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Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates, 8School of
Pharmacy, The University of Jordan, Amman, Jordan

Background: Breast cancer is one of the most prevalent malignancies and
a leading cause of death among women worldwide. Among its subtypes,
triple-negative breast cancer (TNBC) poses significant clinical challenges due
to its aggressive behavior and limited treatment options. This study aimed
to investigate the effects of doxorubicin (DOX) and 5-fluorouracil (5-FU) as
monotherapies and in combination using an establishedMDA-MB-231 xenograft
model in female BALB/C nudemice employing advancedmetabolomics analysis
to identify molecular alterations induced by these treatments.

Methods: We conducted comprehensive plasma and tumor tissue sample
profiling using ultra-high-performance liquid chromatography-electrospray
ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-
MS).

Results: Each treatment group exhibited unique metabolic profiles in plasma
and tumor analysis. Univariate and enrichment analyses identified alterations
in metabolic pathways. The combination treatment of DOX + 5-FU induced
the most extensive metabolic alterations disrupting key pathways including
purine, pyrimidine, beta-alanine, and sphingolipid metabolism. It significantly
reduced critical metabolites such as guanine, xanthine, inosine, L-fucose,
and sphinganine, demonstrating enhanced cytotoxic effects compared to
individual treatments. The DOX treatment uniquely increased ornithine
levels, while 5-FU altered sphingolipid metabolism, promoting apoptosis.
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Significance: This in vivo study highlights TNBC’s metabolic alterations to
chemotherapeutics, identifying potential biomarkers like L-fucose and beta-
alanine, and provides insights for improving treatment strategies.

KEYWORDS

triple-negative breast cancer,MDA-MB-231 xenograftmodel, untargetedmetabolomics
analysis, UHPLC-ESI-QTOF-MS, doxorubicin, 5-flurouracil

1 Introduction

Breast cancer (BCa) is the most prevalent cancer among women
worldwide and a leading cause of death. In 2020 the WHO reported
2.3 million new cases, representing 11.7% of all cancers and 685,000
deaths. In the UAE, breast cancer accounted for 21.4% of cancer
cases, with 1,030 new diagnoses (Ferlay et al., 2021). Among
BCa subtypes, triple-negative breast cancer (TNBC) is particularly
aggressive, making up 15%–20% of cases, and more common in
younger women and those with BRCA1 variants (Siegel et al., 2023;
Sharma, 2016). TNBC represents a complex and challenging subtype
due to its aggressive nature, limited treatment options, and poorer
prognosis in comparison with other BCa subtypes (Baranova et al.,
2022; Won and Spruck, 2020; Chang et al., 2019). It lacks estrogen
receptor (ER), progesterone receptor (PR), and human epidermal
growth factor receptor 2 (HER2) expression, rendering hormonal
and HER2-targeted therapies ineffective (Prat et al., 2013).

The Standard BCa treatment including surgery, chemotherapy,
radiation, and other therapies, is tailored based on the patient’s
condition and disease stage (Lee et al., 2011; Joensuu and Gligorov,
2012; Yin et al., 2020; Miller et al., 2022). Despite advancements
in understanding BCa, developing effective targeted therapies for
TNBC remains a significant challenge (Joensuu and Gligorov, 2012;
Yin et al., 2020). Chemotherapy has emerged as the primary approach
for TNBC treatment (Bianchini et al., 2016). The neoadjuvant
chemotherapy regimens have shown a promising, significant high rate
of pathological remission, leading to improved prognosis of TNBC
(Sharma, 2016; Murphy et al., 2018; Holanek et al., 2021). Several
combinations are recommended by The National Comprehensive
Cancer Network (NCCN) guidelines for the management of TNBC,
including taxane, anthracycline, cyclophosphamide, cisplatin, and
fluorouracil (Sharma, 2016;Hsu et al., 2022).Doxorubicin (DOX) and
5-fluorouracil (5-FU) are commonly used chemotherapy agents in
breast cancer treatment (Balmer et al., 2014). DOX, an anthracycline
antibiotic, intercalates DNA and inhibits topoisomerase II enzyme,
impeding DNA replication and inducing apoptosis in cancer cells
(Yang et al., 2014; Tacar et al., 2012). 5-FU is a pyrimidine analog that
inhibits thymidylate synthase, an enzyme critical for DNA synthesis,
thereby disrupting cancer cell proliferation (Aggarwal et al., 2021).
These chemotherapeutics have shown efficacy in various cancers, but
their limited effectiveness as monotherapies in TNBC highlights the
need for combination therapies to improve treatment response, as
recommended by NCCN guidelines (Joensuu and Gligorov, 2012;
Zoli et al., 2005; Martin et al., 2021).

Recurrence and therapeutic resistance pose significant
obstacles in TNBC treatment. Targeting BCa-specific metabolic
vulnerabilities would be a promising approach to overcome
these obstacles (Takahashi et al., 2013). Metabolomics research

facilitates the investigation of metabolic profiles, providing insights
into the dynamic changes occurring in metabolic pathways in
response to treatment which enhances our understanding of
drug sensitivity or resistance mechanisms (Schmidt et al., 2021).
Moreover, metabolomics analysis offers valuable information about
the complex interrelationships between the tumor’s metabolism and
its response to therapeutic interventions, enabling the identification
of novel therapeutic targets and strategies for improved TNBC
management (Shajahan-Haq et al., 2015; Ogrodzinski et al., 2017;
Judes et al., 2016). Despite advances, innovative therapeutic
approaches for TNBC management are urgently needed. In
response, omics techniques such as genomics, transcriptomics,
proteomics, and metabolomics have been developed to identify
genes, mRNA, proteins, and metabolites (Manzoni et al., 2018).
These methods have improved early disease detection and revealed
indicators of underlying disease processes (Valenti et al., 2021).

Many studies have examined omics applications in the field of
Bca research; however, limited research has been conducted to assess
the influence of anticancer drugs on the metabolism of breast cancer
cells (Semreen et al., 2020). In a previous study, we investigated the
metabolic changes in MCF7 and MDA-MB-231 cancer cells after
treatment with Tamoxifen and/or Paclitaxel (Semreen et al., 2020).
In this study, we aim to investigate the effects of DOX and 5-FU,
both as individual treatments and in combination, using the MDA-
MB 231 cell line-derived xenograft (CDX) model of TNBC and to
employ untargetedmetabolomics analysis usingUHPLC-ESI-QTOF-
MS, to elucidate themetabolic alterations inducedby these treatments.
The comprehensivemetabolomic profiling of plasma and tumor tissue
samples and tumor growth assessment provides valuable insights into
these treatments’ efficacy and potential enhanced effects in TNBC.

2 Materials and methods

2.1 Cell culture growth conditions

MDA-MB-231 cell line was cultured in DMEM medium
(5.55 mM glucose and 1 mM sodium pyruvate), supplemented with
10% fetal bovine serum and 1% penicillin/streptomycin (Sigma
Aldrich, St. Louis, MO, United States) at 37°C in a humidified
atmosphere containing 5% CO2.

2.2 MDA-MB 231 xenograft mice model

This study was approved by the Institutional Animal Care and
Use Committee (IACUC) at the University of Sharjah (Ethical
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Approval Number: ACUC-06-08-2022). Standard ethical guidelines
were followed in all animal procedures conducted.

Thirty healthy female BALB/C nude mice (8–10 weeks age),
with an average weight of 26–27 g, were included in the study
and maintained in our institutional animal facility following the
animal care guidelines. A detailed justification of the sample size
used in this study, including the rationale based on the resource
equation method, is provided in Supplementary Data S1 (Charan
and Kantharia, 2013). Animal welfare was carefully monitored
daily by assessing the cage environment, behavior, and physical
appearance. Mice were housed in groups of three per cage and
provided with easily accessible food and water. The mice were
randomized into five experimental groups (6 per group). Twenty-
four mice were selected to establish the (CDX) model using MDA-
MB 231 cells, and the remaining six mice were designated as the
negative control, consisting of healthy mice not injected with MDA-
MB-231 cells and did not develop tumors. MDA-MB-231 cells (2 ×
106 in 50 μL PBS & 50 μL Matrigel) were injected subcutaneously
into the neck region of the mice to induce tumor formation.
Tumor-bearing mice reached a tumor volume of 150–200 mm3

approximately 6 weeks post-implantation, after which they were
randomized into four groups: untreated xenografts consisting of
mice with tumors that received no treatment referred to as positive
control group) and three treatment groups, DOX, 5-FU, and a
combination of DOX and 5-FU. The mice in the DOX group were
administered 1 mg/kg of DOX once weekly (Sudha et al., 2017),
and the mice in the 5-FU group received 50 mg/kg of 5-FU daily
for five consecutive days and both treatments were administered
via an intraperitoneal (i.p.) route (Lim et al., 2019). The mice in
the combination therapy group received DOX & 5-FU as separate
injections, and the treatment duration was 2 weeks.The bodyweight
of the mice was measured at the start of the study and twice
weekly from the beginning of the treatments. Tumor growth and
progression were monitored by palpation and measurement of
tumor size periodically using a digital vernier caliper. The tumor
volume in cm3 was determined using the formula (volume = π/6 ×
length × width2) (Yuan et al., 2016). All mice were anesthetized and
humanely euthanized at the end of the treatment period. Tumors
were excised and weighed, and their sizes were measured. Also,
blood plasma was collected from each mouse. Both tumor and
plasma samples were stored at −80°C for further analysis. During
sample collection, two mice were excluded due to the low plasma
volume obtained, resulting in a final plasma analysis of 28 samples
and 22 samples for the tumor analysis. The distribution of samples
in the final analysis was as follows: DOX (n = 6), 5-FU (n = 5), DOX
& 5-FU (n = 5), Positive Control (n = 6), and Negative Control (n
= 6). All other data points and animals were included as planned.
Additional details are provided in Supplementary Data S2.

2.3 Preparation of the samples for
metabolomics extraction

2.3.1 Metabolites extraction from plasma
Each collected plasma sample (100 µL) was mixed with 300 µL

ofmethanol (≥99.9%, LC-MSCHROMASOLV) in Eppendorf tubes,
followed by vortex and incubation at −20°C for 2 h. After vortex
and centrifugation at 14,000 rpm for 15 min, the supernatant

evaporated at 35°C–40°C using speed vacuum evaporation (EZ-2
Plus (GeneVac, Ipswich, United Kingdom). The extracted samples
were resuspended in 200 µL of 0.1% formic acid inDeionizedWater-
LC-MS CHROMASOLV. Subsequently, the supernatant was filtered
through a 0.45 µm pore size hydrophilic nylon syringe filters and
collected in inserts within LC glass vials for LC-MS/MS analysis. All
samples were placed in the autosampler at the temperature set at 4°C
to proceed with the analysis by Q-TOF MS. A pooled QC sample
was created to ensure analysis reproducibility by mixing 10 µL from
each sample.

2.3.2 Metabolites extraction from tumor
Tumor tissue was mechanically homogenized to prepare it for

analysis. Preparation involved cutting frozen tumors into pieces
and mixing 75 mg of each tumor tissue with 300 µL of lysis buffer
and protease inhibitor. Ultrasonic homogenization was performed
multiple times for cell disruption and to release metabolites
and cellular components essential for metabolic analysis using
the COPLEY sonicator or QSONICA SONICATOR (Qsonica,
Newtown, CT, United States) under 90% amplifier and for 30 s with
an ice bath employed throughout the process, after centrifugation
(15,000 rpm, 10 min, 4°C), the supernatants were collected and
further processed following the same plasma sample preparation
protocol mentioned above.

2.4 UHPLC-ESI-QTOF-MS metabolic
plasma profiling and tumor profiling

Metabolic profiling of plasma and tumor samples was
performed using a UHPLC-ESI-QTOF-MS system, which
enabled the identification of distinct metabolic alterations
across different treatment groups. The analysis followed a data-
dependent acquisition method in positive ion mode, ensuring
high precision and reliable identification of metabolites. Quality
control (QC) injections were conducted at regular intervals
to ensure consistency throughout the experiment. Technical
specifications and methodology for UHPLC-ESI-QTOF-MS are
detailed in Supplementary Data S3.

2.5 Data processing and statistical analysis

Metabolite datasets obtained from the UHPLC-ESI-QTOF-MS
analysis were processed using MetaboScape®4.0 software (Bruker
Daltonics, Billerica, MA, United States). All Metabolites included
were matched against the Human Metabolome Database (HMDB).
MetaboAnalyst®5.0 softwarewas used for data processing, including
normalization, transformation, and quality checks like missing
value imputation and outlier detection. It was also used to
perform multivariate analysis using sparse Partial Least Squares -
Discriminant Analysis (sPLS-DA), and volcano plots to compare
the study groups’ results. Univariate analysis: One-way ANOVA
followed by Fisher’s post hoc test was conducted to compare
the groups, an independent Student’s t-test, and a fold change
analysis between each pair of groups. The fold change was
adjusted at 1.5, and metabolites with a p-value <0.05 were
considered statistically significant. Enrichment analysis was carried
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out for statistically significant metabolites. The statistical analysis
of tumor assessment was conducted using GraphPad Prism 10 and
the dplyr package. Tumor growth among different experimental
groups was conducted using two-way ANOVA followed by
Dunnett multiple comparisons test at adjusted p-value <0.05
(95% confidence interval). All data including the raw QGD files,
has been deposited to Metabolomics Workbench (https://www.
metabolomicsworkbench.org). The data track id is 4,449 and
4,450. Schematic representation of the design and workflow of the
experimental xenograft model see Supplementary Figure S1.

3 Results

3.1 Tumor assessment

The tumor assessment across the four distinct groups revealed
the effectiveness of treatments used in restricting tumor growth
(Figures 1A, B). All the treated groups showed a delayed increase
in tumor volumes compared to the significant growth in the
positive control group. Effect size analysis indicated that 5FU
had the most substantial impact, followed by the combination
treatment, while DOX showed a moderate effect in reducing
tumor growth (Supplementary Table S1).

3.2 Plasma and tumor tissue metabolic
profiling

This study aimed to explore the metabolic changes induced by
DOX, 5-FU, and DOX/5-FU combination treatments in MDA-MB-
231 xenograft model using UHPLC-ESI-QTOF-MS to perform
metabolic plasma and tumor profiling. Ninety-two metabolite
datasets were annotated from plasma, and 202 metabolites were
detected from the tumor tissues of the metabolomic analysis
of plasmaand tumor tissues (Supplementary Figure S1). All
Metabolites includedwerematched against theHumanMetabolome
Database (HMDB); accordingly, a total of 89 metabolites were
included in the plasma analysis, and 190 metabolites were included
in the tumor analysis. Venn diagram (Supplementary Figure S1)
demonstrated 20 shared significant metabolites between plasma
and tumor samples, indicating overlapping metabolic alterations,
and highlighting distinct changes unique to each sample type. Each
treatment showed unique distinct metabolic profiles.

A multivariate analysis using sPLS-DA, as shown in Figure 2,
highlights various metabolic clustering among the treatment
groups, emphasizing the specific effects of individual treatments,
the significance of 5-FU in the combination therapy, and
potential shared metabolic responses in the positive control
and combined groups. In the metabolomics analysis of plasma
(Figure 2A), the sPLS-DA results show that the DOX-treated
group demonstrates a distinct separation from all other groups.
Notably, the 5-FU group fully overlaps with the combined treatment
group, indicating a potential dominant influence of 5-FU in
the combination therapy. The positive control and combined
treatment groups exhibit metabolic characteristics suggesting a
more comprehensive response to tumor growth or xenograft
conditions, independent of the applied treatments. Additionally,

FIGURE 1
Tumor growth dynamics across different treatment groups over the
14-day study period. (A) Tumor volume measurements (mean ±
standard deviation) at Days 1, 5, and 10 for Group 1 (DOX, red), Group
2 (5FU, blue), Group 3 (DOX + 5FU, green), and Group 4 (Positive
Control, purple). Statistical significance is indicated by∗(p-value <
0.05), while “ns” denotes no significant difference. (B) Tumor growth
curve depicting the changes in tumor volume (mean ± standard
deviation) for all groups throughout the treatment period. The positive
control group exhibits continuous tumor growth, while treatment
groups show restricted growth, with the combination therapy
demonstrating the most pronounced effect.

partial overlap between the positive and negative controls suggests
inherent metabolic similarities. The classification error rate for
this analysis, evaluated using 5-fold cross-validation, decreased
progressively with an increasing number of components, starting
at 64.3% for one component and improving to 32.1% with five
components (Supplementary Figure S2A). This indicates the model
achieves optimal separation with five components, demonstrating
its robustness in classifying treatment groups.

In the metabolomic analysis of tumors (Figure 2B), the sPLS-
DA model revealed that the combined treatment group forms a
distinct cluster, reflecting unique metabolic alterations induced
by the DOX and 5-FU combination. The positive control fully
overlaps with the 5-FU group cluster, suggesting similarities
in metabolic responses. DOX and 5-FU groups show limited
intersections, indicating partly distinct metabolic profiles. The
classification error rate for this analysis also followed a clear
trend: it initially remained at 36.4% for the first two components,
improved significantly to 18.2% with three components, and then
increased to 22.7% and 31.8% with four and five components,
respectively (Supplementary Figure S2B). This pattern suggests that
the model achieves its best performance with three components,
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FIGURE 2
Multivariate analysis and metabolite comparisons across treatment groups. (A) sPLS-DA scores plot for plasma metabolomics data showing separation
of treatment groups along Component 1 (20.4%) and Component 2 (9.2%). Distinct clustering of the DOX, 5FU, and DOX + 5FU groups is observed,
with partial overlaps suggesting shared metabolic responses. (B) sPLS-DA scores plot for tumor metabolomics data showing group separation along
Component 1 (15.7%) and Component 2 (9.8%). The DOX + 5FU group forms a distinct cluster, reflecting unique metabolic alterations induced by the
combination treatment. (C) Histogram of significantly altered plasma metabolites for each treatment group (DOX, 5FU, and DOX + 5FU), with p-values
indicating statistical significance. (D) Histogram of significantly altered tumor metabolites for DOX and DOX + 5FU treatments, highlighting key
metabolic changes unique to each treatment.

effectively balancing classification accuracy and model complexity.
In addition to the multivariate clustering observed in plasma and
tumor metabolomics data, detailed comparisons of significantly
altered metabolites are shown in Figures 2C, D.

Univariate analysis using Student’s t-test was used to detect
significantly alteredmetabolites by comparing the effect of each drug
treatment on every single metabolite to that of the positive control
group, followed by an enrichment analysis for the significantly
altered metabolites identified. Alterations in the metabolic profiling
of the plasma and tumor compared to the positive control group are
summarized in Supplementary Figures S2, S3.

In the plasma metabolomic analysis, 89 metabolites were
included after data curation and filtration (see M&M Section 2.5).
Among them, DOX treatment showed only one significantly
elevated, ornithine metabolite, and three reduced metabolites
(Supplementary Figure S3A). In contrast, the 5-FU treatment
exhibited two elevated metabolites indolelactic acid and
sphinganine, and 20 reduced metabolites including guanine,
guanosine, xanthine, and xanthosine (Supplementary Figure S3B).

After DOX + 5-FU combination treatment, only one metabolite,
cortexolone, was elevated, and the other had 16 reduced
metabolites (Supplementary Figure S3C). Enrichment analysis
revealed affected metabolic pathways, including glycine and serine
metabolism, spermidine and spermine biosynthesis for DOX, and
purine, tryptophan, spermidine, and spermine biosynthesis for
5-FU.

Themetabolic tumor profiling analysis included 190metabolites
after data curation and filtration (see M&M Section 2.5), and in
the DOX-treated group, 15 elevated and five reduced metabolites
were identified (Supplementary Figure S3D). For the DOX/5-
FU combination, 20 elevated and 28 reduced metabolites were
detected, as shown in Supplementary Figure S3E. The most affected
pathways were amino sugar, purine, thiamine, methionine, histidine
metabolism, and malate-aspartate shuttle for DOX, and purine,
glycine, serine, pyrimidine, beta-alanine metabolism, riboflavin,
aspartate, arginine, and proline metabolism for the DOX/5-FU
treated group. Notably, 5-FU treatment showed no significantly
altered metabolites in the tumor analysis. The enrichment analysis
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FIGURE 3
Enrichment Analysis of DOX + 5 FU and positive control of plasma metabolites (left) and tumor metabolites (right).

comparing the plasma and tumor analyses in response to DOX +
5-FU treatment revealed significant impacts on similar metabolic
pathways, including purine and glycine metabolism (Figure 3).
The most pronounced metabolic pathway alterations and key
metabolite changes identified across the different treatment groups
(DOX, 5-FU, and their combination) in plasma and tumor tissues
are summarized in Table 1, highlighting their significance in
TNBC progression and potential as biomarkers for therapeutic
efficacy.

4 Discussion

Triple-negative breast cancer (TNBC) is a highly aggressive,
challenging, and hard-to-treat type of breast cancer. Its inherent
biological heterogeneity, along with the marked high potential of
metastasis and poor prognosis, renders current treatments less
effective and further complicates the identification of effective
therapeutic regimens (Yuan et al., 2016). Despite progress in
understanding TNBC metabolism, important gaps persist. Cancer
research has revealed that various metabolic pathways involved in
energy production and biosynthetic needs are crucial for cancer
cells’ rapid growth and proliferation. Several amino acids have
been identified to have characteristically high levels in different
types of cancer compared to normal tissue (Zenati et al., 2023).
However, much of the current research depends on cancer cell lines,
which do not fully replicate the complex tumor microenvironment,
leading to variability and limiting clinical relevance. Addressing
these limitations requires integrating studies utilizing both model
systems and human patients. Research on TNBC’s metabolic
response to different chemotherapeutics is still limited, particularly
concerning combination therapies. Understanding how TNBC
adapts metabolically to these treatments is crucial, especially given
the associated side effects and resistance. Using animal models is
vital for examining these interactions in a more clinically relevant

context, aiming to develop more effective and targeted treatment
strategies.

Our study used untargeted metabolomics to evaluate the
alterations in metabolites and metabolic pathways of the MDA-
MB-231 breast cancer xenograft model following treatment with
DOX and/or 5-FU (Table 1). We utilized the MDA-MB-231 cell
line, classified as an MSL Basal B TNBC subtype, which is widely
used in xenograft models to investigate tumor growth, metastasis,
and therapeutic responses (Ahmed, 2009; Junior et al., 2022). Based
on our hypothesis, we performed both tumor tissue and plasma
profiling to comprehensively understand metabolic alterations in
TNBC. While plasma profiling provides insights into systemic
metabolic changes, it can be affected by factors such as diet,
lifestyle, andmedication,making it less accurate in reflecting tumor-
specific metabolism. Studies have shown that metabolite levels
in biofluids do not always correlate with those in tumor tissues
(Lehmann et al., 2011). To overcome this, we included tumor
tissue profiling to obtain more precise tumor-specific metabolic
information. Our findings confirmed this approach, as a greater
number of metabolites were identified in tumor tissues after
treatment, revealing distinct metabolic profiles across different
treatment groups (Supplementary Figure S1).

The multivariate analysis revealed that DOX, 5-FU, and
their combination induced distinct metabolic alterations,
with each treatment showing unique profiles. Plasma analysis
indicated elevated ornithine levels with DOX treatment, while
the combination therapy mirrored the metabolic changes
seen with 5-FU, suggesting a dominant influence of 5-FU
in the combination. Tumor tissue analysis supported this,
showing a distinct metabolic signature for the combination
treatment (Supplementary Figure S3E), with no significant
alterations observed in the 5-FU group, indicating a different
response within the tumor microenvironment.

The sPLDA analysis further highlighted these findings,
showing a complete overlap between the 5-FU and combination
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TABLE 1 Summary of metabolic pathway alterations and key metabolite changes in plasma and tumor tissues across different treatment groups in the
TNBC xenograft model.

Treatment group Top enriched
metabolic pathway

Altered metabolites Significance on
TNBC

Potential as
biomarkers

DOX Polyamine Biosynthesis,
Amino Sugar, Methionine, and
Histidine Metabolism

Plasma:
Ornithine (↑), Sphingosine (↓)
Tumor:
Sphinganine (↑), Putrescine
(↑)

Ornithine elevation suggests
disruption in polyamine
biosynthesis and potential
ODC inhibition, enhancing
DOX’s tumor-killing effects

Ornithine, Methionine, and
Histidine (Indicators of DOX
treatment response and
metabolic vulnerabilities)

Alterations in methionine and
histidine metabolism imply
changes in amino acid
metabolism, affecting cellular
energy and antioxidant
defenses

5-FU Pyrimidine and Purine
Metabolism, Sphingolipid
Metabolism

Plasma:
Guanine (↓), Xanthine (↓),
Inosine (↓), Sphingosine (↓)
Tumor:
Sphinganine (↑)

Altered pyrimidine and purine
metabolism indicate 5-FU’s
impact on nucleotide synthesis
pathways, affecting TNBC cell
proliferation

Sphinganine, Sphingosine, and
Purine metabolites (Potential
biomarkers for 5-FU efficacy
and tumor adaptation)

Changes in sphingolipid
metabolism, particularly
sphinganine elevation in
tumors, suggest involvement
in apoptosis regulation

Combined (DOX + 5-FU) Purine, Pyrimidine,
Beta-Alanine, Sphingolipid,
Glycine, Serine, and Urea
Cycle Metabolism

Plasma:
L-Fucose (↓), Anserine (↓),
Sphinganine (↓)
Tumor:
Guanine (↓), Xanthine (↓),
Inosine (↓), Adenosine (↑),
Sphingosine (↓), Sphinganine
(↓), Ureidopropionic acid (↓)

The combination treatment
disrupts multiple pathways,
affecting DNA/RNA synthesis,
oxidative stress balance,
cellular repair, energy
production, and apoptosis
regulation, suggesting broad
metabolic interference in
TNBC growth and survival

L-fucose, Sphingosine,
Anserine, (Potential
biomarkers for combination
treatment efficacy and
metabolic vulnerabilities in
TNBC)

Footnote: This table provides a comprehensive summary of the most significant metabolic pathway alterations observed in plasma and tumor tissues across different treatment groups (DOX, 5-FU,
and their combination) in the TNBC, xenograft model. The arrows (↑/↓) indicate whether the metabolites were elevated or reduced following treatment. The identified metabolites’ potential roles
as biomarkers highlight their significance in understanding TNBC’s metabolic vulnerabilities and response to therapy.

treatment groups in plasma, suggesting 5-FU’s effects overshadowed
DOX when combined. The partial overlap between control
and treatment groups in both plasma and tumor analyses
suggests shared metabolic characteristics related to tumor
growth or the inherent metabolic state of the xenograft models
(Figures 2A, B).

Our study identified key metabolic pathways altered in
TNBC treatment, with purine metabolism, spermidine, and
spermine biosynthesis among the top enriched pathways
across different treatment groups in plasma analysis. Tumor
tissue profiling revealed more complex metabolic changes,
especially in the combination DOX + 5-FU group, where
purine, pyrimidine, and amino acid pathways, including glycine,
serine, and beta-alanine metabolism, were significantly enriched
(Supplementary Figure S3F). In contrast, the DOX treatment group
showed distinct alterations in purine, amino sugar, methionine,
and histidine metabolism, pathways crucial for cellular energy
production, nucleotide synthesis, and antioxidant defense. These
findings align with known metabolic alterations in TNBC,
such as increased glycolysis (Warburg effect), enhanced serine

biosynthesis, dependence on glutaminolysis, and altered lipid
metabolism, which collectively contribute to the aggressive behavior
and growth of TNBC (Kazan et al., 2019; Ireson et al., 2019;
Mattaini et al., 2016; Antalis et al., 2010).

In the group treated with the combination of DOX + 5FU,
we observed substantial reductions in key purine metabolites
such as guanine, xanthine, and inosine, along with increased
levels of adenosine and its derivatives, suggesting disruptions in
purine synthesis critical for DNA and RNA production in rapidly
proliferating cancer cells.

These findings align with 5-FU’s known mechanism of action,
as the drug primarily targets pyrimidine metabolism but also
impacts purine metabolism through its effects on one-carbon (1C)
metabolism and the folate cycle. By inhibiting thymidylate synthase
(TYMS) via its active metabolite FdUMP, 5-FU interferes with
the conversion of dUMP to dTMP, impairing DNA synthesis and
indirectly affecting purine synthesis by reducing the availability
of tetrahydrofolate (THF) derivatives, crucial for de novo purine
production. This dual inhibition of both pyrimidine and purine
pathways significantly disrupts nucleotide synthesis, contributing

Frontiers in Molecular Biosciences 07 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1517289
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Hassanein et al. 10.3389/fmolb.2024.1517289

to the cytotoxic effects observed in TNBC cells treated with 5-FU
(Possemato et al., 2011; Choi et al., 2013).

The metabolic profiling also highlighted significant alterations
in sphingolipid metabolism, particularly in sphingosine and
sphinganine levels, with notable changes observed in the
combination treatment group. Sphinganine levels were markedly
reduced in the combination group but elevated in the 5-FU
treatment, while sphingosine levels decreased in both DOX and
5-FU treated groups. Additionally, sphinganine was significantly
elevated in tumor tissues of the DOX-treated group, indicating a
unique metabolic response. These findings suggest that modulation
of sphingolipid metabolism may contribute to the pro-apoptotic
effects of DOX and 5-FU treatments. This is supported by previous
studies demonstrating that sphinganine and sphingosine play
crucial roles in inducing apoptosis and inhibiting cell proliferation,
particularly in breast and colon cancers (Stine et al., 2022).
The ability of these metabolites to arrest the cell cycle at the
G2/M phase and promote programmed cell death highlights
their potential as chemopreventive and chemotherapeutic agents,
emphasizing their potential as therapeutic targets or biomarkers
(Ogrodzinski et al., 2017; Hii et al., 2021).

Notably, the plasma metabolic profiling of the combined
DOX and 5-FU treatment, revealed reduced L-fucose levels
in plasma, suggesting a disruption in fucosylation processes
that influence tumor behavior. This aligns with the critical
role of L-fucose in cancer biology, where altered fucosylation
is linked to metastasis and immune evasion in breast cancer
(Bae et al., 2011; Markowski et al., 2023). These changes highlight L-
fucose’s potential as a biomarker for treatment efficacy and a target
for therapeutic intervention in TNBC.

The comparative analysis of plasma and tumor tissues also
revealed overlapping effects on purine, pyrimidine, and beta-
alanine metabolism, with beta-alanine metabolism emerging as
one of the most enriched pathways in the combined treatment
group (Supplementary Figure S3F). This is consistent with existing
research showing that beta-alaninemetabolism is more pronounced
in ER-negative breast cancer and is linked to aggressiveness and
poorer outcomes (Cheng et al., 2015). We observed alterations
in related metabolites, such as anserine, pantothenic acid (PA),
and ureidopropionic acid, which play key roles in oxidative
stress response, energy production, and membrane repair. The
reduction in plasma anserine levels may indicate a shift in oxidative
balance, as anserine has antioxidant properties that protect against
oxidative stress, a critical factor in tumor progression (Keeley et al.,
2019). Ureidopropionic acid, a precursor to beta-alanine, was
altered, suggesting changes in beta-alanine availability. Beta-alanine
itself is a precursor for PA, essential for coenzyme A (CoA)
synthesis, which plays a key role in the TCA cycle, fatty acid
biosynthesis, and membrane phospholipid synthesis. Alterations
in PA levels can influence energy production, cellular repair,
and membrane integrity, which are vital for cancer cell survival
(Budczies et al., 2013; Ihara et al., 2019).

These findings underscore the impact of the combined treatment
on disrupting essential metabolic pathways in TNBC, offering
insights into potential biomarkers and therapeutic targets for this
aggressive subtype.

In the DOX-treated group, we observed elevated levels of
ornithine in plasma, indicating a significant alteration in polyamine

biosynthesis (Supplementary Figure S3A). The increase in ornithine
suggests a potential inhibition of ornithine decarboxylase (ODC)
activity, the enzyme responsible for converting ornithine to
putrescine, a precursor for polyamine synthesis (Geck et al., 2020).
Targeting ODCmay reduce polyamine levels, which are essential for
cancer cell growth, potentially enhancing the tumor-killing effects of
DOX. Previous studies support this finding, showing that genotoxic
chemotherapy, such as DOX or cisplatin, upregulates ornithine
while reducing putrescine and spermidine levels, disrupting the cell
cycle and making cancer cells more susceptible to DNA damage
(Ma et al., 2020; Hutschenreuther et al., 2013). This disruption may
increase DOX’s therapeutic efficacy, highlighting its potential as a
strategy to target TNBC’s metabolic vulnerabilities.

Overall, our findings provide a foundation for identifying
metabolic vulnerabilities, exploring the effects of combined
chemotherapy treatments, and highlighting the importance of
considering the tumor context and its metabolic adaptations to
therapeutic interventions specific to TNBC. We plan to expand
our research to include additional TNBC models to address
heterogeneity and integrate proteomic data to explore correlations
with metabolic alterations. This approach aims to uncover pathways
and mechanisms triggered by the treatments used. By bridging
these findings, we strive to develop more effective and personalized
therapeutic strategies for TNBC, ultimately translating our research
into meaningful clinical benefits.
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