targetscan interface and retrieving a list
of predicted miRNAs based on the presence of conserved target
sites within the 3′UTRs of the genes. The predicted miRNAs were
then filtered based on their conservation across species, expression
levels in relevant tissues, and previous reports of their involvement
in related biological processes. Subsequently, to identify potential
drug candidates that could modulate the expression or activity of
these genes, we accessed the DSigDB database through the Enrichr
platform. This database integrates drug signatures from various
sources, allowing us to search for drugs that have been reported to
affect the expression or activity of the selected genes.

Statistical analysis

The statistical analyses were performed using R software
(version 4.2.1). All p values were two-sided, and significance was
indicated by p < 0.05.

Results

Identification of the DEGs

Based on the RNA-Seq data, a total of 718 DEGs were obtained,
and these genes reached the threshold adjust p-value of <0.05
(Supplementary Table S1). Among these DEGs, 254 transcripts were
upregulated in the disease group against the health one, while 464
transcripts were found to decrease in pterygium tissues (Figure 2A).
In addition, the relative expression levels are shown in a heatmap
plot and the top 50 upregulated and downregulated genes were
shown using a volcano plot (Figure 2B).

Gene function analysis for the DEGs

GO and KEGG pathway enrichment analyses were conducted to
assess the function of these 718 DEGs. The clusterProfiler package
was used for GO and KEGG pathway enrichment analysis to find
potential biological pathways. The top 5 BP (biological process), CC
(cellular component) and MF (molecular function) terms with the
lowest p-values in each category were selected and visualized using
bubble plots (Figure 2C). The DEGs were primarily enriched in
BP terms such as “leukocyte migration (GO:0050900)”, “leukocyte
chemotaxis (GO:0030595)”, “cell chemotaxis (GO:0060326)”,
“leukocyte mediated immunity (GO:0002443)” and “regulation of
inflammatory response (GO:0050727)”. Genes were also enriched in
CC terms like “external side of plasma membrane (GO:0009897)”,
“tertiary granule (GO:0070820)”, “secretory granule membrane
(GO:0030667)”, “ficolin-1-rich granule (GO:0101002)” and
“cornified envelope (GO:0001533)”. Additionally, the DEGs were
enriched in MF terms including “cytokine activity (GO:0005125)”,
“glycosaminoglycan binding (GO:0005539)”, “immune receptor
activity (GO:0140375)”, “chemokine activity (GO:0008009)” and
“chemokine receptor binding (GO:0042379)”. In the KEGG pathway
enrichment results, many pathways related to inflammation
and signal transduction were enriched, such as IL-17 signaling
pathway (hsa04657), chemokine signaling pathway (hsa04062),
TNF signaling pathway (hsa04668), MAPK signaling pathway
(hsa04010) and cytokine-cytokine receptor interaction (hsa04060)
(Figure 2D) and so on (Supplementary Table S2).

GSEA and GSVA analysis

Our reference gene set was ‘c2. cp.all.v2022.1. Hs.symbols.gmt’.
The datasets underwent GSEA enrichment analysis to identify
significant enrichment based on the criteria of FDR <0.25 and p
< 0.05. In gene set enrichment analysis (GSEA), the significant
enrichment in upregulated pathways including REACTOME_
MET_ACTIVATES_PTK2_SIGNALING, REACTOME_
COLLAGEN_FORMATION, REACTOME_MET_PROMOTES_
CELL_MOTILITY, KEGG_OXIDATIVE_PHOSPHORYLATION
and so on (Figures 3A–D). The significant enrichment in
downregulated pathways including WP_MAPK_SIGNALING_
PATHWAY (Figure 3E) and so on (Supplementary Table S3).
GSVA enrichment analysis was conducted on the PRJNA1147595
dataset, revealing distinct pathways (Supplementary Table S4).
By utilizing the gene set variation analysis (GSVA) package
and referencing the “h.all.v2023.2. Hs.symbols.gmt” gene set
(Hänzelmann et al., 2013), the gene expression matrix data
were subjected to GSVA. The GSVA variance analysis was
performed using the limma package of R software. Differential
pathways were filtered based on an p-value <0.05 and |log2FC|
> 0.25 (Supplementary Table S4). The differential pathways in
the PRJNA1147595 dataset encompassed HALLMARK_TNFA_
SIGNALING_VIA_NFKB, HALLMARK_INFLAMMATORY_
RESPONSE, HALLMARK_OXIDATIVE_PHOSPHORYLATION,
HALLMARK_IL6_JAK_STAT3_SIGNALING and HALLMARK_
ALLOGRAFT_REJECTION (Figure 3F).
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FIGURE 2
Differential gene expression analysis revealed significant variations between conjunctiva and pterygium. (A) Volcano diagram shows that there are 254
upregulated genes and 464 downregulated genes in the pterygium group compared with the conjunctival group, a total of 718 differentially expressed
genes. (B) Cluster heat map shows the expression of the top 50 upregulated and downregulated genes. (C) GO functional enrichment analysis results.
(D) Results of KEGG pathway enrichment analysis.

WGCNA analysis

Initially, expression data from 34 pterygium samples and
34 conjunctiva samples were utilized to establish co-expression
modules through the WGCNA algorithm. We focused on the top
25% of genes exhibiting the greatest variability for subsequent
investigation. Utilizing the “flashClust” package, we conducted
cluster analysis on these samples, with the findings illustrated
in Figure 4A. At a power value of 11, an independence level of
0.9 was attained, accompanied by an elevated mean connectivity
(Figures 4B, C). By employing the dynamic cutting technique,
we discerned seven unique gene co-expression modules within
pterygium, and a heatmap of the TOM was also generated
(Figures 4D, E). The genes within these seven modules were
concurrently employed to explore the relationship between module

eigengenes and clinical characteristics (Figure 4F). Notably, 3,956
genes were divided into 7 modules. Among them, salmon module
(cor = −0.66, P = 1e-9) and turquoise module (cor = 0.34, p = 0.005)
were significantly correlated with pterygium phenotype (Figure 4F).

Identification of hub genes in pterygium
using machine learning algorithms

A Venn diagram was constructed to visually represent the
relationships among the differentially expressed genes (DEGs) and
the salmon and turquoise modules identified through Weighted
Gene Co-expression Network Analysis (Figure5A). Subsequently,
two distinct machine learning algorithms—SVM and RF—were
leveraged to meticulously screen and pinpoint key signature genes
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FIGURE 3
Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) results. (A-D) The significant enrichment in upregulated pathways. The
members of the line marker pathway gene set appear in the gene ranking list, and the bottom is the rank value distribution of all genes. (E) The
significant enrichment in downregulated pathway. The results obtained from the GO database and the KEGG database for the pre-defined gene set. (F)
The differential pathways in the dataset encompassed, showing in cluster heat map.
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FIGURE 4
Weighted gene co-expression network analysis screened target module genes. (A) The figure is the gene clustering tree. (B–C) The relevant
parameters of WGCNA network construction, at a power value of 11, an independence level of 0.9 was attained. (D) Clustering heat map of all module
genes in WGCNA analysis. (E) Heat map of different phenotypes and module correlation analysis. Based on WGCNA analysis, the correlation between 7
gene modules and two phenotypes was obtained. (F) The expression of salmon module gene and turquoise module gene in the two groups was
shown by cluster heat map. Red represents high expression of gene and blue represents low expression of gene.

within the pterygium dataset. For the RF classifier, an optimal
number of 500 trees was selected, a decision grounded in an
evaluation of error rates and classifier stability across varying
tree counts. By analyzing the Mean Decrease Gini results, we
identified top five pivotal hub genes: KRT10, SPRR1B, SERPINB13,
PRSS3and NGEF (illustrated in Figure 5B). The SVM algorithm
was also employed to rigorously select hub genes associated with
pterygium, revealing five significant genes: KRT10, KRT6B, BTG2,
ASPG and NGEF (Figure 5C).

To identify crucial hub genes involved in pterygium,
we examined the intersection of the top five feature genes
from both the SVM and RF models (Figure 5D). The model’s
performance was evaluated using the area under the ROC
curve (AUC) (Figures 5E, F). Impressively, the dataset yielded
an AUC of 0.921 (KRT10) and 0.904 (NGEF), indicating a high
level of accuracy in classifying gene expression data. Notably,
KRT10 and NGEF were consistently identified as hub genes
associated with pterygium across all two machine learning methods
and WGCNA.

We downloaded the original data of GSE2513 and GSE51995
from GEO website, and conducted probe annotation and data
standardization on the original expression data to obtain the gene
expression matrix. The datasets GSE2513 and GSE51995 were
merged utilizing the R packages dplyr and purrr, and the shared
genes were identified based on the intersection of genes derived
from sequencing analysis. Subsequently, the cleaned data were
standardized using the stats, preprocessCore, and limmaRpackages.
The resultant standardized data were then subjected to further
analysis (Smyth and Gentleman, 2013). KRT10 achieved an AUC
of 0.906 in GSE2513 and GSE51995 combined data and NGEF
achieved an AUC of 0.625 (Supplementary Table S2).

Immuno-infiltration landscape between
conjunctiva and pterygium

The CIBERSORT deconvolution algorithm was employed to
quantify the infiltration of 22 distinct immune cell types within
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FIGURE 5
Machine learning algorithms identify biomarkers in pterygium. (A) The common genes in DEGs and the salmon and turquoise modules genes. (B) The
top 20 feature genes selected by RF algorithm. (C) Error rate of SVM algorithm 10X cross validation. (D) The top five feature genes from both the SVM
and RF models (E–F). The ROC curve was evaluated the diagnostic efficiency of KRT10 and NGEF.

pterygium and bulbar conjunctiva tissues (Figure 6A). Our analysis
revealed significant differences in the levels of five immune cells
between these two tissue types. Specifically, M1 macrophages,
resting dendritic cells, and activated dendritic cells were notably
elevated in the pterygium group, whereas resting mast cells and M2
macrophages were significantly increased in the bulbar conjunctiva
group (Figure 6A). Furthermore, a general correlation was observed
among the 22 immune cell types within pterygium samples
(Figure 6B). Correlation analysis between these immune cells and
KRT10 (a hub gene) in pterygium tissues indicated that dendritic
resting cells (cor = 0.58, p = 1.63e-07) and M1 macrophages
(cor = 0.43, p = 3.21e-05) were positively correlated with KRT10
expression, while Neutrophils also exhibited a significant negative
correlation with KRT10 (cor = −0.38, p = 0.0016) (Figure 6C).
Correlation analysis between these immune cells and NGEF in
pterygium tissues indicated that Macrophages M1 (cor = 0.61, P
= 2.57e-08), Dendritic cells resting (cor = 0.54, P = 1.95e-06),
Macrophages M0 (cor = 0.42, P = 0.0003), T cells regulatory (cor
= 0.42, P = 0.0004) and Mast cells resting (cor = 0.36, P = 0.0029)
were positively correlated with NGEF expression, while Dendritic
cells activated (cor = −0.35, p = 0.0034) and Mast cells activated
(cor = −0.33, p = 0.0063)exhibited a significant negative correlation
with NGEF (Figure 6D).

To validate our findings, we employed the combined dataset
of GSE2513 and GSE51995 from the GEO database as a
verification cohort. Following CIBERSORT analysis on this
integrated dataset, we observed that there were no statistically
significant differences in the proportions of M1 macrophages,
resting dendritic cells, activated dendritic cells, resting mast cells,
and M2 macrophages between the pterygium and conjunctiva
groups. Additionally, a comprehensive correlation analysis revealed
notable associations among the 22 immune cell types within the
pterygium samples (Supplementary Table S3).

Validation of the mRNA expression of hub
genes by quantitative real-time PCR

In our analysis of RNA-Seq data derived from 68 samples,
we observed a statistically significant elevation in the expression
levels of KRT10 and NGEF genes in the pterygium group
compared to the bulbar conjunctiva group, with a P-value <0.05
(as depicted in Figures 7A, B). To validate these findings, we
conducted a qPCR experiment, which confirmed a significantly
higher expression of KRT10 and NGEF in the pterygium group
relative to the bulbar conjunctiva group, with a P-value of 0.04
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FIGURE 6
CIBERSORT algorithm was used to analyze the infiltration of 22 kinds of immune cells in pterygium and conjunctival tissues. (A) The abundance of 22
immune cell types in pterygium and conjunctival samples. (B) Correlation analysis between 22 kinds of immune cells in pterygium samples. (C–D) The
correlation between KRT10 and NGEF genes and immune cells in pterygium group.

and 0.02 as illustrated in Figures 7C, D and primer sequences
are shown in Supplementary Table S5.

Identification of key miRNAs and potential
drug candidates

To pinpoint crucial miRNAs and potential drug candidates
that target the two identified feature genes, we conducted a
comprehensive analysis using data sourced from the Targetscan and
DSigDB databases. This rigorous screening process, employing a
statistical significance threshold of p < 0.05, led to the identification
of three pivotal miRNAs (depicted in Figure 8A). Our findings
revealed intricate interaction networks: KRT10 was found to
interact with one distinct miRNA (hsa-miR-4750), while NGEF was
associated with hsa-miR-450a and hsa-miR-4737.

Furthermore, we undertook an extensive screening to identify
the drug molecules, guided by P-value < 0.05 as per the DSigDB
database (illustrated in Figures 8B, C). We conducted a rigorous
screening process and identified KRT10 and NGEF as crucial
genes implicated in the pathogenesis of pterygium. Subsequently,
we presented only the top four drugs that significantly influenced
KRT10 expression, along with benzo [a] pyrene CTD 00005488,
which demonstrated the ability to jointly regulate both KRT10 and
NGEF genes. In the case of the NGEF gene, our analysis revealed
only four drugs with statistical significance (p < 0.05), including
benzo [a] pyrene CTD 00005488, and we have accordingly reported
these four drugs. Among these, benzo [a]pyrene (CTD 00005488)
emerged as a prominent candidate, demonstrating interactions with
all two feature genes and achieving a notable combined score of
94002.9. The remaining drug candidates exhibited interactions with
KRT10 and NGEF, offering valuable insights for the advancement of
pterygium treatment research and development.
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FIGURE 7
Verification of KRT10 and NGEF genes expression. (A–B) The expression of KRT10 and NGEF in the pterygium group and the conjunctival group was
compared in our RNA-seq data. (C–D) The expression of KRT10 and NGEF in 4 pairs of pterygium and conjunctival tissues was analyzed.

Discussion

Pterygium, a prevalent ophthalmologic condition, is
distinguished by abnormal proliferation of subconjunctival fibrous
tissue accompanied by angiogenesis, ultimately invading the central
cornea. This condition derives its name from its resemblance
to insect wings (Lan et al., 2018). The clinical management of
pterygium primarily involves surgical excision; however, the
high recurrence rates following surgery remain a significant
challenge, necessitating further exploration of its underlying
pathophysiological mechanisms (Rim et al., 2017).

Our study aims to delve into the molecular underpinnings of
pterygium by investigating the differential gene expression between
pterygium-affected and normal conjunctival tissues. Utilizing high-
throughput RNA sequencing coupled with bioinformatics analyses,
we identified 718 differentially expressed genes (DEGs) that
may elucidate the biological processes involved in pterygium
pathogenesis. Of particular note is the stark contrast between the

upregulated (254) and downregulated (464) genes, suggesting that
the pathogenesis of pterygium involves extensive dysregulation
of gene expression. The biological functions of these DEGs
warrant further exploration, especially concerning their roles in
cellular proliferation, inflammation, and tissue remodeling. For
instance, genes associated with inflammatory responses, such as
those implicated in the IL-17 signaling pathway, could elucidate
the chronic inflammatory nature of pterygium development.
Additionally, the distinct gene expression profiles identified through
heatmaps and volcano plots could serve as a foundation for
developing targeted therapies. Importantly, the use of Weighted
Correlation Network Analysis (WGCNA) in conjunction with
machine learning algorithms like Random Forest (RF) and Support
VectorMachine (SVM) to pinpoint key feature genes such as KRT10
and NGEF exemplifies a robust methodological framework that
enhances the reliability of the findings, thereby paving the way for
subsequent biological validation and clinical application (Lindsay
and Sullivan, 2001; Ono et al., 2021).
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FIGURE 8
MiRNA-mRNA and drug-gene network construction. (A) 3 Pivotal miRNAs targeting 2 feature genes. (B–C) Candidate drug molecules targeting 2
feature genes.

The pathway enrichment analysis, encompassing Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG), underscores the significant involvement of inflammation-
related pathways in pterygium pathology. The enrichment in
leukocyte migration and the IL-17 signaling pathway suggests that
immune dysregulation plays a pivotal role in the disease’s etiology.
This aligns with previous findings that highlight the involvement
of inflammatory mediators in ocular surface diseases, indicating
that targeting these pathways could represent a novel therapeutic
strategy to mitigate pterygium progression. Future interventions
could focus onmodulating these inflammatory pathways to improve
patient outcomes, particularly for those with recurrent disease.
Furthermore, the integration of Gene Set VariationAnalysis (GSVA)
and Gene Set Enrichment Analysis (GSEA) results could facilitate a
deeper understanding of the temporal dynamics of these pathways
during disease progression (Zhang et al., 2024; Gupta et al.,
2024). Pterygium is a chronic inflammatory proliferative lesion
(Zhang et al., 2011). The CIBERSORT analysis revealing significant
differences in immune cell infiltration, particularly the elevated
levels of M1 macrophages and resting dendritic cells in pterygium
tissues, emphasizes the immune landscape’s complexity (Zhao et al.,
2023). The presence of pro-inflammatory M1 macrophages suggests
a sustained inflammatory response, which could exacerbate tissue
damage and drive disease progression. The interaction between
various immune cell types and their roles in modulating the tumor
microenvironment merits further investigation (Labbé et al., 2010;
Celeva et al., 2011).

The validation of KRT10 and NGEF expression through
quantitative PCR further solidifies the credibility of the RNA-
Seq findings. This experimental confirmation not only reinforces
the role of these DEGs in pterygium but also suggests their
potential utility as biomarkers for disease diagnosis and
prognosis (Adiguzel et al., 2007; March et al., 2019). The
identification of potential drug molecules interacting with
KRT10 and NGEF, such as benzo [a]pyrene, opens new
avenues for therapeutic development (Zhang et al., 2022).
These findings underscore the importance of drug repurposing
strategies that leverage existing pharmacological agents to
target specific pathways implicated in pterygium. The ability to
identify compounds that modulate the expression or activity
of key genes could lead to more effective treatment modalities.
Future research should focus on the pharmacodynamics

and pharmacokinetics of these identified compounds in the
context of pterygium, as well as their safety profiles in clinical
populations.

This study acknowledges several limitations that warrant
consideration. Firstly, the sample size utilized in our analysis was
relatively modest, which may restrict the generalizability of our
findings. A larger cohort would enhance the robustness of our
conclusions and facilitate a more comprehensive understanding
of the genetic landscape associated with pterygium. Secondly,
the absence of long-term clinical follow-up limits our ability to
assess the prognostic implications of the identified biomarkers.
Additionally, batch effects inherent in high-throughput sequencing
could influence the consistency of gene expression profiles,
potentially confounding the interpretation of results. Lastly,
while we have established a correlation between differential
gene expression and disease pathology, the lack of experimental
validation for all findings presents a challenge in confirming
causative relationships. Future studies should aim to address
these limitations through larger, longitudinal investigations and
rigorous experimental validations to bolster the reliability of our
insights.

Conclusion

In conclusion, this study offers an exhaustive examination of
the molecular mechanisms underlying pterygium, emphasizing
distinct gene expression profiles and their diagnostic and
therapeutic implications. The discovery of pivotal genes, namely,
KRT10 and NGEF, coupled with insights into immune cell
infiltration patterns and pertinent signaling pathways, establishes
a foundation for future research endeavors aimed at deciphering
the pathophysiology of pterygium. Moreover, the identification
of potential pharmacological agents that interact with these key
genes presents promising opportunities for the development
of novel therapies. As we progress, it is crucial for subsequent
studies to validate these findings in larger and more heterogeneous
populations. This will ultimately facilitate the development of
targeted interventions and personalized treatment strategies for
patients suffering from pterygium.
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