
TYPE Original Research
PUBLISHED 09 January 2025
DOI 10.3389/fmolb.2024.1504015

OPEN ACCESS

EDITED BY

Karina Braga Gomes,
Federal University of Minas Gerais, Brazil

REVIEWED BY

Bhola Shankar Pradhan,
Łukasiewicz Research Network – PORT Polish
Center for Technology Development, Poland
Xiaoming Wang,
Gansu Provincial Hospital, China

*CORRESPONDENCE

Yan Zhang,
hbin625@sina.com

RECEIVED 10 October 2024
ACCEPTED 26 December 2024
PUBLISHED 09 January 2025

CITATION

Zhang Y, Chen X, Lin Y, Liu X and Xiong X
(2025) Identification of crucial pathways and
genes linked to endoplasmic reticulum stress
in PCOS through combined bioinformatic
analysis.
Front. Mol. Biosci. 11:1504015.
doi: 10.3389/fmolb.2024.1504015

COPYRIGHT

© 2025 Zhang, Chen, Lin, Liu and Xiong. This
is an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Identification of crucial pathways
and genes linked to endoplasmic
reticulum stress in PCOS through
combined bioinformatic analysis

Yan Zhang*, Xiujuan Chen, Yuan Lin, Xiaoqing Liu and
Xiumei Xiong

Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital College of
Clinical Medicine for Obstetrics Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China

Background: Polycystic ovary syndrome (PCOS) is a common endocrine
and metabolic condition impacting millions of women worldwide. This study
sought to identify granulosa cell endoplasmic reticulum stress (GCERS)-related
differentially expressed genes (DEGs) between women with PCOS and those
without PCOS using bioinformatics and to investigate the related molecular
mechanisms.

Methods: Two datasets were downloaded from GEO and analysed using
the limma package to identify DEGs in two groups—PCOS and normal
granulosa cells. Enrichment analyses, including GO, KEGG, and GSEA, were
then conducted on the DEGs. Differential immune infiltration was assessed
usingCIBERSORT and correlationswith immune cell biomarkerswere evaluated.
Networks for protein-protein interactions, transcription factor-target genes,
miRNA-target genes, and drug-target genes were constructed and visualized
usingCytoscape to identify key hub gene nodes. Finally, key geneswere analysed
for differential expression and correlated.

Results: Overall, 127 co-DEGs were identified in the two datasets. Our study
revealed that these DEGs were primarily associated with cell cycle arrest, p53-
mediated signal transduction, drug response, and gland development, with
molecular functions enriched in growth factor binding, collagen binding, and
receptor protein kinase activity. GSEA revealed that the co-DEGs were primarily
associatedwith immune and inflammatory pathways. Eleven hub genes—MMP9,
SPI1, IGF2R, GPBAR1, PDGFA, BMPR1A, LIFR, PRKAA1, MSH2, CDC25C, and
KCNH2—were identified through the PPI, TF target genes, miRNA target genes,
and drug target gene networks.

Conclusion:We identified several crucial genes and pathways linked to the onset
and development of PCOS. Our findings offer a clear connection between PCOS
and GCERS, clarify the molecular mechanisms driving PCOS progression, and
offer new perspectives for discovering valuable therapeutic targets and potential
biomarkers for the condition.
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1 Background

Polycystic ovary syndrome (PCOS) is the most prevalent
endocrine disorder among women of reproductive age, affecting
6%–10% of this group (Azziz et al., 2016), making it the
leading cause of anovulatory infertility (Bozdag et al., 2016),
impacting 26% of women globally (Deswal et al., 2020; Patel,
2018). The pathophysiology of PCOS is intricate and involves
a combination of factors such as irregular gonadotropin release,
excess androgen production, insulin insensitivity, and ovarian
abnormalities (Dumesic et al., 2015). To date, no consensus has
been arrived upon the diagnostic criteria or effective therapeutic
interventions for PCOS. To date, nomedication has been specifically
designed to treat PCOS. Commonly used medications include
antiandrogens and insulin-sensitizing agents. However, these drugs
can have side effects, such as gastrointestinal problems and
impaired liver and kidney functions, and require personalized
medication. The long-term use of these drugs may not be
an ideal solution. Understanding the pathogenesis of PCOS
may contribute to improved clinical diagnosis and treatment
modalities, thereby improving reproductive outcomes. Recent
research suggests that intraovarian microenvironment damage is
critical in promoting the development of PCOS (Xiang et al.,
2023; Chiang et al., 2023; Koike et al., 2022), but the underlying
mechanisms remain unclear.

Endoplasmic reticulum stress (ERS) is strongly linked to
oxidative stress in the local ovarian microenvironment. Recent
studies have emphasized the crucial role of granulosa cells ERS
(GCERS) in ovarian microenvironment (Harada et al., 2021;
Ajoolabady et al., 2023).Hyperandrogenism (HA), insulin resistance
(IR), and intraovarian microenvironment damage in PCOS are
closely related to ERS (Wang and Zhang, 2022). ERS is activated in
PCOS granulosa cells (GCs) (Takahashi et al., 2017), and elevated
androgen levels can successfully induce ERS in cultured humanGCs
(Azhary et al., 2019). We propose that ERS, combined with high
androgen levels, oxidative stress, and inflammation, fuel a damaging
cycle in the follicle of PCOS (Harada, 2022). This abnormal
environment impairs granulosa cell function and promotes PCOS
development. These findings indicate that targeting ERS could be
a promising approach for treating PCOS. However, the extent to
which these mechanisms contribute to the development of PCOS is
still uncertain. Further research targeting ERS might help elucidate
the pathophysiological mechanisms of PCOS and explore potential
treatments for follicular developmental disorders associated with
this condition.

Currently, research using bioinformatic approaches to explore
the role of ERS-related genes in the progression of PCOS is
limited. In this study, we analyzed two original microarray datasets
from the Gene Expression Omnibus (GEO) (Clough and Barrett,
2016) database to identify differentially expressed genes (DEGs)
between PCOS and GCERS and to explore the associated biological
processes through comprehensive bioinformatics. Our goals were to
pinpoint some key genes and pathways implicated in PCOS, identify
potential novel biomarkers for diagnosis and therapy, and investigate
the molecular mechanisms involved. We aimed to enhance our
understanding of PCOS pathogenesis and advance the molecular
insights into this condition.

FIGURE 1
Research flow chart.

2 Methods

2.1 Data collection

Two microarray datasets [GSE34526 (Yang et al., 2021)
and GSE5850 (Wood et al., 2007)] were gathered from GEO
(Barrett et al., 2013) utilizing the R package GEOquery (version
2.70.0) (Davis and Meltzer, 2007). GSE34526 included gene
expression data from seven individuals with PCOS and three
healthy controls, whereas GSE5850 included 12 samples from six
patients with PCOS and six controls. The data were normalized
using the R package limma (version 3.58.1) (Ritchie et al., 2015).
GCERS-related genes were sourced from the GeneCards database
(Stelzer et al., 2016) by searching for “granulosa cell endoplasmic
reticulum stress,” leveraging its strengths as a comprehensive and
specialized gene database. This search resulted in the identification
of 1,263 genes (Supplementary Table S1). The research steps are
illustrated in Figure 1.

2.2 Differentially expressed gene selection

We used the limma package in R to identify DEGs between
PCOS and control samples. The adjusted p value and log fold
changes |logFC| were calculated, with the threshold set at
|logFC| > 0.5 and p < 0.05. Upregulated genes had |logFC| >
0.5, whereas downregulated genes had |logFC| < −0.5. DEGs
were visualized using the “complexheatmap” and “ggplot2”
R packages (version 3.4.4) to create heat maps and volcano
plots. Common DEGs between PCOS- and GCERS-related
genes were identified using Venn diagrams and selected for
further analysis.
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2.3 Functional classification and pathway
enrichment of DEGs

Co-DEGs were analyzed for functional enrichment using
the Gene Ontology (GO) (Gene Ontology, 2015) categories:
biological process (BP), molecular function (MF), and cellular
component (CC) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Kanehisa and Goto, 2000) pathways using the R package
clusterProfiler (version 4.10.0) (Yu et al., 2012). Gene set enrichment
analysis (GSEA) (Subramanian et al., 2005) was also conducted
using the c2.cp.v7.2. symbol gene set from MSigDB (Liberzon et al.,
2015). Enrichment results with adjusted p-values <0.05 were
selected, and false discovery rate-adjusted p-values (Q values) <0.05
were used as the cutoff for GO and KEGG analyses.

2.4 Estimation of immune infiltration using
CIBERSORT

We used the CIBERSORT (Newman et al., 2019) algorithm to
estimate and compare the abundance of immune cell types between
patients with PCOS and controls. Statistical significance was set at
p-values <0.05. Correlations among immune cells were visualized
using heat maps created using the R package ggplot2.

2.5 PPI network construction

We employed STRING (Szklarczyk et al., 2019) to build a
protein-protein interaction (PPI) network for GCERS-related DEGs
using an interaction score threshold of 0.15. PPI networks were
visualized using Cytoscape (version 3.9.1) (Shannon et al., 2003),
where key proteins and hub genes with high connectivity were
identified. Hub gene expression levels were analyzed for differences,
and correlations among these genes were assessed.

2.6 TF-target regulatory network
construction

Target genes were predicted using CHIPBase (Zhou et al., 2017)
(version 2.0) and hTFtarget (Zhang Q. et al., 2020) databases for TFs
associated with GCERS-related DEGs. The resulting TF-target gene
regulatory network, illustrating the connections between TFs and
potential targets, was visualized using Cytoscape.

2.7 miRNA-target regulatory network
construction

The miRNA-gene interactions for GCERS-related DEGs were
predicted using the ENCORI (Starbase 3.0) (Li et al., 2014) and
miRDB databases (Chen and Wang, 2020). The resulting miRNA-
target gene regulatory network, which illustrated the interactions
betweenmiRNAs and their potential targets in PCOS,was visualized
using Cytoscape.

2.8 Drug-target regulatory network
construction

We used the Drug-Gene Interaction Database (DGIdb)
(Freshour et al., 2021) to identify candidate drug and molecules that
interact with target gene. The relationships between the drug and
their potential targets were examined, and drug-target regulatory
network was visualized with Cytoscape.

2.9 Drug sensitivity analysis

We performed drug sensitivity analysis for key genes
based on the expression levels of GCERS-related DEGs and
drug data from the Genomics of Drug Sensitivity in Cancer
(GDSC) (Yang et al., 2013), Cancer Cell Line Encyclopedia
(CCLE) (Nusinow et al., 2020), and CellMiner databases
(Shankavaram et al., 2009; Reinhold et al., 2012), and presented
the results.

2.10 Statistical analysis

Data were processed and analyzed with R software (version
4.1.2). Continuous variables are expressed as mean ± standard
deviation. The Wilcoxon rank-sum test was employed for two-
group comparisons, while the Kruskal–Wallis test was used for
comparisons involving three or more groups. Categorical variables
were assessed with the chi-square test or Fisher’s exact test.
Spearman’s correlation analysis evaluated correlations between
different molecules. Statistical significance was defined as p < 0.05.

3 Results

3.1 Identification of DEGs

The DEGs between two groups from the GSE34526 and
GSE5850 datasets are shown in Table 1. We found 2193 DEGs
(1380 upregulated, 813 downregulated) in GSE34526 and 1189
DEGs (628 upregulated, 561 downregulated) in GSE5850. The
DEGs of the two datasets visualised by Volcano plot analysis
(Figures 2A, B), 127 overlapping DEGs were identified as common
DEGs between GSE34526 and GSE5850 (Figure 2C). Venn diagram
analysis identified 11 overlapping GCERS-related DEGs: MMP9,
SPI1, IGF2R, GPBAR1, PDGFA, BMPR1A, LIFR, PRKAA1, MSH2,
CDC25C and KCNH2 (Table 2; Figure 2D). Heatmap analysis
depicted these GCERS-related DEGs in the datasets (Figures 2E, F).

3.2 Enrichment analysis

Biological functions of the GCERS-related DEGs were
investigated (Table 3). GO analysis highlighted enrichment in
biological processes, such as cell cycle arrest, cellular response to
drugs, and gland development, and in molecular functions such
as growth factor/collagen binding and transmembrane receptor
protein kinase activity. The results of the KEGG enrichment analysis

Frontiers in Molecular Biosciences 03 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1504015
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Zhang et al. 10.3389/fmolb.2024.1504015

TABLE 1 List of PCOS dataset information.

GSE34526 GSE5850

Platform GPL570 GPL570

Species Homo sapiens Homo sapiens

Tissue Granulosa cells MII oocyte

Samples in PCOS group 7 6

Samples in normal group 3 6

References PMID: 22904171 PMID: 17148555

PCOS, polycystic ovary syndrome.

revealed that 11 GCERS-related DEGs were significantly enriched
in two KEGG pathways: “Fluid shear stress and atherosclerosis”
and “Transcriptional misregulation in cancer.” The results of the
GO and KEGG functional enrichment analyses are presented as a
bar plot (Figure 3A). Additionally, the GO and KEGG enrichment
results were visualized as a circular network diagram (Figure 3B).
Next, we performed a combined logFC-based GO and KEGG
enrichment analysis on these 11 GCERS-related DEGs. Based
on the enrichment analysis, we calculated the z-scores for each
molecule using the logFC values. The results of the combined
logFC-based GO and KEGG enrichment analysis are displayed
using a chord diagram (Figure 3C). Furthermore, the logFC-based
GO and KEGG enrichment results are presented in a bubble chart
(Figure 3D), where the majority of the enriched GO and KEGG
terms are concentrated in BP pathways. GSEA further identified
several pathways enriched in PCOS, including IL3, PI3K-CI,
NFKB, MAPK, TNFR2 non-canonical NFKB, and IL12 signaling
and FcεRI-mediated MAPK activation (Figures 4A–H; Table 4),
reflecting a strong association with immune response activation and
inflammation-related pathways.

3.3 Immune cell infiltration analysis

Our study showed that activated CD4+ memory T cells and
T follicular helper cells were predominant in both the PCOS and
control groups (Figures 5A, B). The association between eleven
GCERS-related DEGs and infiltrating immune cells was analysed
(Figures 5C, D). Correlation analysis in dataset GSE34526 showed
that activated CD4+ memory T cells was linked with nine
GCERS-related DEGs (MMP9, SPI1, GPBAR1, PDGFA, BMPR1A,
LIFR, PRKAA1, MSH2, and KCNH2) with consistent correlation
directions (p < 0.05). Additionally, T cells, CD8 cells, andmonocytes
were associated with eight DEGs (MMP9, SPI1, GPBAR1, PDGFA,
BMPR1A, LIFR, PRKAA, and KCNH2). T follicular helper cells
correlated with five DEGs (MMP9, IGF2R, BMPR1A, LIFR, and
KCNH2). Dataset GSE5850 highlighted significant correlations
between activated NK cells and BMPR1A/PRKAA1, monocytes
and MMP9/MSH2, activated mast cells and MSH2/KCNH2,
M0 Macrophages and CDC25C, and neutrophils and MSH2.
A correlation heatmap illustrated significant correlation between

activated CD4+ memory T cells and T follicular helper cells across
the datasets (Figures 5E, F).

3.4 Integrated PPI network construction

Using the STRING database (with a minimum interaction score
set to 0.150), we constructed a protein-protein interaction (PPI)
network for 11 differentially expressed genes (DEGs) associated
with GCERS. These genes include MMP9, SPI1, IGF2R, GPBAR1,
PDGFA, BMPR1A, LIFR, PRKAA1, MSH2, CDC25C, and KCNH2.
The network was visualized using Cytoscape software, revealing
multiple interactions between the genes (Figure 6A). Specifically,
MMP9 is connected to other genes through six edges, and BMPR1A
through five edges. These dense interactions suggest that they may
play a crucial role in the core regulatory network of GCERS.

3.5 Integrated TF-target network
construction

By integrating the TF target gene results with the TF
interaction network, 11 GCERS-related DEGs and 19 TFs were
identified (Figure 6B). The results revealed: 6 TFs modulated
BMPR1A, 8 TFs controlled CDC25C, 1 TF affected GPBAR1,
7 TFs influenced IGF2R, 1 TF targeted KCNH2, 4 TFs modulated
LIFR, 2 TFs regulated MMP9, 8 TFs affected MSH2, 3 TFs
affected PDGFA, 7 TFs regulated PRKAA1, and 3 TFs controlled
SPI1 (Supplementary Table S2).

3.6 Integrated miRNA-target network
construction

By integrating the results of the miRNA target genes with
the miRNA interaction network, we identified seven GCERS-
related DEGs and 59 miRNAs (Figure 6C).The results revealed:
17 miRNAs (e.g., miR-186-5p) controlled BMPR1A, 2 miRNAs
(e.g., miR-524-5p) affected CDC25C, 3 miRNAs (e.g., miR-204-
5p) influenced IGF2R, 16 miRNAs (e.g., miR-543) targeted LIFR,
1 miRNA (miR-3163) regulated MSH2, 2 miRNAs (e.g., miR-6835-
3p) controlled PDGFA, and 27 miRNAs (e.g., miR-3163) targeted
PRKAA1 (Supplementary Table S3).

3.7 Integrated drug-target network
construction

After combining the drug-target gene results with the
drug–interactive network, 8 GCERS-related DEGs and 64 drugs
were identified. The genes and drugs used are shown in Figure 6D.
The results revealed: 6 drugs (e.g., celecoxib) regulated MMP9,
1 drug (mannose-6-phosphate) regulated IGF2R, 5 drugs (e.g.,
taurolithocholic acid) regulated IGF2R, 1 drug (emfilermin)
regulated LIFR, 1 drug (durvalumab) regulated MSH2, 9 drugs
(e.g., metformin) regulated PRKAA1, 4 drugs (e.g., fluorouracil)
regulated CDC25C, and 37 drugs (e.g., estradiol) regulated
KCNH2 (Supplementary Table S4).
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FIGURE 2
Analysis of differentially expressed genes (DEGs) associated with polycystic ovary syndrome (PCOS). (A, B) Volcano plots of DEG between PCOS and
normal tissue in the GSE34526 dataset (A) and the GSE5850 dataset (B). (C) Venn diagram of DEG in the GSE34526 and GSE5850 datasets. (D) Venn
diagram of common differentially expressed genes (Co-DEGs) and granulosa cell endoplasmic reticulum stress-related genes within the datasets. (E, F)
Complex numerical heat maps of granulosa cell endoplasmic reticulum stress-related differentially expressed genes in the GSE34526 (E) and GSE5850
(F) datasets. PCOS, polycystic ovary syndrome; Co-DEGs, common differentially expressed genes; GCERS, granulosa cell endoplasmic reticulum stress.
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TABLE 2 List of GCERS-related differentially expressed genes.

Gene_name Description log2 fold change p value

MMP9 Matrix metallopeptidase 9 0.963633499 0.000282629

SPI1 Spi-1 proto-oncogene 2.355751449 0.00684742

IGF2R Insulin like growth factor 2 receptor 0.356836662 0.010836028

GPBAR1 G protein-coupled bile acid receptor 1 0.850471449 0.011045476

PDGFA Platelet derived growth factor subunit A −2.412202784 0.012120735

BMPR1A Bone morphogenetic protein receptor type 1A −2.481085433 0.019431831

LIFR LIF receptor subunit alpha −2.026175013 0.028658683

PRKAA1 Protein kinase AMP-activated catalytic subunit alpha 1 −1.98240041 0.032168289

MSH2 MutS homolog 2 −1.533690309 0.043296104

CDC25C Cell division cycle 25C −1.698993042 0.043343966

KCNH2 Potassium voltage-gated channel subfamily H member 2 −1.787392585 0.047141412

GCERS, granulosa cell endoplasmic reticulum stress.

TABLE 3 GO and KEGG enrichment analysis results of GCERS- related differentially expressed genes.

Ontology ID Description Gene ratio Bg ratio p value p. adjust q value

BP GO:0007050 Cell cycle arrest 3/11 237/18670 3.09e-04 0.031 0.017

BP GO:0072331 Signal transduction by p53 class mediator 3/11 267/18670 4.38e-04 0.033 0.018

BP GO:0035690 Cellular response to drug 3/11 369/18670 0.001 0.043 0.024

BP GO:0048732 Gland development 3/11 434/18670 0.002 0.050 0.027

MF GO:0019838 Growth factor binding 4/11 137/17697 1.09e-06 9.68e-05 5.84e-05

MF GO:0005518 Collagen binding 2/11 67/17697 7.60e-04 0.031 0.019

MF GO:0019199 Transmembrane receptor protein kinase activity 2/11 79/17697 0.001 0.031 0.019

KEGG hsa05418 Fluid shear stress and atherosclerosis 4/9 139/8076 9.90e-06 5.94e-04 5.21e-04

KEGG hsa05202 Transcriptional misregulation in cancer 3/9 192/8076 1.00e-03 0.030 0.026

GO, gene ontology; BP, biological process; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.

3.8 Correlation analysis of key genes

We compared 11 GCERS-related DEGs between two groups
in datasets GSE34526 and GSE5850 (Figures 7A, B). In GSE34526
cells (Figure 7A), all hub genes showed statistically significant
differences. In GSE5850 (Figure 7B), nine hub genes showed
significant differences, excluding GPBAR1 and MSH2.

To explore the correlations between the hub
genes, we performed a correlation analysis for the 11
hub genes (Figures 7C, D). In the GSE34526 dataset, CDC25C
gene had statistically significant correlations with three hub genes
(PDGFA, BMPR1A, and LIFR), and nine hub genes (MMP9, SPI1,

GPBAR1, PDGFA, BMPR1A, LIFR, PRKAA1, MSH2, and KCNH2)
exhibited statistically significant correlations among themselves. In
the GSE5850 dataset, SPI1 had the most significant correlation with
seven hub genes (MMP9, SPI1, IGF2R, PDGFA, BMPR1A, PRKAA1,
CDC25C, and KCNH2), whereas MSH2 had the least significant
correlation, with only one significant correlation with KCNH2.

3.9 Drug sensitivity analysis

We analyzed the drug sensitivity of GCERS-related DEGs
using mRNA expression profiles and drug activity data from
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FIGURE 3
Functional enrichment analysis (GO) and pathway enrichment analysis (KEGG). (A–D) Bar chart (A), circular network diagram (B), bar graph (C) and
bubble diagram (D) illustrating the results of GO and KEGG enrichment analysis for differentially expressed genes associated with granulosa cell
endoplasmic reticulum stress. In the circular network diagram (B), yellow dots represent specific genes and blue circles represent specific pathways.
GO, Gene Ontology; BP, biological process; MF, molecular function. KEGG, Kyoto Encyclopedia of Genes and Genomes. The selection criteria for GO
and KEGG enrichment items are P. adj < 0.05 and FDR value (q value) < 0.05.

three different databases: GDSC, CCLE, and CellMiner. The
pRRophetic algorithm was employed to predict the sensitivity
of GCERS-related DEGs to common anticancer drugs based
on their expression levels. A ridge regression model was
constructed, and drug sensitivity was estimated using IC50
values. Additionally, the correlation between GCERS-related
DEGs and drug molecules was visualized across the three
databases. The results indicated that in the GDSC database,

four drugs with significant interactions with GCERS-related
DEGs were identified (Figure 8A): VX-11e, Trametinib,
Tanespimycin, and Refametinib. In the CCLE database, four
drugs with similar interactions were found (Figure 8B): TKI258,
Sorafenib, PD-0332991, and Panobinostat. In the CellMiner
database, three drugs with interactive relationships were
identified (Figure 8C): Selendale, Ibrutinib, and 1-[[5-(p-
fluorophenyl)-2-furanyl]methyleneamino]hydantoin.
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FIGURE 4
Gene set enrichment analysis (GSEA) of the PCOS dataset. (A) GSEA enrichment analysis of the seven most important biological traits in the GSE34526
dataset. (B–H) Genes in the GSE34526 dataset are significantly enriched in pathways such as IL3 signalling pathway (B), PI3K-CI signalling pathway (C),
NFKB signalling pathway (D), MAPK signalling pathway (E), TNFR2 non-canonical NF-κB signalling pathway (F), IL12 signalling pathway (G) and
FcεRI-mediated MAPK activation (H). The significant enrichment selection criteria for GSEA are P. adj < 0.05 and FDR value (q value) < 0.05.

4 Discussion

PCOS is characterized by elevated levels of androgens,
irregular menstrual cycles, as well as dysfunction of the ovaries
(Shi et al., 2020). GCs are crucial for oocyte development,
including growth, meiosis, and differentiation before ovulation
(Zhang et al., 2018). Recent studies have linked PCOS to
several factors, particularly those related to chronic inflammation

and oxidative stress (Cozzolino and Seli, 2020), which can
activate ERS, leading to the apoptosis of GCs and disruption
of follicular development (Lima et al., 2018). However, the
clinical manifestations of PCOS are highly variable, leading to
a lack of consensus regarding its pathogenesis. Thus, we aimed
to identify specific and sensitive biomarkers to clarify ERS
mechanisms in GCs and enhance our understanding of PCOS
pathogenesis.
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TABLE 4 GSEA of datasets.

Description Set size Enrichment score NES p value p. adjust

Neutrophil degranulation 450 0.599005756 2.849389421 0.001213592 0.023021781

Tyrobp causal network 59 0.749314299 2.731581114 0.001639344 0.023021781

Micrpglia pathogen phagocytosis pathway 40 0.787825725 2.669972063 0.001703578 0.023021781

Immunoregulatory interactions between a lymphoid and a non lymjoid cell 124 0.629024679 2.641831338 0.001470588 0.023021781

Leishmania infection 67 0.693773999 2.609597589 0.001592357 0.023021781

Human complement system 92 0.643016526 2.569987298 0.001519757 0.023021781

Antige processing cross presentation 95 0.625046783 2.518418196 0.001503759 0.023021781

Systemic lupus erythematosus 50 0.708603781 2.503527886 0.001675042 0.023021781

IL3 signaling pathway 49 0.61414965 2.154620678 0.001692047 0.023021781

PI3KCI pathway 48 0.567286611 1.989021484 0.001689189 0.023021781

NFKB pathway 21 0.649512946 1.913055831 0.003610108 0.033945554

MAPK signaling pathway 236 0.384271448 1.73543974 0.001308901 0.023021781

TNFR2 non canonical NF KB pathway 95 0.462539923 1.86365083 0.001503759 0.023021781

IL12 2pathway 60 0.542571064 1.985201268 0.001628664 0.023021781

Fceri mediated MAPK activation 35 0.54544542 1.79727498 0.001718213 0.023021781

GSEA, gene set enrichment analysis.

ER stress is a cellular adaptive mechanism that is crucial for
maintaining cellular homeostasis and cellular stress. Intense or
prolonged stress can shift the unfolded protein response from
a protective to harmful state, culminating in the initiation of
apoptotic pathways. Recent studies highlights ERS’s role in PCOS,
showing that ERS contributes to the development of the condition
and that ERS inhibitors can improve various aspects of PCOS
(Xiang et al., 2023; Harada et al., 2021; Koike et al., 2023).
This indicates that targeting ERS may be a promising treatment
strategy for PCOS. However, the integrated regulatory processes
involving GCs and ERS in PCOS remain unclear. Understanding the
molecular mechanisms underlying PCOS is vital for advancing its
diagnosis and treatment. Despite the identification of several PCOS-
related biomarkers as potential therapeutic targets, the complex
gene regulatory mechanisms involved in PCOS progression are not
fully understood. Thus, research into these mechanisms and early
interventions may have significant clinical benefits.

We identified 11 key genes related to GCERS in the PPI
network, which suggests that these genes may be crucial in
PCOS. MMP9, a zinc-dependent metalloproteinase involved in the
degradation of extracellular matrix proteins, is implicated in various
physiological and pathological processes, including cell signaling,
immune response modulation, and tumor metastasis (Pang et al.,
2024; Lu et al., 2022). MMP9 contributes to the development of
chronic inflammatory and autoimmune diseases (Bai et al., 2024;
Chen et al., 2022; Amjadi et al., 2022), and plays a crucial role

in hormone regulation and the maintenance of ovarian function.
Consistent with our findings, MMP9 is overexpressed in PCOS,
closely associated with ovarian cyst formation and follicular atrophy
(Dambala et al., 2019), and its expression can be modulated by
pharmacological treatment (Shamsi et al., 2023; Yu et al., 2022),
underscoring its significant role in the pathophysiology of PCOS.
During ER stress, multiple transcription factors regulate MMP9
expression. The pro-inflammatory cytokine tumor necrosis factor
alpha (TNFα) activates the ER stress response via c-Fos, leading to
MMP9 induction. TNFα stimulation increases ER stress markers
(BiP/GRP78, XBP1, GRP94), while inhibiting c-Fos signaling with
TUDCA or 4PBA suppresses TNFα-induced MMP9 expression
and secretion (Choi et al., 2019; Woodward et al., 2020). The
m6A-binding protein YTHDF1 also plays a key role in regulating
both ER stress and MMP9 (He et al., 2022). Oxidized low-density
lipoprotein (oxLDL) could alter ER function, induce ER stress, and
activate MMP9 in macrophages (Sanda et al., 2017). Additionally,
ER stress pathways, including PERK, IRE1α, and ATF6, are closely
linked to MMP9 expression (Chen et al., 2020; Nan et al., 2022;
Maddineni et al., 2021).These findings provide new insights into the
regulatory mechanisms connecting ER stress andMMP9, indicating
that the activity ofMMP9might influence the ER stress-induced cell
death pathway (Walter et al., 2020).

PRKAA1 encodes the AMPK protein, which plays a central role
in regulating glycolysis, fatty acid oxidation, and cell proliferation
and apoptosis (Zhang Y. et al., 2020; Yong et al., 2024). The
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FIGURE 5
Immune infiltration analysis of the PCOS dataset. (A, B) Bar graph showing the infiltration results of 20 immune cell types in the GSE34526 dataset (A)
and 21 immune cell types in the GSE5850 dataset (B). (C, D) Heat maps showing the correlation between immune cell abundance and 11
GCERS-related DEGs in the GSE34526 (C) and GSE5850 (D) datasets. E-F. Heatmap showing the correlation between immune cells in the GSE34526
(E) and GSE5850 (F) datasets. One asterisk (∗) indicates a p-value < 0.05, which is statistically significant; two asterisks (∗∗) indicate a p-value < 0.01,
which is highly statistically significant.

metabolic regulatory mechanisms of PRKAA1 vary across different
cell types; for instance, it regulates lipid synthesis in adipocytes and
glucose metabolism in hepatocytes (Yang et al., 2022). PRKAA1
influences female fertility, endometrial regeneration, and hormone
regulation (Kurowska et al., 2020), potentially contributing to PCOS
development by affecting insulin sensitivity (Tao et al., 2019),
thereby playing a crucial role in reproductive health and metabolic
balance in the condition (McCallum et al., 2018). Our research
showed thatPRKAA1 is downregulated in PCOS,which is consistent

with a previous study that found impaired PRKAA1 activation
in patients with PCOS (Randriamboavonjy et al., 2015). PRKAA1
activity is closely associated with ER stress-related signaling
pathways, including mTORC1, and its activation upregulates stress
markers such as HSPA5, protecting cells from ER stress-induced
damage (Xie et al., 2023; Yang et al., 2020; Zhou et al., 2022).
Dysregulated PRKAA1 expression is linked to several ER stress-
related diseases, including metabolic disorders (e.g., diabetes,
cardiovascular diseases) and tumor invasiveness (Yong et al., 2024;
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FIGURE 6
Regulatory networks of PPI, mRNA-TF, mRNA-miRNA, and mRNA-drug. (A) PPI regulatory network for ER stress-related differentially expressed genes
in granulosa cells. (B) mRNA-TF regulatory network, where blue rectangles represent mRNAs and yellow triangles represent transcription factors (TFs).
(C) mRNA-miRNA regulatory network, where blue rectangles represent mRNAs and green ellipses represent miRNAs. (D) mRNA-drug regulatory
network, where blue rectangles represent mRNAs and pink diamonds represent drugs. PPI, protein-protein interaction; TF, transcription factor.

Zhang et al., 2022; Shao et al., 2024). By modulating the ER stress
response, PRKAA1 influences cellular metabolism, survival, and
disease progression (Tan et al., 2023), making it a critical regulator
and potential therapeutic target. Further research is needed to
investigate the relationship between PRKAA1 and ER stress in PCOS
and explore its therapeutic potential in PCOS treatment.

GPBAR1 is a transmembrane receptor that is widely expressed
in a variety of tissues and plays a critical role in regulating
numerous physiological processes, including metabolism, immune
responses, and inflammation (Biagioli et al., 2023a; Chen et al.,

2023; Marchiano et al., 2022). The activation of GPBAR1 has been
shown to significantly reduce the expression of markers associated
with ER stress, while alleviating cell apoptosis, oxidative stress, and
improving cell survival (Dicks et al., 2021; Biagioli et al., 2024).
Furthermore, GPBAR1 activation enhances the autophagic process,
facilitates the clearance of unfolded proteins, and notably reduces
the levels of pro-inflammatory cytokines, such as IL-6 and TNF-
α, thereby inhibiting the inflammatory response triggered by ER
stress (Biagioli et al., 2023b; Carino et al., 2021). Our findings
align with previous studies that have demonstrated a significant
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FIGURE 7
Expression and correlation analysis of hub genes in the PCOS dataset. (A, B) Differential expression analysis of hub genes in the GSE34526 dataset (A)
and the GSE5850 dataset (B). (C, D) Correlation analysis between hub genes in GSE34526 dataset (C) and GSE5850 dataset (D). “ns” indicates a p-value
≥ 0.05, indicating no statistically significant difference; one asterisk (∗) indicates a p-value < 0.05, indicating a statistically significant difference; two
asterisks (∗∗) indicate a p-value < 0.01, indicating a highly statistically significant difference.

downregulation of GPBAR1 expression in PCOS (Huffman et al.,
2021). This reduction in GPBAR1 expression appears to be closely
linked to ovarian dysfunction and hormone imbalance observed
in PCOS patients (Li et al., 2021). We hypothesize that decreased
GPBAR1 expression in PCOS ovaries disrupts autophagic pathways
and cell survival, leading to increasedER stress and impaired ovarian
function. Further research is needed to elucidate the signaling
pathways linking GPBAR1 to ER stress and its role in PCOS
pathophysiology, which could uncover novel therapeutic targets for
this common condition.

LIFR, a key member of the IL-6 cytokine family, plays
a crucial role in various biological processes, including cell
proliferation, differentiation, and survival, as well as in the
regulation of inflammation and immune responses (Zhao et al.,
2024; Daghestani et al., 2022). Upon binding its ligand LIF,
LIFR forms a heterodimeric complex that activates downstream
signaling pathways (e.g., JAK/STAT, PI3K/AKT, MAPK), modulating
macrophage phenotype and inflammatory responses to indirectly
regulate ER stress (Viswanadhapalli et al., 2022; Feng et al., 2023).This
promotes cell survival and tissue repair, highlighting the protective
role of LIFR under ER stress. Reduced LIFR expression, conversely,
contributes to increased apoptosis and tissue dysfunction (Huo et al.,
2019; Ding et al., 2021). Consistent with previous studies (Zhao et al.,
2024; Dhadhal and Nampoothiri, 2022; Javidan et al., 2022), our
research shows a downregulation of LIFR in tissues from patients
with polycystic ovary syndrome (PCOS), suggesting that LIFR may
influence ovarian function and embryo development by modulating

the ER stress response. IGF2R, an important cell membrane receptor
with tissue-specific expression, is particularly prominent in the
reproductivesystem(Guoetal.,2023).Byenhancingcellularsensitivity
to insulin-like growth factors (IGFs) (Wang et al., 2020), IGF2R
promotescell survival andrecovery,mitigatingendoplasmicreticulum
stress and improving embryonic development (Ponsford et al., 2021;
Murillo-Rios et al., 2017). In line with previous studies (Kaur et al.,
2012; Haouzi et al., 2012), our results show IGF2R overexpression
in PCOS, which contributes to metabolic dysfunction and follicular
arrest, reducing oocyte developmental competence (Stubbs et al.,
2013). Additionally, IGF2R genetic polymorphisms may influence
PCOSpathogenesis, suggesting its potential as a biomarker for clinical
diagnosis and treatment.

The etiology of PCOS is complex and multifactorial. It is
characterized by a state of chronic inflammation (Patel, 2018;
Yin et al., 2019), which leads to the activation of immune cells
that infiltrate the local environment, resulting in dysregulation
of the immune system (Hu et al., 2020). Beyond reproductive
dysfunction, the pathogenic mechanisms involve the interplay
between the immune system and reproductive processes, leading
to a spectrum of alterations in cytokine profiles and immune cell
dynamics. Our study found that T cells play a important role
in PCOS pathophysiology, with results aligning with previous
research (Chen et al., 2022; Liu et al., 2023). We observed increased
infiltration of activated CD4+ memory T cells and T follicular
helper cells, which secrete inflammatory and immunomodulatory
molecules that affect ovarian function in patients with PCOS.
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FIGURE 8
Drug Sensitivity Analysis. (A–C) Drug sensitivity analysis based on GCERS-related DEGs using the Genomics of Drug Sensitivity in Cancer (GDSC)
database (A), Cancer Cell Line Encyclopedia (CCLE) database (B), and CellMiner database (C). GDSC, Genomics of Drug Sensitivity in Cancer; CCLE,
Cancer Cell Line Encyclopedia. The absolute value of the correlation coefficient (r) is classified as weak or no correlation if <0.3, weak correlation if
between 0.3 and 0.5, moderate correlation if between 0.5 and 0.8, and strong correlation if >0.8. Red represents positive correlation, and blue
represents negative correlation.

Additionally, T cell subpopulations in granulosa cells are
dysregulated because of hormonal imbalances. Our findings also
showed that 11 GCERS-related DEGs were closely associated with
immune cell infiltration. However, further research is needed to
clarify these complex relationships.

In this study, we observed significant discrepancies in the
correlation between GCERS-related genes and immune infiltrating
cells across the two datasets. These differences can be attributed to
several factors. First, variations in sample characteristics, such as
patient age, disease duration, and other clinical parameters, could
influence immune cell composition. Additionally, differences in
experimental design and data processing methods may reduce
dataset comparability. Moreover, the complex and multifactorial
nature of polycystic ovary syndrome (PCOS), driven by genetic,
environmental, and hormonal factors, leads to individual
variations in immune status, further contributing to the observed

heterogeneity.Despite these challenges, integratingmultiple datasets
remains valuable, as it allows for the identification of common
patterns and enhances our understanding of the relationship
between GCERS-related genes and immune infiltration in PCOS,
potentially guiding future clinical interventions.

5 Limitations

In this study, our bioinformatic analysis identified 11 key
genes and associated regulatory networks potentially involved in
the pathogenesis of polycystic ovary syndrome (PCOS), suggesting
promising diagnostic and therapeutic targets. However, several
limitations may affect the validity and generalizability of our
findings. First, the two datasets used (GSE34526 and GSE5850) had
relatively small sample sizes, which may not fully represent the
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diversity of the PCOS population, particularly regarding age and
racial differences. Moreover, we focused exclusively on the top 11
hub genes, and the precise molecular mechanisms underlying their
role in PCOS remain unclear.

Second, although differential expression analysis was performed
using the R package limma, these analyses rely on existing
biological databases, which may limit the exploration of certain
key genes’ functions. Additionally, due to technical and resource
constraints, we could not conduct experimental validation, which
could influence our understanding of the functional roles of the 11
genes associated with granulosa cell endoplasmic reticulum stress
(GCERS). To validate these findings and better understand the
molecular mechanisms of these hub genes in PCOS, further basic
and clinical studies are needed.

Furthermore, as this is a cross-sectional study, it cannot establish
causal relationships between gene expression and PCOS progression.
Our results are primarily based on correlational analysis.The immune
cell infiltration analysis relied on the CIBERSORTx model, which
may have limited predictive capacity. Additionally, the two datasets
used were sourced from oocytes and granulosa cells, respectively,
which could introduce variations due to differing sample origins,
potentially affecting gene expression interpretations. To mitigate this,
we conducted separate analyses for each dataset and identified the
intersection of DEGs to ensure the reliability of our results. Future
research will focus on using datasets from consistent sample sources
to enable more in-depth analysis, thereby enhancing the robustness
and scientific validity of our conclusions. Larger-scale experimental
validation and longitudinal studies are also needed to further explore
the underlying mechanisms.

6 Conclusion

In conclusion, our bioinformatic analysis of GEO database
samples identified key genes and pathways associated with PCOS.
Eleven significant hub genes (MMP9, SPI1, IGF2R, GPBAR1,
PDGFA, BMPR1A, LIFR, PRKAA1, MSH2, CDC25C, and KCNH2)
likely play crucial roles in PCOS pathophysiology.We also predicted
potential TFs, miRNAs, and drugs that might be involved in
PCOS via immune and inflammatory responses. Our results may
help to develop early diagnostic strategies and identify prognostic
biomarkers and treatment targets. Additional studies are needed to
verify these interactions and their functions.
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