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Background: Chemoradiotherapy is a crucial treatment modality for
esophageal squamous cell carcinoma (ESCC). This study aimed to identify
chemoradiotherapy sensitivity-related genes and analyze their prognostic value
and potential associations with the tumor microenvironment in ESCC.

Methods: Utilizing the Gene Expression Omnibus database, we identified
differentially expressed genes between ESCC patients who achieved complete
and incomplete pathological responses following chemoradiotherapy.
Prognostic genes were then screened, and key genes associated with
chemoradiotherapy sensitivity were determined using random survival forest
analysis. We examined the relationships between key genes, infiltrating
immune cells, and immunoregulatory genes. Additionally, drug sensitivity and
enrichment analyses were conducted to assess the impact of key genes on
chemotherapy responses and signaling pathways. A prognostic nomogram
for ESCC was developed incorporating key genes, and its effectiveness was
evaluated. Genome-wide association study data were employed to investigate
chromosomal pathogenic regions associated with key genes.

Results: Three key genes including ATF2, SLC27A5, and ALOXE3 were identified.
These genes can predict the sensitivity of ESCC patients to neoadjuvant
chemoradiotherapy and hold significant clinical relevance in prognostication.
These genes were also found to be significantly correlated with certain
immune cells and immunoregulatory genes within the tumormicroenvironment
and were involved in critical tumor-related signaling pathways, including
the epithelial-mesenchymal transition and P53 pathways. A nomogram was
established to predict the prognosis of ESCC by integrating key genes with
clinical stages, demonstrating favorable predictability and reliability.

Conclusion: This study identified three key genes that predict
chemoradiotherapy sensitivity and prognosis and are involved in
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multiple tumor-related biological processes in ESCC. These findings provide
predictive biomarkers for chemoradiotherapy response and support the
development of individualized treatment strategies for ESCC patients.

KEYWORDS

esophageal squamous cell carcinoma, chemoradiotherapy sensitivity, neoadjuvant
chemoradiotherapy, pathological complete response, immune microenvironment

Introduction

Esophageal cancer ranks as the seventh most common
malignant tumor globally, with approximately 604,100 new cases
diagnosed annually (Sung et al., 2021). Histopathologically, it
is primarily classified into esophageal squamous cell carcinoma
(ESCC) and esophageal adenocarcinoma, each differingmarkedly in
pathogenesis, biological behavior, treatment, and prognosis. ESCC,
accounting for about 85% of esophageal cancers, is predominantly
found in East Asia and Africa (He et al., 2021). This type is highly
invasive, and symptoms such as dysphagia often manifest in the
disease’s late stages, leading to a dismal prognosis with a five-year
survival rate between 15% and 25% (Shi et al., 2022).

At diagnosis, nearly 50% of patients exhibit tumor invasion
beyond the primary lesion’s local area, with 70%–80% presenting
regional lymph node metastasis. Locally advanced ESCC is defined
as stage T2-4 or N1-3 with M0 (Thakur et al., 2021; Puhr et al.,
2023). The standard treatment for this stage is neoadjuvant
chemoradiotherapy (NCRT) followed by surgical resection. In the
CROSS trial, the NCRT group achieved a significantly higher R0
resection rate (92% vs. 69%), negative lymph node resection rates
(31% vs. 75%), and improved overall survival (OS, 49.4 vs. 24
months) compared to the surgery-only group in treating locally
advanced ESCC (van Hagen et al., 2012). The NEOCRTEC5010
study, involving 451 patients, demonstrated that NCRT significantly
enhanced the five-year OS rate (from 49.1% to 59.9%) over
surgery alone (Yang et al., 2021a). Chen et al. further validated
the superiority of NCRT over neoadjuvant chemotherapy followed
by surgery, showing higher pathological complete response (pCR)
rates, negative lymph node resection rates, and reduced mortality
due to tumor progression or recurrence in the NCRT group
(Wang et al., 2021). Approximately 20%–40% of patients with
locally advanced esophageal cancer achieve pCR following NCRT
(van Hagen et al., 2012; Yang et al., 2021a; Wang et al., 2021). pCR
is closely associated with extended OS and reduced rates of distant
recurrence (Noordman et al., 2018; Hirata et al., 2021). For ESCC
patients achieving pCR after NCRT, the need for esophagectomy
and treatment strategies should be reassessed (Noordman et al.,
2018). Furthermore, given the poor prognosis of advanced ESCC,
predicting patient outcomes from chemoradiotherapy in advance
can inform treatment planning (Hirata et al., 2021). Thus,
identifying sensitive, specific, and accurate biomarkers to forecast
ESCC patients’ responses to chemoradiotherapy, especially their
pCR status, is imperative. Previous studies suggested using clinical
remission or imaging techniques to predict ESCC pCR post-NCRT
(Squires et al., 2022; Liu et al., 2016). However, it remains unclear
who benefits most from NCRT or chemoradiotherapy among
ESCC patients.

In this study, we investigated the differentially expressed
genes (DEGs) between patients who achieved pCR and did not
achieve pCR (npCR) following NCRT, and screened key genes
associated with the prognosis of ESCC. Subsequently, we assessed
the relationships between these key genes and ESCC-related
genes, infiltrating immune cells, and chemotherapy sensitivity. This
analysis is intended to more accurately predict chemoradiotherapy
sensitivity and prognosis, thereby enhancing treatment strategies for
ESCC patients.

Methods

Data source and preprocessing

According to the 6th edition of the American Joint Committee
on Cancer TNM staging system, the Guangzhou cohort included
patients with ESCC staged IIb-III who underwent NCRT prior to
surgery from September 2007 to March 2012. The RNA-seq data for
these patients are accessible in theGene ExpressionOmnibus (GEO)
database under accession number GSE45670. We monitored these
patients until July 2023, selecting those who survived over 3 months
after treatment to assess their survival outcomes. Another cohort,
the Beijing cohort (GSE53624), comprised tumor and adjacent
normal tissues from 119 ESCC patients. The Series Matrix Files
for GSE45670 and GSE53624 were based on annotation platforms
GPL570 and GPL18109, respectively.

We retrospectively included the real-world patients with stage
II-III ESCC from Sun Yat-sen University Cancer Center. Tissue
samples and pathological results of these patients were obtained by
endoscopic biopsy prior to treatment. After pathological diagnosis,
they received NCRT combined with esophagectomy. This study
was approved by the Ethics Committee of the Sun Yat-sen
University Cancer Center and conducted in accordance with the
local legislation and institutional requirements.

Identification of key chemoradiotherapy
sensitivity-related genes

The “limma” package (Ritchie et al., 2015) was utilized to
identify DEGs between pCR and npCR patients, while univariate
Cox regression analysis determined genes associated with survival.
We then identified genes that were highly expressed in pCR patients
and suggested a favorable prognosis, and those underexpressed in
pCRpatients and indicated a poorer prognosis.The random survival
forest algorithm executed using the “randomForestSRC” package,
selected genes based on their prognostic importance. Genes with a
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relative importance exceeding 0.7 were classified as key genes related
to chemoradiotherapy sensitivity.

Analysis of immune cell infiltration in ESCC

Using the gene expression of each patient, the CIBERSORT
deconvolution algorithm estimated the relative proportions of 22
immune cell types, including B cell subsets, T cell subsets, NK
cells, and macrophages (Newman et al., 2015). We analyzed and
compared the immune cell fractions in tumor and adjacent non-
tumor tissues of ESCC patients employing the “CIBERSORT” and
“ggpubr” R packages. Correlations between chemoradiotherapy
sensitivity-related genes and immune cell fractions were examined
using the “corrplot” R package.

Associations between key genes and
immunoregulatory genes

To explore the associations between chemoradiotherapy
sensitivity-related genes and immunoregulatory genes, we
sourced gene encodings for immunomodulators from the
TISIDB database (Ru et al., 2019), including 24 immunoinhibitors
and 46 immunostimulators. After intersecting these with the ESCC
gene expression profile, 60 genes encoding immunomodulators
were retained. Pearson correlation analysis was conducted on the
expression of immunoregulatory genes and chemoradiotherapy
sensitivity-related genes. P < 0.05 was deemed statistically
significant.

Drug sensitivity prediction

The Genomics of Drug Sensitivity in Cancer (GDSC) database
records the responsiveness of cancer cells to drugs and molecular
markers associated with drug response (Yang et al., 2013).
Utilizing this pharmacogenomics database, the “oncoPredict”
R package assessed the half-maximal inhibitory concentration
(IC50) of chemotherapeutics for ESCC patients. We evaluated the
impact of chemoradiotherapy sensitivity-related gene expression on
chemotherapy sensitivity in these patients.

Expressions of key genes in pan-cancer

Employing the GEPIA database (http://gepia.cancer-pku.cn),
we analyzed the differential expression of key chemoradiotherapy
sensitivity-related genes in tumor samples and paired normal tissues
across 32 cancer types, including ESCC.

Construction and assessment of
nomogram

Cox regression analyses were performed on clinical factors
to identify independent prognostic indicators. We constructed
a nomogram incorporating these prognostic factors and

chemoradiotherapy sensitivity-related genes using the “rms” R
package, estimating the 1-, 3-, and 5-year survival probabilities
for ESCC patients. The nomogram’s consistency and accuracy were
validated with a calibration curve.

Functional enrichment analysis

Using the “fgsea” and “enrichplot” R packages and the annotated
gene set ‘h.all.v2023.2.Hs.symbols.gmt’ from the Molecular
Signatures Database, we performed fast gene set enrichment
analysis (fGSEA) to identify potential pathways and biological
functions differing among chemoradiotherapy sensitivity-related
gene expression groups. Based on the Net enrichment score (NES)
and P-value, we identified significantly enriched hallmark pathways
and explored the mechanisms through which key genes influence
these pathways.

Genome-wide association study (GWAS)

Utilizing data from 452,264 individuals in the United Kingdom
Biobank and documented in the Gene Atlas database (http://
geneatlas.roslin.ed.ac.uk/), which links 778 traits to 30 million
variants, we pinpointed pathogenic regions associated with key
genes by analyzing GWAS data.

Statistical analysis

Statistical analyses were conducted using R software (version
4.3.1) (https://www.r-project.org). Survival analysis was performed
using the Kaplan-Meier method and comparisons were made using
the log-rank test. Pearson correlation tests evaluated relationships
between variables. P < 0.05 was considered statistically significant.

Results

Identification of DEGs between pCR and
npCR patients in ESCC

The Guangzhou cohort comprised 28 ESCC patients, including
39.3% (11/28) achieving pCR and 60.7% (17/28) exhibiting npCR.
The clinicopathological features of these patients are summarized in
Supplementary Table 1. Survival data for patients who underwent
NRCT and surgical resection and survived at least 3 months after
treatment was collected and performed Kaplan-Meier analysis to
evaluate their survival probabilities in both groups. Patients who
achieved pCR demonstrated a higher survival probability than those
with npCR, particularly after 10 years (Figure 1A, n = 26). However,
due to the limited sample size, the differences between the groups
were not statistically significant. To identify key chemoradiotherapy
sensitivity-related genes, we analyzedDEGs between pCR and npCR
patients. We identified 1,726 DEGs, with 870 genes upregulated
and 856 genes downregulated in npCR patients. The heatmap and
volcano plot illustrating these DEGs are presented in Figures 1B, C.
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FIGURE 1
Identification of DEGs between pCR and npCR patients in ESCC. (A) Kaplan-Meier curve of pCR (n = 10) and npCR (n = 16) ESCC patients in the
Guangzhou cohort. The heatmap (B) and volcano plot (C) of DEGs between pCR and npCR ESCC patients.

Identification of key genes in ESCC

To further identify key chemoradiotherapy sensitivity-related
genes in ESCC, we conducted univariate Cox regression analysis
using RNA-seq and prognostic data from the Beijing Cohort
(Supplementary Table 1,n=119).Thisanalysisidentified126prognosis-
associated protein-encoding genes, comprising 52 associated with a
good prognosis and 74 indicating a poor prognosis. After selecting
genes highly expressed in pCR patients that indicate a good prognosis
and genes lowly expressed in pCR patients indicating a poor prognosis,
we identified 35 favorable and 40 unfavorable genes. Following random
survival forest analysis, genes with a relative importance>0.7 were
deemed key chemoradiotherapy sensitivity-related genes in ESCC.
Ultimately, three genes, ATF2, SLC27A5, and ALOXE3, met the
screening criteria and are illustrated in Figures 2A, B. Among these,
SLC27A5 andALOXE3were not only highly expressed in pCR patients
(P<0.01andP=0.01,Figure 2C),butalsosignificantlycorrelatedwitha
favorable prognosis of ESCC (P < 0.001, Figures 2E, F). However, ATF2
was highly expressed in npCR patients (P = 0.001, Figure 2C) and was
significantly associated with poor prognosis (P = 0.001, Figure 2D). By
employingtheX-tile software, theoptimalexpressionlevelcut-offvalues
of three genes were determined to be 12.5, 10.63 and 7.89, respectively.

By expanding the real-world sample (n = 50), we reanalyzed
RNA-seq data from ESCC patients who underwent NCRT followed
by surgery. Overall, their mean age was 58.2 years, 43 (86%) were
male, 7 (14%) were female, 14 (28%) had stage II disease, and 36
(72%) had stage III disease. The expression of ATF in npCR patients
was significantly upregulated compared with that in pCR patients,
while the expression of SLC27A5 and ALOXE3 was significantly
downregulated (Supplementary Figure 1A, B), which was consistent
with our previous results.

Immune cell infiltration in ESCC

We analyzed immune cell infiltration between cancerous
and normal tissues to assess immunological variations in
ESCC. The proportions of infiltrating immune cells in

each group were displayed in Figures 3A, B. Compared to
normal tissue, cancerous tissue in ESCC showed increased
infiltration of memory B cells, activated memory CD4+ T cells,
resting NK cells, M0 macrophages, M1 macrophages, resting
dendritic cells, and activated dendritic cells and decreased
infiltration of naive B cells, CD8+ T cells, follicular helper
T cells, regulatory T cells, activated NK cells, monocytes,
activated mast cells, and eosinophils (Figure 3C). Correlations
between infiltrating immune cells in ESCC were illustrated
in Figure 3D. Further analysis of the associations between
the expression of the three key genes and tumor immune
cell infiltration revealed that ATF2 negatively correlated with
the infiltration of memory B cells, monocytes, and resting
dendritic cells, among others. SLC27A5 negatively correlated
with the infiltration of memory B cells, resting memory
CD4+ T cells, and M0 macrophages, among others. ALOXE3
negatively correlated with the infiltration of regulatory T
cells, activated NK cells, and resting mast cells, among
others (Figure 4A).

Associations between key genes and
immunoregulatory genes

Considering that cancer patients often exhibit immune
abnormalities related to tumor immune escapemechanisms, and the
necessity to tailor immunotherapy targets and strategies based on
individual immune characteristics (Sadun et al., 2007), we explored
the associations between three key genes and immunoregulators,
including 24 genes encoding immunoinhibitors and 46 genes
encoding immunostimulators. Results indicated that ATF2 was
significantly positively correlated with TNFRSF25, TNFRSF14, and
ADORA2A, and negatively correlated with CD40, CD70, ENTPD1,
and HAVCR2. SLC27A5 was significantly positively correlated with
CD274, and negatively correlated with TNFRSF9 and TGFBR1.
ALOXE3 was significantly positively correlated with CD40 and
TNFSF14, and negatively correlated with CXCL12 (Figures 4B, C,
all p < 0.01).
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FIGURE 2
Identification of key genes in ESCC. (A) The random survival forest analysis of chemoradiotherapy sensitivity-related genes in ESCC. (B) The variable
relative importanceof three genes >0.7 were identified as key genes in ESCC. (C) Expression levels of ATF2, SLC27A5, and ALOXE3 in pCR and npCR
patients. (D–F) Kaplan-Meier survival analysis of ESCC patients with high- and low-expression of ATF2, SLC27A5, and ALOXE3.

Evaluation of drug-sensitivity prediction
ability of key genes

The “pRRophetic” R package assessed the potential of key genes
to predict drug sensitivity in ESCCpatients. Comparedwith patients
exhibiting higher expression of ATF2 and lower expression of
SLC27A5 and ALOXE3, IC50 values for drugs including vinorelbine,
paclitaxel, docetaxel, fluorouracil, cisplatin, oxaliplatin, erlotinib,
gefitinib, and lapatinib, were lower in patients with decreased
expression of ATF2 and increased expression of SLC27A5 and
ALOXE3. Specifically, patients with higher ATF2 expression were
significantly less responsive to erlotinib and gefitinib, whereas those
with increasedALOXE3 expression were significantly more sensitive
to vinorelbine, paclitaxel, docetaxel, fluorouracil, erlotinib, gefitinib,
and lapatinib. Patients with higher SLC27A5 expression were more
sensitive to oxaliplatin (Figures 5A–I, P < 0.05). This further
confirmed the clinical utility of these key genes in ESCC patients.

Expressions of key genes in pan-cancer

Using the GEPIA database (http://gepia.cancer-pku.cn), we
analyzed the differential expression of key chemoradiotherapy
sensitivity-related genes in tumor samples and paired normal
tissues across 32 cancers, including ESCC. The results showed that

ATF2 is highly expressed in the tumor tissues of diffuse large B-
cell lymphoma, esophageal carcinoma, pancreatic adenocarcinoma,
stomach adenocarcinoma, and thymoma compared to normal tissues
(Supplementary Figure 2A). However, the expressions of SLC27A5
and ALOXE3were not significantly upregulated in esophageal cancer
tissues compared to control tissues (Supplementary Figure 2B, C).

Construction and assessment of
nomogram

We conducted Cox regression analyses on clinical factors
to identify independent prognostic factors. Due to the limited
number of TNM stage I cases (n = 6) in the Beijing cohort,
we combined stages I and II for analysis. The nomogram was
then constructed based on TNM staging and the expression levels
of ATF2, SLC27A5, and ALOXE3 to quantitatively predict 1-, 3-,
and 5-year survival probabilities, providing a reference for clinical
decision-making in ESCC patients. The results showed that all three
chemoradiotherapy sensitivity-related genes had a greater impact on
prognosis prediction thanTNMstaging, with SLC27A5 contributing
the most (Figure 6A). Calibration curves for 1-, 3- and 5-year OS
demonstrated high consistency between the predictions and actual
observations, underscoring the prognostic predictive power of these
genes in ESCC (Figures 6B–D).
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FIGURE 3
Immune cell infiltration in ESCC. Percentage of 22 types of immune cells infiltration in the cancer (A) and normal tissue (B) in ESCC patients. (C)
Comparison of the immune cells proportion between cancer and normal tissue in ESCC patients. (D) Correlations between immune cells in ESCC.
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FIGURE 4
The relationship between key genes and immune cell infiltration and immunoregulators. The relationship of chemoradiotherapy sensitivity-related
genes and infiltrating immune cells (A), immunostimulators (B), and immunoinhibitors (C) (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001; red color represented
positive correlation, blue color represented negative correlation; darker colors indicated stronger correlations).

Gene set enrichment analysis (GSEA)

Utilizing hallmark gene sets from the Molecular Signatures
Database, we conducted fast gene set enrichment analysis (fGSEA)
to discern the differences in biological processes between high and
low expressions of key genes. For the high-expression ATF2 group,
the top three upregulated pathways were epithelial-mesenchymal
transition (EMT), mitotic spindle, and myogenesis, while the top three
downregulated pathways were oxidative phosphorylation, fatty acid
metabolism, and KRAS signaling DN. Additionally, the p53 pathway
was also downregulated (Supplementary Figure 3A, B). Conversely,
the high-expression SLC27A5 group showed downregulation in the
EMT pathway (Supplementary Figure 3C, D). Moreover, compared
to the high-expression ATF2 group, the high-expression ALOXE3
group exhibited increased activity in the p53 pathway and
the EMT pathway (Supplementary Figure 3E, F). These findings
suggest that chemoradiotherapy sensitivity-related genes may
influence ESCC progression by regulating the epithelial-mesenchymal
transition and P53 pathways.

GWAS analysis

UsingGWASdata,we identified thepathogenic regionsofkeygenes
in esophageal cancer (Supplementary Figure 4A, B). ATF2, SLC27A5,
andALOXE3were found in the pathogenic regions of chromosomes 2,
19, and 17, respectively (Supplementary Figure 4C–E).

Discussion

The high mortality rate of ESCC is associated with
delayed diagnosis, tumor metastasis, treatment resistance, and
recurrence (Sung et al., 2021; Thakur et al., 2021; Puhr et al.,
2023). Owing to the advanced stage at diagnosis, nearly 50%
of patients are not eligible for complete surgical resection.
Evidence from several large clinical trials suggest that NCRT
combined with esophagectomy is more effective than surgical
resection alone (van Hagen et al., 2012; Yang et al., 2021a).
However, due to tumor heterogeneity, therapeutic outcomes
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FIGURE 5
The evaluation of drug sensitivity. Drug sensitivity analysis of the low- and high-expression of ATF2, SLC27A5, and ALOXE3 groups. (A) Vinorelbine, (B)
Paclitaxel, (C) Docetaxel, (D) Fluorouracil, (E) Cisplatin, (F) Oxaliplatin, (G) Erlotinib, (H) Gefitinib, and (I) Lapatinib.

vary significantly among patients. Exploring the mechanisms
of chemoradiotherapy sensitivity is crucial for improving
ESCC prognosis. In this study, we investigated biomarkers
and potential mechanisms of chemoradiotherapy sensitivity in
ESCC patients. The findings could inform the development of
precise treatment strategies for ESCC based on tumor molecular
heterogeneity.

Our study revealed that ATF2 is not only linked to
chemoradiotherapy insensitivity in ESCC, but also indicative of
poor prognosis. Located on chromosome 2q32 (Ozawa et al., 1991),
ATF2 has been shown in various cancer models to be overexpressed,
phosphorylated, and mislocalized subcellularly. It interacts with
oncogenic proteins such as JUN (Lopez-Bergami et al., 2010).
Activation of the Rac1-P38-ATF2 signaling pathway in non-small

cell lung cancer cells has been documented to upregulate the
expressions of Cyclin A2, Cyclin D1, and MMP2 proteins, thus
promoting tumor growth (Zhou et al., 2018). ATF2 also binds to
the promoter of miR-3913-5p, negatively regulating its expression,
which targets CREB5 directly. Overexpression of ATF2 enhances
growth, migration, and invasion in colorectal cancer cells through
this mechanism. The ATF2/miR-3913-5p/CREB5 axis is considered
a potential therapeutic target for colorectal cancer (Dai et al., 2023).
Furthermore, ATF2 upregulation in gastric cancer correlates with
a worse clinical prognosis, and silencing ATF2 suppresses the
malignant phenotype of gastric cancer cells. Notably, reducing
ATF2 expression significantly increases the sensitivity to sorafenib
therapy (Xu et al., 2023a). Additionally, ATF2 is implicated in
platinum resistance in non-small cell lung cancer treatment and
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FIGURE 6
Construction and assessment of nomogram. (A) Construction of nomogram based on TNM staging and the expression of ATF2, SLC27A5, and ALOXE3.
(B–D) Calibration curves of nomogram for OS prediction at 1-, 3- and 5- year in ESCC.

is targeted to restore chemotherapy sensitivity to platinum. Studies
have confirmed that triptolide can enhance chemotherapy efficacy
in drug-resistant cell lines by inhibiting the ATF2/cJUN function
(Lo et al., 2015).

SLC27A5 encodes fatty acid transport protein 5. Reduced
expression of SLC27A5 is closely associated with poorer OS in
ovarian cancer patients (Chen et al., 2021). Moreover, expression
levels of SLC27A5 are significantly lower in patients with
hepatocellular carcinoma (Wang et al., 2022). SLC27A5 suppresses
proliferation and migration of hepatocellular carcinoma cells in
vitro. This effect is likely due to SLC27A5’s role in promoting
cuproptosis in hepatocellular carcinoma via upregulation of
FDX1, making it a potential target for cuproptosis induction
in this cancer type (Li et al., 2023). Critically, SLC27A5
enhances the therapeutic efficacy of sorafenib in hepatocellular
carcinoma by promoting sorafenib-induced ferroptosis through
inhibition of the NRF2/GSR pathway. A deficiency in SLC27A5
correlates with resistance to sorafenib in these cells (Xu et al.,
2023b). Additionally, the overexpression of SLC27A5 curtails
the activation of KEAP1/NRF2 pathway and reduces TXNRD1
expression, which can augment the antitumor activity of

sorafenib either genetically or pharmacologically by inhibiting the
NRF2/TXNRD1 pathway (Gao et al., 2020).

ALOXE3 is a member of the mammalian lipoxygenase family,
playing a role in lipid metabolism and acting as a regulator of
ferroptosis (Yang et al., 2016; Yamamoto, 1992). In our study,
high expression of ALOXE3 was linked to improved prognosis in
ESCC and increased sensitivity to chemoradiotherapy. Compared
to normal human brain tissue, ALOXE3 expression is significantly
diminished in glioblastoma tissue. ALOXE3 deficiency not only
enhances the survival andmigration of cancer cells but also supports
glioblastoma growth in immunodeficient nude mice. It is crucial
for p53-mediated ferroptosis, with miR-18a downregulating its
expression by targeting ALOXE3 directly, thus contributing to
resistance against p53-induced ferroptosis in glioblastoma cells
(Yang et al., 2021b). Transcriptional upregulation of ALOXE3 by
YAP promotes lipid peroxide accumulation and induces ferroptosis,
making the YAP-ALOXE3 signaling pathway a potential biomarker
for predicting ferroptosis-induced responses in hepatocellular
carcinoma cells (Qin et al., 2021). In breast cancer, SBFI26, an
inhibitor of FABP5, induces ferroptosis by elevating levels of
ferrous ions and lipid peroxidation, increasing the expression of
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ALOXE3, ALOX5, and ALOX15, thus driving ferroptosis in tumor
cells (He et al., 2024). Furthermore, the novel ferroptosis inducer,
talaroconvolutin A, has been shown to trigger ferroptosis and
suppress colorectal cancer cell growth by modulating ALOXE3
expression and other genes (Xia et al., 2020).

In a previous clinical study, triprilizumab combined with NCRT
and surgical resection was used to treat locally advanced ESCC,
achieving pCR rate of 50% and an R0 resection rate of 98%
(Chen et al., 2023). EC-CRT-001, a prospective clinical trial, enrolled
patients with unresectable ESCC and treated them with concurrent
chemotherapy, radiotherapy, and triplizumab immunotherapy.
Results showed that 62% of these patients achieved a complete
response, with a median response duration exceeding 1 year, and a
1-year OS rate of 78.4%. The combination of immunotherapy with
definitive chemoradiotherapy offers a promising treatment strategy
for patients with unresectable, locally advanced ESCC (Zhu et al.,
2023). However, the potential synergistic mechanism between
immunotherapy and chemoradiotherapy remains unclear. Our
results indicated that key genes associated with chemoradiotherapy
sensitivity were significantly correlated with immune cells and
immunomodulatory genes, suggesting a potential mechanism for
their synergistic effect in ESCC.

In our study, the EMT pathway was the most significantly
upregulated pathway in the high-expression ATF2 group, and the
most significantly down-regulated pathway in the high-expression
SLC27A5 group. EMT is recognized as a complex and coordinated
process crucial for cancer initiation and progression (Dongre
and Weinberg, 2019). ATF2 binds to the promoter region of
GLUT3, enhancing EMT in colorectal cancer by inducing GLUT3
expression (Song et al., 2022). Through promoter binding, ATF2
and endoplasmic reticulum stress induce the expression of CAP2,
promoting EMT in liver cancer cells (Yoon et al., 2021). In
conjunction with TGF-beta1, ATF2 induces EMT in pancreatic
cancer cell lines (Xu et al., 2012). Additionally, via the c-
Met/BVR/ATF-2 pathway, lncRNA NR2F2-AS1 activates the EMT
process and fosters the development of non-small cell lung cancer
(Liu et al., 2021). EMT increases malignancy in non-small cell lung
cancer cells and reduces chemosensitivity to cisplatin and paclitaxel.
EMT marker expression is elevated in cells chronically exposed
to these agents or radiation, linking EMT to chemoradiotherapy
resistance (Shintani et al., 2011). Similarly, EGFR activation triggers
EMT, reducing cellular responsiveness to radiation and cetuximab
in head and neck cancer (Holz et al., 2011). Inhibitors of the EMT
signaling pathway may enhance the sensitivity of cancer cells to
chemoradiotherapy (Shintani et al., 2011).Downregulation ofDelta-
like Ligand 4 inhibits EMT in cervical cancer, thereby enhancing
radiosensitivity (Yang et al., 2020). The EMT signaling pathway
could provide a potential direction for further exploration into the
mechanism of chemoradiotherapy sensitivity genes in ESCC.

In this study, we evaluated the role of chemoradiotherapy
sensitivity-related genes in ESCC through survival analysis, drug
sensitivity analysis, and the development and validation of a
nomogram. While our results underscored the potential clinical
relevance of three key genes in ESCC, there are notable limitations.
This was a retrospective study that did not delve into the underlying
mechanisms. Future studies should involve independent prospective
cohorts and both in vitro and in vivo experiments to confirm these
findings and further explore themechanisms.Additionally, although

these three key genes can predict the response of ESCC to NCRT
and are significantly associated with certain immune cells and
immunoregulatory genes in the tumor microenvironment, their
efficacy in ESCC treated with combined immunotherapy andNCRT
remains to be established.

Conclusion

In conclusion, we identified three pivotal genes that are crucial
in predicting both the sensitivity of ESCC to radiochemotherapy and
the prognosis of patients. We investigated the associations between
these genes and infiltrating immune cells and immunoregulatory
genes. Furthermore, we explored the signaling pathways influenced
by these genes in ESCC and analyzed the chromosomal regions
implicated in their pathogenesis. The identification of these key
genes may facilitate the optimization of individual treatment
strategies and improve prognosis management in ESCC.
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