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Background: Doxorubicin (DOX) drugs used in cancer treatment can cause
various adverse effects, including hepatotoxicity. Natural-derived constituents
have shown promising effects in alleviating chemotherapy-induced toxicities.
This study addressed the effect of Avenanthramides-C (AVN-C) treatment in rats
with DOX-indued hepatotoxicity.

Methods: AutoDock Vina was used for the molecular docking investigations.
In silico toxicity prediction for AVN-C and DOX was performed using the Pro
Tox-III server. Four groups of ten male Sprague-Dawley rats were created:
Group 1 (Gp1) served as a negative control, Gp2 received an intraperitoneal
(i.p.) injection of AVN-C (10 mg/kg), Gp3 received an i.p. dose of DOX (4 mg/kg)
weekly for a month, and Gp4 received the same dose of DOX as G3 and AVN-C
as G2. Histopathological, molecular, and biochemical analyses were conducted
1 month later.

Results: The study showed that treatment with AVN-C significantly ameliorated
DOX-induced hepatotoxicity in rats by restoring biochemical alterations,
boosting antioxidant activity, reducing inflammation, and modulating the
Akt/GSK-3β and Wnt-4/β-Catenin signaling pathways in male rats.

Conclusion: This study is the first to demonstrate the therapeutic effects
of AVN-C therapy on DOX-induced liver damage in male rats. Therefore,

Frontiers in Molecular Biosciences 01 frontiersin.org

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2024.1507786
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2024.1507786&domain=pdf&date_stamp=2024-11-27
mailto:kareem.ali@science.tanta.edu.eg
mailto:kareem.ali@science.tanta.edu.eg
https://doi.org/10.3389/fmolb.2024.1507786
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1507786/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1507786/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1507786/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1507786/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1507786/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1507786/full
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Alwaili et al. 10.3389/fmolb.2024.1507786

AVN-C could have a pronounced palliative effect on the hepatotoxicity caused
by DOX treatment. These findings suggest that AVN-C could potentially alleviate
the hepatotoxicity associated with DOX-based chemotherapy.

KEYWORDS

avenanthramides, antioxidants, anti-inflammatory, doxorubicin, hepatotoxicity,
signaling pathway

1 Introduction

The hepatotoxicity of chemotherapeutic drugs has been noted
to require close monitoring by oncologists during treatment,
despite growing number of cancer survivors. However, many of
these survivors still suffer from symptoms of liver because of
their cancer therapy (Mudd and Guddati, 2021). One common
first-line treatment for different types of cancer is doxorubicin
(DOX), which has been found tocause hepatotoxicity. Several
strategies have been developed to prevent liver damage caused by
DOX, but additional strategies are needed to protect liver tissues
from its harmful effects (Sirwi et al., 2021; Al-Qahtani et al.,
2022; El-Said K. S. et al., 2023). Various processes, including
apoptosis, inflammation, and oxidative stress, have been proposed
to explain the mechanisms behind DOX-induced hepatotoxicity.
Therefore, it is crucial to understand the mechanisms that protect
liver tissue during DOX administration (Morsy et al., 2023).
DOX may induce oxidative stress by blocking the transcription
factor Nrf-2, which coordinates cellular redox homeostasis and
regulates antioxidant and detoxifying responses (Jakobs et al.,
2017). A recent study by Saleh et al. (2022) highlighted the
protective role of Omega-3 in DOX-induced hepatotoxicity through
Akt/GSK-3β axis modulation in rats. Additionally, Sirwi et al.
(2021) demonstrated that Mokko lactone attenuated DOX-
induced hepatotoxicity by regulating the Sirt-1/FOXO1/NF-κB
axis in rats.

A major redox-sensitive protein kinase, glycogen synthase
kinase (GSK)-3β is widely expressed in nearly every cell
and plays a role in various intracellular and extracellular
processes, including influencing cell development and apoptosis
(Martelli et al., 2021). Akt could control the GSK-3β activity,
and suppressing GSK-3β could modulate oxidative stress in
hepatocytes by targeting Nrf-2 (Jiang et al., 2015). Importantly,
GSK-3β signaling seems to be responsible for the apoptosis
induction observed upon Akt inhibition (Li et al., 2020). The
Akt/GSK-3β signaling pathway is crucial for cell survival and
has been linked to the reduction of liver injury through anti-
inflammatory and anti-apoptotic effects (Xing et al., 2024).
Targeting GSK-3β may be a unique approach to mitigate the
toxicity caused by DOX in multiple organs, according to evidence
(Niringiyumukiza et al., 2019).

The development, differentiation, and cellular homeostasis of
liver tissue rely on the complex Wnt signaling system. The Wnt
pathway plays a significant role in liver metabolism, regeneration,
and maintaining the normal function of liver (Hu and Monga,
2021). Abnormal regulation of Wnt/β-catenin signaling pathway
is associated with various disorders making it a desirable target
for disease treatment (Liu et al., 2022). Activation of Wnt/β-
catenin signaling pathway is linked to the pathogenesis of

liver fibrosis and protective role of natural compounds against
liver fibrosis by inhibiting the Wnt/β-catenin pathway has been
reported (El-Ashmawy et al., 2020).Phenolic compounds including,
anthranilic acid amides, have multiple health promoting qualities,
and were known for their antioxidant, anti-inflammatory, and
anti-proliferative properties (Toma et al., 2020; Rahman et al.,
2021; Mobasher et al., 2024). These anthranilic acid amides,
or called avenanthramides (AVNS), are a class of N-cinnamoyl
anthranilic acids that oat plants make as phytoalexins (Pretorius
and Dubery, 2023). Oats contain AVN in a variety of forms, but
AVN-C is the most common and has the strongest antioxidant
effect (Perrelli et al., 2018). Additionally, AVNS have been
shown to have potent biomedical potential both in vivo and
in vitro through reducing oxidative stress-related disorders and
cellular dysfunctions (Perrelli et al., 2018; Wankhede et al., 2023).
Previous studies demonstrated the therapeutic effects of AVN-C
against lung toxicity in rats, inflammation, and oxidative stress in
human skin fibroblasts (Wang and Eskiw, 2019; Altwaijry et al.,
2021).). AVNs have also been reported to reduce the risk of
colon cancer by targeting apoptosis, which reduces cellular
proliferation (Fu et al., 2019). Thisnovel study investigated for
the first time the curative role, biochemical pathways, and
molecular mechanisms of AVN-C treatment against DOX-induced
hepatotoxicity in rats.

2 Materials and methods

2.1 Chemicals

Avenanthramide-C (AVN-C) was purchased from Sigma-
Aldrich (Cat. no. SI0330531, United States) and dissolved in a 10%
dimethyl sulfoxide (DMSO) solution in normal saline for in vivo
study. DOX hydrochloride (Cat. no. D5220, 98%–102% HPLC) was
purchased from Sigma-Aldrich (Oakville, ON L6H 6J8), Canada.

2.2 Molecular docking analysis

The structures of ligands were retrieved from the PubChem
database in SDF format. The 3D structureswere energy-
minimized using Avogadro 1.2.0 software with the MMFF94
force field (Hanwell et al., 2012). The structure of the RAC-
alpha serine/threonine-protein kinase (Akt-1) in Rattus norvegicus
(Rat) (UniProt ID: P47196) protein was retrieved from the
UniProt database. Glycogen synthase kinase-3 beta (GSK-3β)
in R. norvegicus (Rat) (UniProt ID: P18266), Wnt protein in R.
norvegicus (Rat) (UniProt ID: Q9QXQ5), and β-Catenin protein
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(UniProt ID: Q9WU82) was also obtained. The binding sites for
these proteins were predicted based on literature information and
validated using the CB-DOCK2. Proteins were prepared for docking
using AutoDock Tools 1.5.7 (Morris et al., 2009).

Using AutoDock Vina, molecular docking investigations were
conducted (Trott and Olson, 2010) to predict the binding modes
and affinities of the compounds with each protein. The grid boxes
for docking were centered on the predicted binding sites. The
exhaustiveness parameter was set to 8, and the default scoring
function was used for the docking calculations. BIOVIA Discovery
Studio 2020 (San Diego, CA, United States) was used to visualize
and evaluate the docking data. The binding affinities (ΔG values)
and intermolecular interactions, including hydrogen bonds and
hydrophobic interactions, were analyzed and reported. In silico
toxicity prediction for AVN-C and DOX was performed using the
Pro Tox-III server (Banerjee et al., 2024) by retrieving SMILES
codes from PubChem for each compound and adding them to
the server.

2.3 Rats and experimental design

Forty adult male Sprague-Dawley rats (130–150 g, 5–6 weeks of
age) were purchased from Helwan University, Egypt. The present
study was reported in accordance with the Animal Research:
Reporting of In Vivo Experiments (ARRIVE) guidelines. The
experimental protocol was approved by Tanta University’s Faculty of
Science’s Animal Care Committee with approval number (ACUC-
SCI-TU-238) in Egypt. All experiments were performed following
relevant international and national guidelines and regulations.
The rats were equally divided into four groups: G1 was a
negative control group injected with the vehicle (DMSO 10% in
normal saline), 300 µL/each rat, i.p. daily for a month; G2 was
injected with AVN-C (10 mg/kg), 300 µL/each rat, i.p. daily for
a month (Umugire et al., 2019); G3 was injected with 4 mg/kg
of DOX i.p. once a week for a month (Warpe et al., 2015);
and G4 was injected with DOX as in G3 and administered with
AVNS-C as in G2. The rats were anesthetized using isoflurane,
euthanized, and then blood, serum, and liver tissues were collected
for hematological, biochemical, molecular, and histopathological
investigations (Figure 1).

2.4 Hematological analysis

For hematological analysis, an automated blood cell counter
(Sysmex XT-2000i Automated Hematology Analyzer, PU-17) was
used. The parameters measured included red blood cell (RBC)
count, hemoglobin (Hb) levels, hematocrit (Hct) percentages, mean
corpuscular hemoglobin (MCH), mean corpuscular hemoglobin
concentration (MCHC), mean corpuscular volume (MCV), platelet
count, white blood cell (WBC) count, and differential count for
lymphocytes and neutrophils.

2.5 Biochemical analysis

Aspartate aminotransferase (AST) (catalog no. AS106145),
alanine aminotransferase (ALT) (catalog no. AL103145), alkaline

phosphatase (ALP) (catalog no. AP1020), total bilirubin (catalog
no. BR1111), and direct bilirubin (catalog no. BR1112) were
assessed using colorimetric kits (Spectrum Diagnostics, Egypt).
Hepatic levels of malondialdehyde (MDA) (catalog no. MD2529),
superoxide dismutase (SOD) (catalog no. SD2521), catalase (CAT)
(catalog no. CA2517), and reduced glutathione (GSH) (catalog no.
GR2511) were measured by using their kit (Biodiagnostic, Egypt).
Protein concentration was measured by the method of Lowry et al.
(1951) using bovine serum albumin (BSA) as a standard.
Furthermore, rat’s ELISA kits were used for measurement of
the inflammatory biomarkers in the liver homogenates of the
different groups, including tumor necrosis factor-α (TNF-α)
(catalog no. RAB0479), nuclear factor kappa-B (NF-κB) (catalog
no. MBS453975), interleukin-6 (IL-6) (catalog no. E-HSEL-
R0004), interleukin-1β (IL-1β) (catalog no. E-EL-R0012), and
cyclooxygenase-2 (COX-2) (catalog no. MBS266603). Hepatic
rats’ phospho-Akt protein levels were evaluated by the rat’s p-Akt
(Ser473) ELISA kit (catalog no. MBS775153). Aliquots of liver
homogenate were used for determination of GSK-3β (catalog no.
MBS7251608), Wnt-4 (catalog no. MBS2885391), and β-Catenin
(catalog no. MBS843456) using their rat-specific ELISA kits that
were provided by MyBioSource, Inc., San Diego, CA, United States.

2.6 Molecular analysis

The mRNA expressions ofAkt-1, GSK-3β,Wnt-4, and β-Catenin
genes were evaluated in the liver tissues of the different groups.
The primers were prepared using the Primer-Blast program from
NCBI (Table 1). Experiments for the detection of all genes, including
the housekeeping gene hypoxanthine phosphoribosyl transferase 1
(HPRT), were performed in triplicate. The relative expression of the
target genes was estimated (Livak and Schmittgen, 2001).

2.7 Histopathological investigations

Liver tissues were sectioned at 5 μm, embedded in paraffin
wax, washed in xylene, and then sliced and fixed in 10% buffered
formalin. Hematoxylin and eosin (H&E) staining was applied to
the sections, which were then observed under an Olympus CX31
light microscope and photographed with a digital camera (Olympus
Camedia 5060, Japan) (Bancroft and Gamble, 2008). Hepatic
damage was analyzed based on the severity percentage of hepatic
tissue using the following scales (0–4): 0 indicated normal tissue, 1
indicated <25% damage, 2 indicated 26%–50% damage, 3 indicated
51%–75%hepatic damage, and 4 indicated >75% (Orabi et al., 2020).

2.8 Statistical analysis

A one-way analysis of variance (ANOVA) was conducted to
assess significant variations. The software GraphPad Prism (San
Diego, CA, United States) was utilized for data analysis. Tukey’s test
was used for multiple comparisons, with statistical significance at
p < 0.05.
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FIGURE 1
Schematic illustration of experimental design showing the different groups under the study after different treatment settings.

TABLE 1 Forward and reverse primer sequences for RT-PCR.

`Gene Accession number Forward sequence (5′–3′) Reverse sequence (5′–3′)

Akt NM_033230.3 AGGCATCCCTTCCTTACAG GCCCGAAGTCCGTTATCT

GSK-3β NM_032080.1 GGTGACTTTGACCGGAACGTG ATTGAAGGGACAGGTGAACAGG

Wnt-4 NM_053402.2 GCCACGCACTAAAGGAGAAG TCATCCGTATGTGGCTTGAA

β-Catenin NM_001431665.1 CAGATCCCATCCACGCAGTT TCTGTGACGGTTCAGCCAAG

GAPDH NM_017008.4 CCGCATCTTCTTGTGCAGTG GAGAAGGCAGCCCTGGTAAC

Akt-1, RAC-alpha serine/threonine-protein kinase; GSK-3β, Glycogen synthase kinase; Wnt-4, Wnt family member 4; GAPDH, Glyceraldehyde-3-phosphate dehydrogenase.

3 Results

3.1 Avenanthramide-C and doxorubicin
interactions with target proteins (Akt-1,
GSK-3β, Wnt-4, and β-Catenin) by
molecular docking analysis

Examining the docking results, it has been observed that
DOX generally exhibits stronger binding affinities across the
range of target proteins compared to AVN-C. This trend is
particularly notable for proteins such as β-catenin (−9.1 kcal/mol
for DOX vs. −7.6 kcal/mol for AVN-C) (Figures 2, 3). These
differences in binding energies suggest that DOX may have a
more potent effect on Wnt/β-catenin cellular pathways, which
could contribute to both its therapeutic efficacy and potential
adverse effects. Delving deeper into the protein-ligand interactions,

both compounds have been found to be engaged in a complex
network of hydrogen bonds, hydrophobic interactions, and in some
cases, electrostatic interactions with target proteins (Akt-1, GSK-
3β, Wnt-4). The interaction between AVN-C revealed multiple
hydrogen bonds, including a conventional hydrogen bond between
SER50 and the ligand, as well as pi-alkyl interactions with LEU52
and PRO388 (Figure 3). In contrast, DOX’s interaction with Akt
shows a more extensive network of bonds, including pi-cation
interactions with LYS39 andmultiple hydrophobic interactions.This
more comprehensive binding profile could explain DOX’s higher
binding affinity and its known effects on cell cycle regulation
and apoptosis through the Akt pathway. The interactions with
other proteins, such as GSK-3β, and Wnt follow similar patterns.
DOX consistently forms more numerous and varied interactions,
which likely contribute to its broader impact on cellular functions
(Figures 2, 3). AVN-C is not predicted to exhibit toxicities including,
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FIGURE 2
(Continued).

hepatotoxicity, mutagenicity, and cytotoxicity, while DOX is flagged
as toxic for these endpoints. This correlates with the stronger
binding of DOX to proteins like β-catenin, which are involved in
cell signaling and transport processes that could influence these
toxicity outcomes (Table 2).

3.2 Effects of the treatment with
DOX/AVN-C on the percentage of rat’s
body weight changes

The percentage of body weight changes (% b. wt) in the group
injected with DOX were significantly decreased (p < 0.05) to
15.14% ± 1.87 when compared to the negative control and AVN-C

control groups (34.83% ± 2.65% and 39.25% ± 3.07, respectively).
Combining DOX and AVN-C treatment resulted in a significant
increase in % b. wt changes to 24.91% ± 2.55 compared to the DOX-
administered group alone (Figure 4A). Additionally, the relative
liver weight of the DOX-treated group was higher than that of the
other experimental groups (Figure 4B).

3.3 Effect of DOX/AVN-C treatment on the
hematological parameters of rats

The results indicated no significant alterations in the
hematological parameters between the negative control and AVN-
C control groups. Rats co-treated with DOX + AVN-C exhibited
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FIGURE 2
(Continued). (A) Molecular docking analysis shows the interaction of DOX with Akt-1, the conventional H-bond (LYS385 and ASP387); the electrostatic
interactions via Pi-cation (LYS39); the hydrophobic interactions (LYS39, LEU52, and LYS386). (B) DOX interaction with GSK-3β, conventional H-bond
(ASN95, THR8, SER9, and GLY202); carbon H- Bond (GLY202); the hydrophobic interactions (LEU88). (C) DOX interaction with Wnt-4; conventional
H-bond (ARG83, ILE303, GLN81, and ASP239); Electrostatic Pi-cation interactions (ARG85 and LYS235); Hydrophobic Pi-Alkyl interaction (ALA302,
ALA302, and ILE303). (D) DOX interaction with β-Catenin, conventional H-bond (ARG515, LEU781, GLU568, and ASN432); carbon H- Bond (CYC429);
Pi-cation interaction (HIS470); Pi-Alkyl interaction (ALA775 and PHE777).

a significant improvement (p < 0.001) in most hematological
parameters compared to rats treated with DOX alone. These results
were supported by increases in RBCs count, Hb concentration,
Hct%, MCH, MCHC, MCV values, total platelets, and WBC counts.
However, significant reductions in RBCs, platelets, and WBCs
count as well as significant increases (p < 0.001) or (p < 0.0001) in
lymphocyte counts, were observed in DOX-injected rats compared
to control groups (Tables 3, 4).

3.4 Treatment with AVN-C recovers hepatic
function markers in DOX-injected rats

Assessing liver function, respective enzymes, and total
protein contents are crucial for quantifying liver damage,
evaluating the ameliorative efficacy of AVN-C against DOX-
induced hepatotoxicity. The current study showed that the DOX-
administered group demonstrated significant increase (p < 0.05) in
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FIGURE 3
(Continued).

the liver transaminase (ALT and AST) levels to 68.52 ± 1.95 and
98.58 ± 2.47 U/L, respectively compared to the negative control
group (27.32 ± 0.59 and 41.38 ± 1.65) or the AVN-C control
group (24.69 ± 0.68 and 39.67 ± 1.34). However, treating DOX-
injected rats with AVN-C resulted in a considerable reduction in
hepatic transaminase levels to 43.21 ± 2.15 and 63.21 ± 2.17 U/L,
respectively (Table 5). Additionally, the DOX-challenged group
showed a significant increase (p < 0.05) in ALP levels compared to
the negative control and AVN-C control groups (468.47 ± 6.65 U/L
versus 246.88 ± 3.95 U/L and 249.31 ± 5.16 U/L). Treatment with
DOX + AVN-C led to a significant decrease in serum ALP levels
(336.85 ± 5.93 U/L) compared to the DOX-injected group alone
(468.47 ± 6.65 U/L). Furthermore, GGT activities were significantly
increased (p < 0.05) by DOX injection in rats; however, AVN-
C treatment decreased those levels. On the other hand, the total
hepatic protein contents were significantly decreased in the DOX-
challenged group and AVN-C treatment restored those levels in the
rats’ livers (Table 5).

3.5 Treatment with AVN-C mitigates
hepatic oxidative stress induced by DOX in
rats

When compared to the control groups, the DOX-exposed
group had a 2.2-fold increase in the hepatic levels of MDA. The
rats that were co-treated with DOX + AVN-C demonstrated
a significant decrease (p < 0.05) in the MDA level compared
to the DOX-injected group (0.487 ± 0.019 nmol/mg protein
versus 0.679 ± 0.023 nmol/mg protein) (Figure 5A). In contrast,
the GSH level was significantly decreased in the DOX-injected
group by −2.3 folds compared to the control groups. The rats
that were injected with DOX and treated with AVN-C showed
a significant increase in the hepatic GSH content compared
to the DOX-injected group alone (26.93 ± 1.18 mg/mg protein
versus 16.67 ± 0.59 mg/mg protein) (Figure 5B). The hepatic SOD
and CAT activities were significantly decreased (p < 0.05) upon
DOX injection in rats; however, the concomitant treatment with
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FIGURE 3
(Continued). (A) Molecular docking analysis shows the interaction of AVN-C with Akt-1, the conventional H-bond (SER50 and THR389); the
hydrophobic Pi-Alkyl interactions (LEU52 and PRO388). (B) AVN-C interaction with GSK-3β, conventional H-bond (ARG92, ASP90, and GLY202); the
hydrophobic Pi-Pi Stacked interactions (PHE93); the hydrophobic Pi-Alkyl interactions (VAL87 and ALA11). (C) AVN-C interaction with Wnt-4;
conventional H-bond (ARG86, TRP87, and PRO277); Hydrophobic Pi-Sigma interaction (LEU308); Hydrophobic Pi-Alkyl interaction (ARG85). (D) AVN-C
interaction with β-Catenin, conventional H-bond (GLU571, ASP778, and ARG469); Unfavorable donor-donor bond (ASN516).

DOX/AVN-C led to a significant restoration of SODandCATactivities
(Figures 5C, D).

3.6 AVN-C treatment showed
ant-inflammatory properties in
DOX-injected rats

The results showed that injection of DOX in rats resulted in
a significant increase (p < 0.01) in the levels of inflammatory
biomarkers, including TNF-α, NF-κB, IL-6, IL-1β, and COX-2 (9.97
± 0.84, 394.65 ± 7.05, 17.93 ± 1.03, 33.57 ± 1.93, and 558.68 ±
6.24 pg/mg tissue, respectively) when compared with the control

groups (Figure 6). However, these inflammatory cytokines were
significantly reduced (p < 0.01) by treating the DOX-challenged rats
with AVN-C (6.33 ± 0.55, 263.84 ± 4.77, 9.66 ± 0.71, 16.88 ± 1.14,
and 413.67 ± 5.44 pg/mg tissue, respectively) (Figure 6).

3.7 Treatment with AVN-C modulates
Akt/GSK-3β and Wnt-4/β-Catenin
pathways in DOX-injected rats

As shown in Figure 7, the intraperitoneal injection of 4 mg/kg
DOX once a week for a month in rats led to a significant
reduction (p < 0.05) in the hepatic pAkt by approximately −2.5
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TABLE 2 In silico toxicity for AVN-C and DOX.

Classification Target AVN-C DOX

Prediction Probability Prediction Probability

Organ toxicity Hepatotoxicity Inactive 0.59 Active 0.86

Organ toxicity Neurotoxicity Inactive 0.7 Active 0.74

Organ toxicity Nephrotoxicity Active 0.64 Active 0.8

Organ toxicity Respiratory toxicity Active 0.53 Active 0.91

Organ toxicity Cardiotoxicity Inactive 0.96 Active 0.64

Toxicity end points Carcinogenicity Inactive 0.52 Active 0.9

Toxicity end points Immunotoxicity Inactive 0.89 Active 0.99

Toxicity end points Mutagenicity Inactive 0.76 Active 0.98

Toxicity end points Cytotoxicity Inactive 0.7 Active 0.94

Toxicity end points BBB-barrier Inactive 0.63 Inactive 1

Toxicity end points Ecotoxicity Inactive 0.69 Inactive 0.58

Toxicity end points Nutritional toxicity Inactive 0.73 Inactive 0.69

Tox21-signalling pathways Androgen receptor Inactive 0.95 Inactive 0.99

Tox21-signalling pathways Androgen receptor ligand binding domain Inactive 0.99 Inactive 0.55

Tox21-signalling pathways Aromatase Inactive 0.95 Active 0.52

Tox21-signalling pathways Peroxisome proliferator activated receptor
gamma (PPAR-Gamma)

Inactive 0.98 Inactive 0.97

Tox21-Stress response pathways Nrf-2/ARE Inactive 0.92 Inactive 0.98

Tox21-Stress response pathways Heat shock factor response element (HSE) Inactive 0.92 Inactive 0.98

Tox21-Stress response pathways Tumor supressor protein (p53) Inactive 0.8 Active 0.52

Molecular Initiating Events Thyroid hormone receptor beta Inactive 0.61 Inactive 0.78

Molecular Initiating Events Transtyretrin (TTR) Inactive 0.56 Inactive 0.97

Molecular Initiating Events GABA receptor (GABAR) Inactive 0.84 Inactive 0.96

Molecular Initiating Events Kainate receptor Inactive 0.99 Inactive 0.99

Molecular Initiating Events NADH-quinone oxidoreductase Inactive 0.93 Inactive 0.97

Metabolism Cytochrome CYP1A2 Inactive 0.77 Inactive 0.99

Metabolism Cytochrome CYP2C19 Inactive 0.95 Inactive 0.97

Metabolism Cytochrome CYP2C9 Inactive 0.52 Inactive 0.73

Metabolism Cytochrome CYP2D6 Inactive 0.9 Inactive 0.92

Metabolism Cytochrome CYP3A4 Inactive 0.82 Inactive 0.98

Metabolism Cytochrome CYP2E1 Inactive 1 Inactive 0.99
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FIGURE 4
Changes of the body weight (g) (A) and the relative liver weight (%) (B) in the different groups. The values were represented as means ± S.D. (n = 10).
IBW: initial body weight; FBW: final body weight; AVN-C: avenanthramide-C; DOX: doxorubicin. Means that do not share letters indicated significant
differences (∗p < 0.05).

TABLE 3 Effect of AVN-C treatment on the hematological parameter’s alterations induced by DOX in rats.

Groups RBCs (x106/µl) Hb (g/dL) MCH (pg) MCHC (g/dL) MCV (fL)

Control 8.95 ± 0.45a 13.29 ± 0.78a 18.43 ± 0.45a 27.87 ± 1.25a 75.63 ± 2.37a

AVN-C 9.16 ± 0.67a 13.56 ± 0.69a 18.67 ± 0.39a 29.15 ± 1.47a 78.29 ± 2.86a

DOX 5.21 ± 0.39c 9.01 ± 0.84b 11.38 ± 0.56b 16.95 ± 1.67b 59.79 ± 2.53b

DOX + AVN-C 7.32 ± 0.59e 11.65 ± 0.47a 14.23 ± 0.69c 23.24 ± 1.83e 68.27 ± 2.68a,b

The values were represented as means ± S.D. (n = 10). RBC, red blood cell; Hb, hemoglobin; Hct, hematocrit; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin
concentration; MCV, mean corpuscular volume; AVN-C, avenanthramide-C; DOX, doxorubicin. Means that do not share letters in each column indicated significant differences.

folds (19.59 ± 0.85 Pg/mg protein) versus the negative control (48.59
± 2.56 Pg/mg protein) and the AVN-C control group (51.39 ±
2.68 Pg/mg protein). This reduction was restored by the treatment
with AVN-C (35.44 ± 2.14 pg/mg protein) (Figure 7A). Contrary,
intraperitoneal injection of DOX led to a notable increment in

hepatic GSK-3β levels to 2.16 ± 0.074 ng/mg protein compared
to the negative control (1.18 ± 0.068 ng/mg protein) and AVN-C
control groups (1.03 ± 0.105 ng/mg protein). Treatment with AVN-
C (10 mg/kg) i.p. daily for a month significantly inhibited (p < 0.05)
hepatic GSK-3β levels to 1.59 ± 0.094 ng/mg protein, representing
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TABLE 4 Effect of AVN-C treatment on the hematological parameter’s alterations induced by DOX in rats.

Groups Hct (%) Platelets (x103/mm3) WBCs (x103/µl) Lymphocytes (x103/µl) Neutrophiles (x103/µl)

Control 44.63 ± 1.02a 734 ± 5.38b 8.87 ± 0.47a 24.31 ± 2.18c 37.42 ± 2.36b

AVN-C 46.75 ± 0.98a 752 ± 4.96b 9.02 ± 0.56a 22.65 ± 2.39c 38.97 ± 2.52b

DOX 29.37 ± 0.33b 486 ± 3.78c 4.98 ± 0.38c 39.82 ± 2.44b 21.67 ± 2.54c

DOX + AVN-C 36.18 ± 1.23a,b 603 ± 4.67a 6.74 ± 0.45a,c 28.78 ± 1.95b,c 28.49 ± 2.28b,c

The values were represented as means ± S.D. (n = 10). WBC, white blood cell; AVN-C, avenanthramide-C; DOX, doxorubicin. Means that do not share letters in each column indicated
significant differences.

TABLE 5 Effect of AVN-C treatment on serum liver function parameters’ alterations induced by DOX in rats.

Groups ALT (U/L) AST (U/L) ALP (U/L) GGT (U/L) T.P. (mg/dL)

Control 27.32 ± 0.59a 41.38 ± 1.65c 246.88 ± 3.95a 6.78 ± 0.75b 7.54 ± 0.39d

AVN-C 24.69 ± 0.68a 39.67 ± 1.34c 249.31 ± 5.16a 5.64 ± 0.81b 7.95 ± 0.47d

DOX 68.52 ± 1.95c 98.58 ± 2.47b 468.47 ± 6.65b 17.43 ± 1.85a 3.68 ± 0.24a

DOX + AVN-C 43.21 ± 2.15d 63.21 ± 2.17e 336.85 ± 5.93c 9.94 ± 0.98b,c 5.23 ± 0.69d,e

The values were represented as mean ± S.D. (n = 10). ALT, alanine transaminase; AST, aspartate transaminase; ALP, alkaline phosphatase; GGT, gamma-glutamyl transferase; T.P, total proteins;
AVN-C, avenanthramide-C; DOX, doxorubicin. Means that do not share letters in each column indicated significant differences.

FIGURE 5
Hepatic levels of malondialdehyde (MDA) (A), reduced glutathione (GSH) (B), superoxide dismutase (SOD) (C), and catalase (CAT) (D) in the different
groups. AVN-C: avenanthramide-C; DOX: doxorubicin. The values were represented as means ± S.D. (n = 10). Means that do not share letters indicated
significant differences (∗p < 0.05).
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FIGURE 6
Hepatic levels of tumor necrosis factor alpha (TNF-α) (A), nuclear factor kappa-B (NF-κB) (B), interleukin-6 (IL-6) (C), interleukin-1β (IL-1β) (D), and
cyclooxygenase-2 (COX-2) (E) in the different groups. AVN-C: avenanthramide-C; DOX: doxorubicin. The values were represented as means ± S.D. (n
= 10). Means that do not share letters indicated significant differences (∗p < 0.01).

a 36% decrease when compared to DOX-treated rats (Figure 7B).
Similarly, DOX-induced hepatotoxicity in rats showed significant
increases (p < 0.05) in Wnt-4 and β-Catenin by 2.2 and 2.1 folds,
respectively, when compared to the negative and AVN-C control
groups. However, the rats administered with DOX- and treated with
AVN-C demonstrated a significant reduction (p < 0.05) in hepatic
levels of Wnt-4 and β-Catenin, as their levels reaching 79.47 ± 2.75
and 3.25 ± 0.098 ng/mg protein, respectively (Figure 7). Moreover,
the gene expression analysis of the Akt gene in the DOX-treated
group showed significant downregulation (p < 0.01) using GAPDH
gene as a housekeeping genecompared to control groups. However,
the DOX/AVN-C treated group showed significant restoration
of the Akt gene. Conversely, the GSK-3β, Wnt-4, and β-Catenin
genes were significantly downregulated (p < 0.01) in the DOX
+ AVN-C co-treated group compared to the DOX-treated group
alone (Figure 8).

3.8 AVN-C treatment restores liver
histopathological alterations in
DOX-injected rats

Histopathological analysis revealed normal hepatocyte
architecture, a central hepatic vein with centrally located nuclei
in the liver sections of the negative control and AVN-C-control
groups, representing pathological scores of 0.13 ± 0.04 and 0.11
± 0.02, respectively (Figures 9A, B, E). The liver section of the
DOX-injected group demonstrated severe hepatocyte degeneration,
with an acutely dilated central vein, cellular swelling, and nuclear
changes. The semi-quantitative analysis showed high pathological
scores recorded as 3.60 ± 0.11 (Figures 9C, E). The liver section of
the DOX + AVN-C-administered group displayed a significant
improvement in hepatic structure and less congestion that
represented pathological scores of 1.50 ± 0.09 (Figures 9D, E).

Frontiers in Molecular Biosciences 12 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1507786
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Alwaili et al. 10.3389/fmolb.2024.1507786

FIGURE 7
Hepatic levels of RAC-alpha serine/threonine-protein kinase (Akt) (A), Glycogen synthase kinase (GSK-3β) (B), Wnt family member 4 (Wnt-4) (C), and
β-Catenin (D) in the different groups. AVN-C: avenanthramide-C; DOX: doxorubicin. The values were represented as means ± S.D. (n = 10). Means that
do not share letters indicated significant differences (∗p < 0.05).

FIGURE 8
Relative mRNA expression levels of the hepatic RAC-alpha serine/threonine-protein kinase (Akt) (A), Glycogen synthase kinase (GSK-3β) (B), Wnt family
member 4 (Wnt-4) (C), and β-Catenin (D) in the different groups. AVN-C: avenanthramide-C; DOX: doxorubicin. The values were represented as means
± S.D. (n = 10). Means that do not share letters indicated significant differences (∗p < 0.01).
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FIGURE 9
(A) A photomicrograph of the liver section from the negative control group shows organized hepatic architecture, centered nucleus (arrows), central
veins (CV), normal hepatocytes (h), normal blood sinusoids (Bs) and Kupffer cells (k). (B) Liver section of AVN-C control group shows mostly normal
hepatocytes, nucleus with normal Bs and (k) (C) Liver section of DOX-injected group demonstrated disorganization hepatic structures, congested CV
(cCV), cellular infiltrations (∗), vacuolated cytoplasm (V), pyknotic nuclei (dotted arrows). (D) Liver section of the DOX + AVN-C-treated group
demonstrated the improvement in the hepatic organization, fewer congestion, binucleated hepatocytes, and cellular infiltrations (H&E × 400, scale bar
= 50 μm). (E) Liver sections histological scores in the different groups.

4 Discussion

Cancer patient survival rates have gradually increased
due to advancements in chemotherapy and treatment plans
(Bluethmann et al., 2016). The traditional usage of DOX has been
limited due to its adverse effects on various organs, including
hepatotoxicity (Prasanna et al., 2020). The use of natural herbal
constituents against hepatotoxicity mediated by DOX has been
reviewed (Mahmoudi et al., 2023). The phenolic compounds
(AVNs) exhibit high antioxidant properties, their efficiency against

chemotherapy-induced toxicity has been reported in experimental
animals (Umugire et al., 2022). A previous study reported that AVNs
could decrease liver dysfunctions induced by cisplatin, in mice (El-
Said K. et al., 2023). Therefore, this study aimed to evaluate the
efficacy of AVN-C treatment versus hepatotoxicity in rats promoted
by DOX through in silico studies, hematological, biochemical,
molecular, and histopathological investigations. Furthermore,
this study explored the mechanisms of AVN-C action on DOX-
induced hepatotoxicity through antioxidant, anti-inflammatory, and
modulation of Akt/GSK-3β and Wnt-4/β-Catenin pathways in rats.
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Molecular docking studies revealed insights into the binding
affinities and interaction patterns of AVN-C and DOX with
key proteins involved in various cellular processes. Further
investigation of protein-ligand interactions showed that both
substances interacted with target proteins (Akt-1, GSK-3β, Wnt-4)
through hydrogen bonds, hydrophobic contacts, and occasionally
electrostatic interactions. These interactions suggest that AVN-C
may modulate Akt signaling, potentially influencing cell survival
and proliferation pathways. In Silico toxicity predictions provided
insights into the safety profiles of AVN-C and DOX, withAVN-
C predicted to be less toxic across several endpoints compared to
DOX. This differential interaction helps explain the distinct effects
observed when each compound is administered. Inhibition of p-
Akt led to activation of GSK-3β, in silico studies revealed that
the binding of DOX with GSK-3β does not suppress the vigorous
activation ofGSK-3βproteins, this could be due to the compensatory
mechanisms of hepatocytes to overexpress GSK-3β for oxidative
stress, inflammation, and apoptosis inductions, while co-treatment
with DOX and AVN-C could reduce GSK-3β protein expression
levels. The suppression of P-Akt levels by DOX in the in-vivo
studies aligns with its strong interaction with Akt, indicating that
DOX may inhibit Akt phosphorylation, leading to reduced cell
survival signaling. This can contribute to increased apoptosis and
liver damage. A previous study of Saleh et al. (2022) reported that
suppression of hepatic GSK-3β levels upon treatment with omega-
3 as compared to the DOX-treated group as well as restoration in
hepatic levels of p-Akt, suggesting the GSK-3β inhibitor’s protective
properties against DOX-induced oxidative stress. The upregulation
of Wnt-4 and β-catenin expressions suggested also that DOX
alters the balance of these pathways, promoting compensation
processes in liver cells to overexpress these proteins that can lead
to hepatocytes dysfunctions or death. Co-treatment with DOX +
AVN-C led to an increase in P-Akt levels and the decrease in GSK-
3β, Wnt-4, and β-catenin expressions suggest a protective effect
of AVN-C. In Silico studies supports this by showing that AVN-
C, having lower binding affinity, may act as a milder modulator
of these pathways, but when co-treated and reacted with DOX
in vivo counteracting the deleterious effects of DOX on the
target proteins. These abilities of AVN-C to shift the expression
patterns towards those observed in healthy liver function can be
attributed to its potential to modulate the effects of DOX on
these proteins.

The interaction of DOX with multiple targets points to a
complex network of signaling pathways that are affected by its
administration causes signaling pathway crosstalk. The in silico
findings provide amechanistic basis for understanding how changes
in protein interactions could lead to the observed in vivo outcomes,
particularly regarding the interplay between survival and apoptotic
signals. The results suggest that AVN-C might mitigate some of
the harmful effects of DOX by partially restoring the signaling
balance, enhancing cell survival signals while dampening pro-
apoptotic signals.

The hepatotoxicity prediction is particularly interesting, given
DOX’s known clinical hepatotoxic effects and supports the idea
that its stronger interactions with key proteins may contribute to
this side effect. However, AVN-C is not entirely devoid of potential
toxicity, albeit with lower probabilities compared to other endpoints.
This suggests that while AVN-C may have a more favorable overall

safety profile,. Interestingly, both compounds are predicted to be
inactive for most Tox21 nuclear receptor signaling pathways and
stress response pathways, suggesting that their mechanisms of
action and potential toxicity may not be mediated through these
specific pathways. The integration of molecular docking results
with toxicity predictions paints a nuanced understanding of how
these compounds might behave in biological systems. Doxorubicin’s
stronger binding affinities across multiple proteins correlate with its
predicted higher toxicity and known clinical effects. Its interactions
with proteins like Akt, GSK-3β, and β-catenin suggest a multi-
faceted impact on cell signaling, explaining both its therapeutic
efficacy for hepatotoxicity and adverse effects induced by DOX.

Treatment with DOX led significant body weight loss and a
substantial decrease in food intake, decreases in fat, skeletal muscle
mass, and fatigue (de Lima Junior et al., 2016). In accordance with
our study, DOX administration in rats caused significant body
weight loss; this could be due to the toxic effects of DOX on
metabolism and vital organs. The effect of DOX on the body weight
of rats can be attributed to decreased appetite, reduced feed intake,
disruption of basal metabolism, and inhibition of protein synthesis
(El-Said K. S. et al., 2023). However, the treatment of DOX-injected
rats with AVN-C resulted in a significant improvement in the %
BW; this finding agreed with previous reports on the impacts of
herbal products on the improvement of body weight loss induced
by DOX injection (Koss-Mikołajczyk et al., 2021; Saleh et al., 2022;
Alherz et al., 2023). Additionally, in response to liver damage caused
by DOX, there were inflammatory responses and compensatory
mechanisms that promote liver regeneration leading to an increase
in liver weight. This increase in liver weight could also be attributed
to cellular hypertrophy, surviving hepatocytes may increase in
size due to hepatocytes vacuolation, degeneration of hepatocyte
cords, bile duct hyperplasia and focal necrosis, as they attempt to
compensate for lost functionality, leading to increased liver mass
despite reduced protein content (Prasanna et al., 2020; Xu et al.,
2022). Also, this could be due to altered protein turnover and
protein metabolism might shift; although total protein content
decreased, the liver might still be undergoing processes like protein
degradation at a higher rate due to oxidative protein damage. While
protein content decreased due to damage, the liver may still activate
pathways to maintain its mass and function, such as increased
glycogen storage or lipid accumulation. Additionally, the increase in
liver weight after DOX treatment could be due to the accumulation
of extracellular matrix components, which can alter liver structures
(Jurj et al., 2022; Gedikli et al., 2023).

It has been reported that DOX treatment induced bone marrow
and spleen immunosuppression in rats (Shaldoum et al., 2021).
In this study, the outcomes reported that DOX injection in rats
led to significant alterations in the hematological parameters,
including RBCs, Hb, WBCs, and platelets. These reductions in the
hematological parameters from DOX treatment could be due to
damage in the hematopoietic system or the increased permeability
of the cell membrane, which in turn caused osmotic swelling and
erythrocyte hemolysis and the occurrence of systemic inflammation
(Kameo et al., 2021). Additionally, hypoxia may potentially have
been caused by the death of the mature cell, an increase in
plasma volume, or a decrease in hemoglobin’s affinity for oxygen,
which resulted in less oxygen being transported from the lungs
to the blood and less oxygen being released from oxyhemoglobin
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FIGURE 10
Diagram shows the effect of AVN-C against DOX-induced hepatotoxicity through inhibiting oxidative stress, inflammation, and modulating the
Akt/GSK-3β and Wnt-4/β-Catenin pathways.

to the tissues (Jagetia et al., 2006). Treating DOX-injected rats
with AVN-C showed significant improvement in the previously
mentioned hematological parameters as evidenced by restoration
of RBCs, WBCs, and platelet counts and improvement of bone
marrow thrombopoietin, megakaryocytopoiesis, and scavenging
free radical-induced damage in cells (Fathy et al., 2018; El-
Said et al., 2022). These results were in line with previous
studies reporting the beneficial effects of natural constituents
on improving the hematological parameter alterations that were
induced by DOX in experimental animals (Afsar et al., 2017;
Espírito Santo et al., 2023).

Our outcomes uncovered that DOX induced liver dysfunction
as per elevations in liver transaminases (AST, ALT), serum ALP,
and GGT enzymes, in addition to a significant decrease in the
total protein concentrations. These findings could be attributed to
the oxidative stress that was mediated by DOX injection, which
attacked hepatocytes and consequently released hepatic enzymes
from the damaged cells to the blood serum. They also might be
due to alterations in protein synthesis and/or metabolic functions of
hepatocytes. Decreasing the hepatic toxicity uponAVN-C treatment
indicates that the AVNS has a therapeutic effect against liver
dysfunction and cellular injury of the liver that were induced by
DOX. Our data was in agreement with Tousson et al. (2022), who
reported the potential curative role of AVNs against oxidative stress
induced by acute hepatotoxicity in rats.

The present study found that DOX treatment resulted in
elevation in MDA and depletions in GSH, SOD, and CAT in liver
homogenates, consistent with previous studies demonstrating the
effects of DOX on the imbalance of hepatic oxidants/antioxidants
(Sirwi et al., 2021; Saleh et al., 2022; El-Said K. S. et al., 2023).
Treating DOX-challenged rats with AVN-C significantly improved
the reversal of changes in hepatic antioxidant/oxidant hemostasis
of the DOX-injected rats, as it can inhibit lipid peroxidation
and prevent oxidative stress. This suggested that AVN-C acts on
DOX-promoted hepatotoxicity through its antioxidant properties,
potentially by enhancing the antioxidant defense system in
accordance with previous studies demonstrated the cytoprotective
effects of AVN-C against oxidative damage and enhancement
of antioxidant status (Wang and Eskiw, 2019). In the current
investigation, the beneficial hepatoprotective effects of AVN-C
could be due to the anti-inflammatory properties of AVN-C; it
was found to reduce the key inflammatory mediators associated
with DOX-induced liver injury. The current findings concur
with previous reports that highlighted the potent in vivo anti-
inflammatory efficacy of AVNs (Zhang et al., 2020; Tousson et al.,
2022; Wankhede et al., 2023). A previous study reported that
herbal compounds mitigated DOX-induced liver toxicity in rats
by countering oxidative stress and inflammation (Ahmed et al.,
2022). Our results revealed that AVN-C exert pronounced
pharmacological actions as antioxidant, and anti-inflammatory,
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which indicated that AVS is a prospective therapeutic agent against
DOX-induced toxicity.

The phosphorylated Akt triggers the activation of multiple
downstream proteins that mediate signals encouraging cell
proliferation, differentiation, and death. GSK-3β may be
phosphorylated and its activity inhibited by the activated Akt
(Saleh et al., 2022). Interestingly, the present study showed that
GSK-3β inhibition provides guarding against DOX-prompted
hepatic tissue damage accompanied by elevation of the Akt at
the gene and protein expression levels. In accordance with a
previous study by Abbas and Kabil (2017), who reported that
liraglutide ameliorates DOX toxicity through the Akt/GSK-3β
signaling pathway in rats. It has been reported that inhibition
of the Wnt-4/β-catenin signaling pathway could be potential
therapeutic targets in liver disorders. Our investigation showed
the hepatoprotective effect of AVN-C was associated with
the downregulation of the Wnt-4 and β-catenin expressions.
Herein, attenuation of hepatotoxicity by DOX treatment
through inhibition of GSK-3β and Wnt-4/β-Catenin might be
a promising strategy of AVN-C to counteract DOX-induced
hepatotoxicity. These findings were in line with previous
studies that established the inhibition of the Wnt-4/β-Catenin
signaling pathway by natural compounds in experimental
animals (Li et al., 2014; Cao et al., 2022; Bakrania et al.,
2023). Furthermore, a previous study reported the activation of
WNT/β-catenin signaling pathway is involved in the pathogenesis
of CCl4-induced liver fibrosis and protective role of natural
compounds against liver fibrosis by inhibiting the Wnt/β-
catenin pathway (El-Ashmawy et al., 2020). Consistently, our
histopathological investigations evidenced biochemical analysis
indicating severe hepatocellular damages by DOX injection in
rats. These results are consistent with recent findings about
DOX-induced hepatotoxicity (AlAsmari et al., 2021; Saleh et al.,
2022; El-Said K. S. et al., 2023). By significantly reducing central
venous congestion, cell infiltration, degeneration, the number
of hepatocytes with pyknotic, vacuolization, and sinusoidal
narrowing, AVN-C treatment dramatically restores the histological
abnormalities and increased hepatic enzyme activity seen in
DOX-treated rats, suggesting protection against DOX-induced
liver injury. A previous study reported that taurine protects
DOX-induced hepatotoxicity via its membrane-stabilizing
effect and improvement of histopathological changes in rats
(Gedikli et al., 2023).

5 Conclusion

This study is the first to demonstrate that AVN-C
has a significant attenuative effect against DOX-induced
hepatotoxicity in male rats. This is achieved by enhancing the
liver’s antioxidant capacity, inhibiting hepatic inflammatory
cytokines, and modulating the Akt/GSK-3β and Wnt-4/β-
Catenin pathways (Figure 10). The combination of AVN-C and
DOX shows promise and effective chemotherapy strategy. Further
research should explore the potential of AVN-C in ameliorating
other toxicities induced by DOX and investigate the underlying
mechanisms.
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