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Introduction: A growing body of evidence suggests a potential connection
between myocardial infarction (MI) and lung cancer (LC). However, the
underlying pathogenesis and molecular mechanisms remain unclear. This
research aims to identify common genes and pathways between MI and LC
through bioinformatics analysis.

Methods: Two public datasets (GSE166780 and GSE8569) were analyzed to
identify differentially expressed genes (DEGs). Common DEGs were enriched
using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG). Hub genes were identified and their diagnostic performance was
evaluated. Gene co-expression networks, as well as regulatory networks
involving miRNA-hub genes and TF-hub genes, were also constructed. Finally,
candidate drugs were predicted.

Results: Among the datasets, 34 common trend DEGs were identified.
Enrichment analysis linked these DEGs to key biological processes, cellular
components, and molecular functions. Eight hub genes (CEBPA, TGFBR2, EZH2,
JUNB, JUN, FOS, PLAU, COL1A1) were identified, demonstrating promising
diagnostic accuracy. Key transcription factors associated with these hub genes
include SP1, ESR1,CREB1, ETS1,NFKB1, andRELA, while keymiRNAs include hsa-
mir-101-3p, hsa-mir-124-3p, hsa-mir-29c-3p, hsa-mir-93-5p, and hsa-mir-
155-5p. Additionally, potential therapeutic drugs were identified, with zoledronic
acid anhydrous showing potential value in reducing the co-occurrence of the
two diseases.

Discussion:This study identified eight common signature genes shared between
NSCLC and AMI. Validation datasets confirmed the diagnostic value of key hub
genes COL1A1 and PLAU. These findings suggest that shared hub genes may
serve as novel therapeutic targets for patients with both diseases. Ten candidate
drugs were predicted, with zoledronic acid showing potential for targeting dual
hub genes, offering a promising therapeutic approach for the comorbidity of
lung cancer and myocardial infarction.

KEYWORDS

non-small cell lung cancer (NSCLC), acute myocardial infarction (AMI), differentially
expressed genes (DEGs), hub genes, bioinformatics analysis
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1 Introduction

Lung cancer (LC), a leading cause of cancer-related death globally
(Shtivelman et al., 2014), encompasses small cell lung cancer (SCLC)
as well as non-small cell lung cancer (NSCLC), which includes lung
adenocarcinoma (LUAD), lung squamous cell carcinoma (LSCC),
and large cell carcinoma (Sahu et al., 2023). NSCLC accounts for
approximately 85% of all LC diagnoses (Stolz et al., 2022). Though
studies inepidemiologyhaveclearlydemonstratedthatcigarettesmoke
(CS) exposure contributes to the risk of NSCLC (Hecht, 1999), and
many studies have focused on identifying specific targets for NSCLC,
such as PIK3CA (Yamamoto et al., 2008), PDGFRA (Ramos et al.,
2009), EPHA2 (Psilopatis et al., 2022), etc., the precise etiology and
pathogenesis remain elusive.

Myocardial infarction (MI) is a form of cardiac injury caused
by inadequate blood supply and oxygen deprivation (Murphy and
Goldberg, 2022), usually associated with the ongoing development
of arterial plaque over time. The main pathological characteristic is
the impairment of endothelial function (Zhang et al., 2024). Acute
myocardial infarction (AMI) is the main factor contributing to
deaths among cardiovascular diseases, with increasing incidence
and fatality rates (Huang et al., 2024). Studies have revealed
associations between MI and processes such as pyroptosis,
apoptosis, and PAN apoptosis (Chang et al., 2024).

There are certain associations between MI and LC. Firstly,
these two diseases share common risk factors such as smoking
(Ambrose and Barua, 2004) and personality type (Nagano et al.,
2001). In terms of epidemiology, patients with lung malignancies
show an increased incidence of cardiovascular (CV) events
(Mitchell et al., 2023). Additionally, recent studies have shown
that the heart, especially myocardial mesenchymal stromal cells,
releases extracellular vesicles with tumor characteristics after MI,
and their tumor-promoting effects have a greater impact on LC
(Caller et al., 2024). This provides further evidence for the link
betweenMI and LC.The side effects of NSCLC treatment also have a
certain impact. Platinum is associated with the occurrence of AMI,
and tyrosine kinase inhibitors have shown certain cardiotoxicity
(Chang et al., 2023). It is reported that the incidence of vascular
events in patients with NSCLC treated with immune checkpoint
inhibitors cannot be ignored (Giustozzi et al., 2021). It is worth
noting that NSCLC and AMI share some common pathogenesis. As
for the inflammatory response, the occurrence and development of
AMI is closely related to abnormal inflammatory cells (Sun et al.,
2024) and persistent inflammation will increase the risk of lung
cancer (Elsayed, 2024). In addition, oxidative stress (Di Carlo
and Sorrentino, 2024; Guo et al., 2024), vascular remodeling and
endothelial dysfunction (Li et al., 2023; Meng et al., 2021) are
involved in the pathogenesis of both diseases. However, the specific
pathogenesis andmolecular mechanisms underlying the association
between MI and LC have not yet been fully understood.

Microarray technology and network-based analysis provide
valuable insights into gene expression profiles across various
cancers. In this research, we performed a bioinformatics analysis
to detect shared molecular mechanism-based biomarkers (CEBPA,
TGFBR2, EZH2, JUNB, JUN, FOS, PLAU,COL1A1) betweenNSCLC
and AMI, validating their correlation and identifying candidate
drugs targeting hub genes. These hub genes may be involved in the
onset and progression of AMI and NSCLC through inflammatory

response, oxidative stress, apoptosis, and related signaling pathways.
In NSCLC and AMI, COL1A1 is involved through EMT and arterial
dissection, while PLAU contributes through tumor invasiveness and
macrophage function, each separately. Notably, COL1A1 and PLAU
are dual targets of zoledronic acid anhydrous, a drug proven in
previous experiments to reduce cancer mortality and the incidence
of cardiovascular events. Our study suggests that zoledronic acid
anhydrous has promising potential in the combined treatment of
AMI and NSCLC. This study offers insights into the formulation of
dual-purpose preventative and therapeutic approaches.The research
process is illustrated in Figure 1.

2 Materials and methods

2.1 Data collection

The Gene Expression Omnibus (GEO) is the largest and most
comprehensive public gene expression data resource (https://www.
ncbi.nlm.nih.gov/geo/). We used the keywords “lung cancer” and
“myocardial infarction” to identify datasets related to NSCLC and
MI. The selected datasets were based on the following criteria: they
must cover both cases and controls, samples must be from human
subjects, and they must provide original information for subsequent
analysis. Finally, we chose the NSCLC-related dataset GSE8569
and the AMI-related dataset GSE166780 for subsequent research.
Furthermore, we included the NSCLC-related dataset GSE75037
and the AMI-related dataset GSE34198 for validation. Detailed
information on these datasets is provided in Table 1.

2.2 Identification of differentially expressed
genes (DEGs)

The online analysis tool GEO2R was utilized to identify DEGs,
using screening criteria of |log2(FC)| > 1 and p < 0.05. DEGs specific
to NSCLC and AMI were obtained by comparing gene expression
profiles between NSCLC cancer cells and normal cells, as well as
between peripheral blood samples from AMI patients and normal
peripheral blood samples. The Venn diagram tool of the Xiantao
Academic Platform (https://www.xiantaozi.com) was used to find
the common DEGs of the two diseases. The results were visualized
using volcano plots, box plots, and Venn diagrams.

2.3 Enrichment analysis of DEGs

First, the common DEGs were converted to gene IDs, followed
by gene enrichment analysis. Gene Ontology (GO) analysis,
encompassing biological processes (BP), molecular function
(MF), and cellular component (CC), is a widely used gene
annotation bioinformatics tool. Kyoto Encyclopedia of Genes
and Genomes (KEGG) provides comprehensive information on
genomes, biological pathways, diseases, and chemicals. Using the
clusterProfiler package in RStudio, we conducted GO functional
enrichment and KEGG pathway analyses on the common DEGs.
The ggplot2 package was used to visualize the data. The filtering
condition was set at p < 0.05.
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FIGURE 1
Flowchart of the study.

TABLE 1 Clinical characteristics.

GSE166780 GSE8569 GSE75037a GSE34198

N AMI P LC N P N LC P N AMI P

Sample
Count

8 8 69 6 83 83 48 45

Ageb (years) 59.75 ± 8.71 63.25 ± 8.29 0.424 NA NA NA 68.11 ± 9.74 68.11 ± 9.74 1.000 65.69 ± 9.30 63.62 ± 9.24 0.286

Female (%) 38 25 1.000 14 NA NA 71 71 1.000 33 31 0.819

Ancestry
(%)

NA NA 1.000 NA

 Asian NA NA NA NA 30 30 NA NA

 European NA NA NA NA 67 67 NA NA

 American
 Indian
 or Alaska
 Native

NA NA NA NA 1 1 NA NA

Source
Name

Peripheral
Blood Monocyte

Lung Lung Peripheral
Whole Blood

aTumor tissue and normal tissue are from the same patient.
bData are presented as mean ± standard deviation.
Abbreviations: N, normal; AMI, acute myocardial infarction; P, p-value; LC, lung cancer; NA, not available.

2.4 Protein-protein interaction (PPI)
network construction

We used the STRING database (https://cn.string-db.org/) to
construct a PPI network for the co-expressed DEGs in NSCLC and
AMI. The minimum interaction score was set to 0.400 and the
FDR stringency for filtering was set to 0.500 to identify interactions

among protein-coding genes. Then, we processed the data using
Cytoscape 3.10.2, clustered the gene network using the “MCODE”
plug-in, identified key subnetwork modules, and performed cluster
analysis. Hub genes were determined using the cytohubba method
(Degree, EPC, MCC, and MNC). We constructed a hub gene
expression network using the GeneMANIA database (http://www.
genemania.org/).
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2.5 Diagnostic significance of hub genes

We further investigated the importance of key genes as potential
biomarkers. The receiver operating characteristic (ROC) curve was
employed to assess the sensitivity and specificity of our selected
target genes. The area under the ROC curve (AUC) was used
to evaluate the results.

2.6 Construction of miRNA-hub gene
network and TF-hub gene network

The online database NetworkAnalyst 3.0 (https://www.
networkanalyst.ca/) was used to construct the miRNA-hub and TF-
hub networks of hub genes to describe the associations between
hub genes, miRNA, and TF. The selected TF-gene interaction
database was ENCODE, using criteria of peak intensity signal <500
and the predicted regulatory potential score <1. The miRNA-gene
interaction data were collected from miRTarBase.

2.7 Drug prediction based on hub genes

We searched DGIdb (https://dgidb.genome.wustl.edu), a
database for exploring known and potential drug-gene interactions,
to identify candidate drugs associated with the hub genes.

2.8 Statistical analyses

Statistical analyseswereperformedusingSPSSversion27.Clinical
characteristics were compared using Student’s t-test, Pearson Chi-
Square test or Fisher’s exact test, as appropriate. A two-sided p-value
of less than 0.05 was considered statistically significant.

3 Results

3.1 Identification of DEGs

The AMI-related dataset GSE166780 contains 8 normal and 8
AMI samples, while the NSCLC-related dataset GSE8569 includes
69 NSCLC and 6 normal samples. We compared the gene
expression of AMI and normal samples inGSE166780 and identified
3060 AMI DEGs, including 1,498 upregulated genes and 1,223
downregulated genes (Figures 2A, C). Similarly, we compared the
gene expression of normal and NSCLC samples in GSE8569 and
identified 678 NSCLC DEGs, including 182 upregulated genes
and 359 downregulated genes (Figures 2B, D). Through the Venn
diagram, 13 co-upregulated DEGs and 21 co-downregulated DEGs
were filtered out (Figures 2E, F). The co-expressed genes and their
corresponding p-values are listed in Table 2.

3.2 Functional annotation analysis of DEGs

GO and KEGG analysis were conducted on 34 co-
expressed DEGs in NSCLC and AMI, and the outcomes are

depicted in Figure 3. Concerning the BP, DEGs were significantly
concentrated in “response to oxidative stress” and “response to
reactive oxygen species.” In terms of CC, DEGs were enriched
in “RNA polymerase II transcription regulator complex,” “focal
adhesion,” and “cell-substrate junction.” For MF, DEGs are
enriched in “DNA-binding transcription activator activity, RNA
polymerase II-specific,” and “DNA-binding transcription activator
activity.” KEGG analysis revealed that DEGs were enriched
in “Human T-cell leukemia virus 1 infection” and “Relaxin
signaling pathway.”

3.3 PPI network analysis, cluster analysis,
and identification of hub genes

We analyzed 34 sharedDEGs using the STRINGonline database
(Figure 4) and imported the data into Cytoscape for visualization.
After removing isolated points, the PPI of the shared DEGs is
illustrated in Figure 5A, with 27 nodes and 53 edges. Additionally,
we employed the MCODE plug-in to identify crucial gene cluster
modules and discovered 2 clusters. Cluster 1 contains 6 nodes
and 14 edges with a score of 5.6. Cluster 2 includes 3 nodes
and 3 edges with a score of 3 (Figures 5B, C). To identify hub
genes, we used the CytoHubba plug-in. By taking the intersection
of the four algorithms, we identified 8 hub proteins: CEBPA,
TGFBR2, EZH2, JUNB, JUN, FOS, PLAU and COL1A1 (Figure 6).
In the NSCLC and AMI datasets, EZH2, COL1A1 and PLAU
were upregulated, and CEBPA, TGFBR2, JUN, JUNB and FOS
were downregulated.

3.4 Enrichment analysis of hub genes

GO and KEGG analyses were conducted (Figure 7). The
hub genes were mainly related to “integrated stress response
signaling,” “cellular response to salt,” “cellular response to metal
iron,” “response to reactive oxygen species” “cellular response
to inorganic substance,” “myeloid leukocyte differentiation,”
“cellular response to transforming growth factor beta” in BP
terms. In CC terms, they were predominantly associated with
the “RNA polymerase II transcription regulator complex.”
In MF terms, they were mainly related to “DNA-binding
transcription activator activity, RNA polymerase II-specific,”
“DNA-binding transcription activator activity,” “SMAD binding,”
“RNA polymerase II-specific DNA-binding transcription factor
binding,” and “DNA-binding transcription factor binding.” InKEGG
analysis, they were enriched in “Relaxin signaling pathway,” and
“Osteoclast differentiation.”

3.5 PPI analysis of hub genes

Based on GeneMANIA, PPI analysis was performed on
8 hub genes and 20 cross genes (Figure 8). Among them,
predicted accounted for 32.57%, physical Interactions for
28.18%, co-expression for 28.02%, shared protein domains for
10.32%, co-localization for 0.73% and genetic interactionsfor
0.18%. The primary biological roles of this network
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FIGURE 2
(A, B) Visualization of DEGs of GSE166780 and GSE8569 using volcano plots, blue represents downregulation, red represents upregulation
(|log2(FC)|>1, p < 0.05) (C, D) Visualization of GSE166780 and GSE8569 using box plots (E) Co-expressed upregulated differentially expressed genes
(DEGs) of GSE166780 and GSE8569 (|log2(FC)|>1, p < 0.05) (F) Co-expressed downregulated DEGs of GSE166780 and GSE8569 (|log2(FC)|>1, p < 0.05).

pertain to the myeloid dendritic cell activation, response
to cadmium ion, dendritic cell differentiation, regulation of
DNA binding, RNA polymerase II transcription regulator
complex, response to reactive oxygen species and transcription
regulator complex.

3.6 Diagnostic significance of hub genes

According to the ROC curve developed by the eight candidate
hub genes, we evaluated the specificity and sensitivity of each gene
for diagnosis (Figure 9). We calculated the AUC of each item,
among which the AUCs of COL1A1, JUN, EZH2, FOS, PLAU,
CEBPA, TGFBR2, and JUNB in the NSCLC-related dataset were
0.925, 0.879, 0.937, 0.935, 0.906, 0.853, 0.957, and 0.957, respectively.
The AUCs of COL1A1, JUN, EZH2, FOS, PLAU, CEBPA, TGFBR2,
and JUNB in the AMI-related dataset were 0.625, 0.922, 0.922,
0.859, 0.859, 1.000, 0.984, and 0.859, respectively. These genes
have high diagnostic value for both NSCLC and AMI. Among
them, the AUC of EZH2 and TGFBR2 were greater than 0.9 in
both diseases, showing high diagnostic efficacy. In the validation
dataset of NSCLC, the AUCs of COL1A1, CEBPA, PLAU, JUNB,
JUN, TGFBR2, FOS, and EZH2 were 0.946, 0.794, 0.725, 0.836,
0.859, 0.985, 0.862, and 0.905, respectively. In the validation
dataset of AMI, the AUCs of COL1A1, CEBPA, PLAU, JUNB, JUN,
TGFBR2, FOS, and EZH2 were 0.739, 0.570, 0.860, 0.671, 0.716,
0.679, 0.592, and 0.642, respectively. In both validation datasets,
COL1A1, PLAU, JUNB, JUN, TGFBR2, and EZH2 maintained high
diagnostic efficacy.

3.7 Construction of TF-hub gene network
and miRNA-hub gene network

We used NetworkAnalyst 3.0 software to construct the TF-Hub
genes and miRNA-Hub genes regulatory networks. The TF-Hub
network consists of 100 nodes and 121 edges, and the miRNA-
Hub network has 358 nodes and 407 edges. We found that in the
TF-Hub network, SP1 interacts with TGFBR2, FOS, PLAU, and
COL1A1. ESR1 regulates FOS, JUN, and JUNB. CREB1 regulates
PLAU, JUN, and FOS. ETS1 interacts with COL1A1, TGFBR2, and
PLAU. Notably,NFKB1 and RELA simultaneously regulateCOL1A1,
JUNB and PLAU (Figure 10A). In the miRNA-Hub network, hsa-
mir-101-3p interacts with 4 genes, including JUN, EZH2, TGFBR2
and FOS. Hsa-mir-124-3p targets EZH2,COL1A1, andCEBPA. Hsa-
mir-29c-3p targets JUN, FOS, and COL1A1. Hsa-mir-93-5p targets
JUN, TGFBR2, and EZH2. Hsa-mir-155-5p targets JUN, JUNB, and
FOS (Figure 10B).

3.8 Identification of drug candidates

To investigate gene-drug interactions, 8 validated hub
genes were submitted to the DGIdb database, and the results
were visualized in Cytoscape (Figure 11). A total of 145 drugs
were identified, and the top ten were CGP-37157, OICR-9429,
EPZ005687, EPZ011989, HESPERETIN, PROTEIN KINASE A
INHIBITOR, JQEZ5, SKLB-03220, EBI-2511, CPI-1205 (Table 3).
It is worth noting that zoledronic acid anhydrous and antibiotic are
connected with two hub genes.

Frontiers in Molecular Biosciences 05 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1502509
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Zheng et al. 10.3389/fmolb.2024.1502509

TABLE 2 Differential expression genes.

DEG AMI NSCLC DEG AMI NSCLC

P L2FC P L2FC P L2FC P L2FC

PRC1 0.0105 1.76 0.0003 1.69 MMP14 0.0015 3.08 0.0389 1.09

PSME4 0.0030 1.57 <0.0001 1.02 HYAL2 0.0256 −1.84 <0.0001 −1.85

PTTG1 0.0124 1.86 0.0007 1.51 MAP3K11 0.0241 −1.35 <0.0001 −2.01

MCM6 0.0024 1.69 0.0001 1.31 JUNB 0.0408 −1.57 <0.0001 −1.99

EZH2 <0.0001 2.99 0.0008 1.31 DAPK2 0.036 −1.37 0.0001 −1.08

PPIF 0.0020 1.81 0.0056 1.07 FLI1 0.0314 −1.17 <0.0001 −1.53

COL1A1 0.0137 2.59 0.0005 2.87 FOS 0.037 −1.20 <0.0001 −2.70

HMGA1 0.047 1.36 0.0009 1.59 GNAI2 0.0296 −1.34 <0.0001 −1.10

TNFRSF21 0.0103 1.76 0.0045 1.23 TGFBR2 0.0078 −1.01 <0.0001 −1.22

CFB <0.0001 6.90 0.0074 1.06 PINK1 0.0004 −1.59 <0.0001 −1.03

PLAU <0.0001 6.15 0.0147 1.36 RHOB 0.0019 −2.17 0.0001 −1.07

MAFG 0.0002 2.74 0.0060 −1.24 CSF3R 0.0246 −1.13 0.0002 −1.17

PAQR8 0.0107 −2.24 0.0002 −1.21 CITED2 0.026 −1.69 0.0030 −1.32

FKBP8 0.0168 −1.30 0.0005 −1.07 GIMAP6 0.0363 −1.51 0.0041 −1.31

JUN 0.0382 −1.20 0.0011 −1.18 ZYX 0.0412 −1.21 0.0063 −1.05

IMPDH1 0.0335 −1.24 0.0011 −1.30 CEBPA <0.0001 −3.40 0.0165 −1.32

TLN1 0.0083 −1.24 0.0016 −1.20 HLA-G 0.0142 −1.43 0.0178 −1.47

Abbreviations: P, p-value; L2FC, log2(FC).

FIGURE 3
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEGs (A) Biological Processes (B) Cellular Component (C)
Molecular Function (D) KEGG.
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FIGURE 4
Protein-protein interaction (PPI) network of common DEGs.

4 Discussion

Previous studies have demonstrated an inverse relationship
between cardiovascular disease and cancer. The mechanism
behind this relationship is not fully understood. Still, it may
be associated with circulating microRNAs, extracellular vesicles,
cardiac-derived mediators, along with pathways associated with
inflammatory responses, clonal hematopoiesis, and oxygen
deprivation (Aboumsallem et al., 2020). Several studies have
indicated an increased risk of cancer in patients with MI
(Hasin et al., 2016; Rinde et al., 2017). Research into the common
mechanisms between MI and cancer has gained attention recently
(Yuan et al., 2023; Meijers et al., 2018). However, limited studies
have explored the shared genetic underpinnings between NSCLC
and AMI at the genetic level. Our study has examined the molecular
biological roles and common pathways of NSCLC andAMI, offering
insights for the development of dual-purpose prevention and
therapy strategies.

In this study, we utilized bioinformatics tools to identify 34
common DEGs between an NSCLC dataset and an AMI dataset.
GO analysis of these DEGs revealed their association with “response
to reactive oxygen species,” “response to oxidative stress,” “RNA
polymerase II transcription regulator complex,” “focal adhesion,”
“cell-substrate junction,” “RNA polymerase II-specific DNA binding
transcription factor binding,” “DNA-binding transcription activator
activity, RNA polymerase II-specific.” KEGG analysis revealed that

these DEGs were linked to pathways involving “Human T-cell
leukemia virus 1 infection,” and “Relaxin signaling pathway.”

We developed a PPI network of DEGs and detected 8 hub
genes, namely, CEBPA, TGFBR2, EZH2, JUNB, JUN, FOS, PLAU
and COL1A1. In both datasets, EZH2, COL1A1 and PLAU were
upregulated, while CEBPA, TGFBR2, JUN, JUNB and FOS were
downregulated.

COL1A1 encodes the pro-α1 chain of type I collagen, a
fibrillogenic collagen found abundantly in bone, cornea, dermis,
and tendon. It has been recognized as a predictive biomarker for
LUAD, and its increased expression has been observed in LC tissue
samples, consistent with our findings (Dong et al., 2023). EMT
and fibroblast-myofibroblast-myofibroblast transition (FMT) are
involved in the initiation and progression of cancer (Ribatti et al.,
2020), and studies have demonstrated that fibroblasts with high
levels of COL1A1 are related to EMT (Wang et al., 2022). This means
that highly expressed COL1A1 may participate in the onset and
progression of LC by participating in the EMT process. Spontaneous
coronary artery dissection (SCAD) constitutes a non-atherosclerotic
etiology for AMI (Saw et al., 2017). Studies have linked COL1A1
to the formation of arterial dissection (Zekavat et al., 2022),
which may explain the association between AMI and COL1A1.
Some studies have also pointed out that type I collagen’s effective
deposition is crucial for the healing process after MI (Nong et al.,
2011). More research is still needed to elucidate the
underlying mechanism.
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FIGURE 5
(A) PPI network of common DEGs visualized using Cytoscape (B, C) MCODE plugin shows that cluster 1 contains 6 nodes and 14 edges with a score of
5.6. Cluster 2 contains 3 nodes and 3 edges with a score of 3.

CEBPA contributes to the development, expansion, metabolic
functions, and immune responses (Newman and Keating, 2003). It
has been reported to be downregulated in various solid tumors,
including liver, breast cancer, and LC (Lourenco and Coffer, 2017),
similar to our findings. CEBPα is reported to act as a key factor
in preserving the stability of the epithelial cell layer by suppressing
the transcription of vital mesenchymal markers, which in turn stops
the initiation of tumors driven by the EMT process (Lourenco et al.,
2020). Studies have shown that therapeutic upregulation of CEBPA
leads to inactivation of immunosuppressive myeloid cells and has
effective anti-tumor responses in different tumor models and cancer
patients (Hashimoto et al., 2021). Furthermore, some scholars
have demonstrated that JAM-A activates CEBPα and induces the
transcription of the claudin-5 gene, which plays a key role in
maintaining the vascular barrier (Kakogiannos et al., 2020). However,
there are a few reports that deviate from this trend (Zhu et al.,
2024), and it is reported thatCEBPA can promote LOXL2 and LOXL3
transcription and stabilizeBCL-2, thereby enhancing the proliferation
and metastasis of LC cells in vitro (Fan et al., 2024). In short, the
function of CEBPA in the genesis and progression of tumors still
needs further confirmation. In cardiac research, studies have revealed
that the C/EBP family’s transcription factors (TFs) are activated in
the epicardium upon receiving developmental prompts and injury
indicators.They collaborate withHOX,MEIS, and Grainyhead TFs to
clarify the genomic program directing embryonic gene transcription
in the epicardium (Huang et al., 2012). However, the relationship
between CEBPA and AMI has not been fully elucidated.

FOS is a member of the FOS gene family. The protein encoded
by FOS can form the TF complex AP-1 with the Jun family proteins
through the leucine zipper and is vital in signal transduction, cell
proliferation, and differentiation (Li et al., 2024). A study has shown
that the levels of c-fos and c-jun in tumor tissues of NSCLC cases are
lower than those in adjacent normal tissues (Levin et al., 1994). It
is reported that FOS is downregulated in cases of heart failure (HF)
afterMI as well (Hu et al., 2023). Our results similarly found that FOS
was downregulated in both diseases. However, some reports show
the opposite. As a target for miR-101A, overexpression of FOS can
lead to aggravated myocardial fibrosis after MI (Pan et al., 2012), and
inhibition of Fos/AP-1 can reduce inflammatory response and cardiac
dysfunction (Zhuang et al., 2022). At the same time, miR-29b-3p
mitigates cardiacfibrosis following infarctionbydirectly targetingFOS
(Xueetal.,2020).Studieshavealsofoundthat focusingonc-fosmaybea
supplementary treatment approach to hinder and diminishmetastasis
in LUAD patients carrying SNP BRMS1v2 A273V/A273V (Liu et al.,
2022). Therefore, the association between the FOS gene and the two
diseases requires further study.

JUN is a potential oncogene of avian sarcoma virus 17.
Dysregulation of the mitogen-activated protein kinase (MAPK)
signaling pathway is critical in the progression of LC and several
other cancer types (Braicu et al., 2019). The c-Jun N-terminal
kinase (JNK) pathway, one of the MAPK pathways, is involved
in various cellular functions in tumor development, including
proliferation, differentiation, survival, and apoptosis (Johnson
and Lapadat, 2002). Mesothelin (MSLN) promotes the level and
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FIGURE 6
Identification of hub genes (A–D) The top 10 genes in the PPI network were sorted by Degree, MCC, EPC, and MNC respectively. The 8 hub genes
identified are CEBPA, TGFBR2, EZH2, JUNB, JUN, FOS, PLAU, COL1A1.

FIGURE 7
GO and KEGG analysis of Hub genes (A) Biological Processes (B) Cellular Component (C) Molecular Function (D) KEGG.
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FIGURE 8
PPI analysis of hub genes using GeneMANIA.

activation of MET through the JNK signaling pathway, enabling
cancer cells to disrupt tight junctions and the integrity of the
blood-brain barrier (BBB), thus penetrating the barrier (Xia et al.,
2024). Studies have also demonstrated that c-Jun is essential for
coordinating the developmental processes of cardiac cells during
their early stages (Su et al., 2023). Activation of JNK has been
linked to myocardial injury, left ventricular remodeling (LVR),
and HF after MI (Plotnikov et al., 2023). In our study, JUN was
downregulated in both AMI and NSCLC, which may be related
to these mechanisms and thus supporting these findings to a
certain extent.

EZH2 is an important catalytic protein and is part of the
polycomb repressive complex 2 (PRC2) family. In our study,
EZH2 was upregulated in both diseases. Previous studies have
demonstrated that EZH2 is elevated in ischemic hearts (Zhao et al.,
2021). In the context of MI, inhibition of EZH2-induced cardiac
recruitment and enhanced activity of non-classical monocytes
accelerates the resolution of inflammation and reduces infarct
scar expansion, thereby contributing to decreased cardiac
remodeling and dysfunction after MI (Rondeaux et al., 2023).
Exosomal miR-25-3p from mesenchymal stem cells reduces

MI by inhibiting EZH2 (Peng et al., 2020). EZH2 is a target
of SETD1A, which maintains cancer stem cell properties by
triggering Wnt/β-catenin pathway activity (Wang R. et al., 2021).
It has been proposed that inhibition of EZH2 combined with
inhibition of PI3K is a possible combination therapy against
LC with PIK3CA alteration or overexpression (Chen et al.,
2022). Previous studies have shown that BMSC-exo-miR-30b-
5 can regulate the development of NSCLC by targeting EZH2
(Wu et al., 2023).

PLAU is a urokinase plasminogen activator known for its role
in cancer invasiveness, positioning it as a central figure in cancer
metastasis and related invasion processes, including attachment,
movement, and infiltration (Han et al., 2005; Sliva, 2008). Our
results showed that PLAU was upregulated in both diseases. PLAU
is closely associated with mutations in the tumor suppressor gene
TP53, which prevents the occurrence of anoikis (Barta et al., 2020).
PLAU has been associated with a wide range of biological and
pathological mechanisms, covering chemotaxis, adhesion processes,
migration and growth (Chavakis et al., 2002). Overexpression
of PLAU positively regulates the growth and colony formation
of NSCLC cells (Zheng et al., 2024). Elevated PLAU levels in
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FIGURE 9
Diagnostic Receiver operating characteristic (ROC) curves of 8 co-expressed hub genes (A) ROC curve of the hub gene in the GSE8569 dataset. (B)
ROC curve of the hub gene in the GSE166780 dataset. (C) ROC curve of the hub gene in the GSE75037 dataset. (D) ROC curve of the hub gene in the
GSE34198 dataset.

macrophages accelerate atherosclerosis and blockage of the coronary
arteries (Cozen et al., 2004).

TGFBR2, a central component of the TGF-β pathway, is
often deleted during carcinogenesis in numerous cancer types,
including NSCLC (Wang et al., 2007), and functions as an effective
tumor suppressor in NSCLC (Lo Sardo et al., 2021). We found
that TGFBR2 was downregulated in NSCLC and AMI. Masaki
Ikeuchi et al. revealed that activation of TGF-β provides protective
benefits against early ischemic heart damage. However, if its
expression persists, the beneficial effects may be compromised,
leading to LVR and failure after MI (Ikeuchi et al., 2004).
Conversely, a study has demonstrated the potential benefits of
targeting TGFBR2 in alleviating MI-like symptoms in vivo and
in vitro (Wang X. et al., 2021).

JUNB belongs to the family of activator protein-1 (AP-1) TFs and
binds to specific sequences in the cis-regulatory domains of target
genes, regulating multiple biological mechanisms encompassing
cell division, cell growth, and programmed cell death. It has been
reported that JUNB exhibited a substantial decrease in its mRNA

and protein levels in cardiac tissues of HF mice (Yan et al., 2018).
However, another study demonstrated that during early myocardial
ischemia (EMI), JUNB increases in the nuclei of cardiomyocytes
in both in vivo models and in human myocardium (Aljakna et al.,
2018). The andrographolide can inhibit tumor growth and invasion
of NSCLC by upregulatingHLJ1, a novel tumor suppressor, through
activation of JUNB (Lai et al., 2013). In this study, JUNB was
downregulated in both diseases. In conclusion, research on the
relationship between JUNB and these two diseases is limited, and
more follow-up studies are needed.

GeneMANIA-based PPI analysis indicated that the primary
biological functions of the hub genes and their interconnected
genes are related to the myeloid dendritic cell activation, response
to cadmium ion, dendritic cell differentiation, regulation of DNA
binding, RNA polymerase II transcription regulator complex,
response to reactive oxygen species and transcription regulator
complex. Reactive oxygen species (ROS)-induced cardiomyocyte
injury is critical for the pathogenesis of various heart diseases
and involves multiple genes, TFs, and oxidation-sensitive signaling

Frontiers in Molecular Biosciences 11 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1502509
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Zheng et al. 10.3389/fmolb.2024.1502509

FIGURE 10
(A) TF-Hub genes network, circles are hub genes, and squares are TFs. (B) miRNA-Hub genes network, circles are hub genes, and squares are miRNAs.

FIGURE 11
Analysis of hub genes on DGibd, a sum of 145 drugs were discovered. Red indicates hub genes, yellow indicates the top ten drugs, green indicates
drugs connected with two genes, and blue indicates other potential drugs.
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TABLE 3 The top ten drugs selected by DGIdb according to the score ranking.

Drug Interaction type and directionality Interaction score Target gene

CGP-37157 inhibitor (INHIBITORY) 26.25 CEBPA

OICR-9429 n/a 13.12 CEBPA

EPZ005687 inhibitor (INHIBITORY) 11.66 EZH2

EPZ011989 inhibitor (INHIBITORY) 5.83 EZH2

HESPERETIN n/a 5.83 TGFBR2

PROTEIN KINASE A INHIBITOR n/a 4.2 FOS

JQEZ5 inhibitor (INHIBITORY) 2.91 EZH2

SKLB-03220 inhibitor (INHIBITORY) 2.91 EZH2

EBI-2511 inhibitor (INHIBITORY) 2.91 EZH2

CPI-1205 inhibitor (INHIBITORY) 2.91 EZH2

pathways (Li et al., 2013). MI and LC are both associated with
oxidative stress. The cross-linking of cysteine residues 1,078 and
2,991 is essential for the redox control of the cardiac ryanodine
receptor (RyR) (Nikolaienko et al., 2023). NOP56 and mTOR
cooperate to maintain homeostasis in response to oxidative
stress and significantly enhance cell death in KRAS mutant
tumor cells (Yang et al., 2022).

ROC curve analysis was employed to assess the diagnostic
efficacy of key genes, revealing their high diagnostic value for both
NSCLC and AMI. Among these, EZH2 and TGFBR2 exhibited
AUCs greater than 0.9 in both diseases. These findings underscore
the significant roles of COL1A1, JUN, EZH2, FOS, PLAU, CEBPA,
TGFBR2, and JUNB in the development of NSCLC and AMI.
Subsequently, we used validation datasets to verify the diagnostic
efficacy of hub genes and COL1A1, PLAU, JUNB, JUN, TGFBR2
as well as EZH2 maintaining high diagnostic efficacy. This further
screened out genes with greater diagnostic value.

NetworkAnalyst was used to construct related miRNA-hub
networks and TF-hub networks. The five most active miRNAs
interacting with hub genes are hsa-mir-101-3p, hsa-mir-124-3p,
hsa-mir-29c-3p, hsa-mir-93-5p, and hsa-mir-155-5p.The 6 TFs that
predominantly interact with hub genes are SP1, ESR1, CREB1, ETS1,
NFKB1, and RELA.These miRNAs and TFs could be correlated with
the initiation and progression of NSCLC and AMI.

Previous studies have linked many of these miRNAs to
the development of LC and AMI. For instance, miR-101-3p
downregulation in cancer-associated fibroblasts (CAFs) increases
vascular endothelial growth factor A (VEGFA) secretion, promoting
LC metastasis via the Akt/eNOS pathway (Guo et al., 2021).
Conversely, overexpression of miR-101a-3p can enhance cardiac
function after MI (Li et al., 2019). In NSCLC, miR-124-3p markedly
suppresses metastasis via exosomal transport and intracellular
PI3K/AKT signaling (Zhu et al., 2023). Inhibition ofmiR-124-3pmay
activate the FGF21/CREB/PGC1α pathway, reducing cardiomyocyte
apoptosis and improving oxidative stress and inflammatory responses

(Wei et al., 2021).miR-29c-3p suppresses the activity ofMitochondrial
fission regulator 1 (MTFR1), thereby inhibiting the progression
of lung adenocarcinoma via the AMPK/mTOR signaling pathway
(Li et al., 2021). miR-93-5p is often overexpressed in NSCLC
and acts as an oncogene by inhibiting the tumor suppressor
activities of PTEN and RB1 (Yang et al., 2018). The suppression
of miR-155-5p rejuvenates senescent mesenchymal stem cells,
thereby augmenting their cardioprotective effects post-myocardial
infarction (Hong et al., 2020). Also, it can mediate the inhibition
of radiotherapy in NSCLC (Zhu et al., 2019). In conclusion, these
miRNAs are closely associated with both NSCLC and AMI.

There are also studies proving that predicted TFs are related to
NSCLC and AMI. For example, HIF1α-SP1 interaction can promote
the development of NSCLC (Wu et al., 2022). KN-93 enhances fatty
acid oxidation in MI via the HDAC4-SP1 axis (Zhao et al., 2024).
ESR1 expression serves as an independent prognostic indicator
in metastatic NSCLC (Atmaca et al., 2014). ESR1 encodes the
nuclear receptor ERα, which leads to a reduction in infarct size,
inflammatory response, and oxidative stress in animal models
(Puzianowska-Kuznicka, 2012). Inactivation of CREB1 may confer
cisplatin resistance in metastatic NSCLC (Kim et al., 2019). ETS1
mediates the initiation of gene expression patterns that result from
the RAS/MAPK signaling pathway (Plotnik and Hollenhorst, 2017).
The rs28362491 ins/del variation of the NFKB1 gene is linked to a
higher likelihood of MI and increased severity of coronary artery
disease (Luo et al., 2020). MUC3A interacts with RELA to activate
the NFκB pathway (Sun et al., 2021). In summary, these TFs could
contribute to the onset and progression of the two diseases.

We used DGibd to predict dual-use drugs for AMI and NSCLC.
A total of 145 candidate drugs were retrieved, of which the top
ten scores were CGP-37157, OICR-9429, EPZ005687, EPZ011989,
HESPERETIN, PROTEIN KINASE A INHIBITOR, JQEZ5, SKLB-
03220, EBI-2511, andCPI-1205. Notably, zoledronic acid anhydrous
and antibiotic target two hub genes. Zoledronic acid anhydrous
targets PLAU and COL1A1, which are the two genes with the
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highest diagnostic value identified in our study. This offers a new
perspective on the dual-use treatment of the two diseases. Some
studies proved that zoledronic acid anhydrous may affect COL1A1
expression. Specifically, treatment with bisphosphonates, including
zoledronic acid anhydrous, inhibits expression levels of the COL1A1
chains of type-I collagen in oral fibroblasts (Ravosa et al., 2011). A
study indicates that women who received zoledronic acid treatment
experienced fewer vascular events, lower cancer rates, and a
tendency towards reduced mortality (Reid et al., 2020). This greatly
confirms our view that zoledronic acid can be used in a dual-
use treatment strategy for NSCLC and AMI. Zoledronic acid has
also been reported to boost the effectiveness of immunotherapy
in NSCLC (Zheng et al., 2022). This is a significant finding, as it
suggests that zoledronic acid anhydrous could be a valuable adjunct
to current immunotherapeutic approaches, potentially improving
patient outcomes. Additionally, some antibiotics have been shown to
affect COL1A1 expression. The transgenes integrated at the COL1A1
locus have demonstrated strong transgenerational inheritance of
epigenetic alterations caused by fetal exposure to doxycycline
(Wan et al., 2013), which is a tetracycline antibiotic. Scholars also
found that the expression of COL1A1 was significantly reduced in
the rabbit model of benign tracheal stenosis treated with penicillin
(Enyuan et al., 2018). However, it is reported that antibiotics can
decrease the efficacy of immune checkpoint inhibitors in NSCLC
treatment (Qiu et al., 2022). Therefore, the role of antibiotics in
NSCLC remains to be determined. Evidence also suggests that
among the top ten ranked drugs, some possess the potential for
application in the treatment of both diseases. Some scholars have
discovered that hesperetin regulates the inflammatory response
caused by AMI in mouse models (Meng et al., 2018). Protein kinase
A (PKA) inhibition enhances susceptibility to ferroptosis in NSCLC
cells and could improve the efficacy of ferroptosis inhibitors in the
treatment of NSCLC patients (Shan et al., 2023). The effects of these
drugs on the two diseases warrant further investigation. Our results
provide further ideas for drug therapy of the two diseases.

In summary, we comprehensively analyzed public databases and
gene expression microarray data from NSCLC and AMI patients
and healthy controls. We identified eight common signature genes
(CEBPA, TGFBR2, EZH2, JUNB, JUN, FOS, PLAU, COL1A1) and
their co-regulated pathways between NSCLC and AMI. All eight
common signature genes have high diagnostic value, among which
EZH2 andTGFBR2 performwell. In the validation datasets,COL1A1,
PLAU, JUNB, JUN, TGFBR2, and EZH2 retain their high diagnostic
effect. Undoubtedly, detecting shared hub genes and pathways in
NSCLC and AMI provides new insights into potential therapeutic
targets for patients with both diseases and this finding may facilitate
the diagnosis of LC-related MI. Among these genes, COL1A1 may
be involved in the occurrence and progression of the two diseases
by participating in the EMT process and the formation of arterial
dissection separately. Meanwhile, the association of PLAU with these
two diseases may be related to tumor invasiveness and macrophage
activity, respectively. We also constructed miRNA-hub and TF-hub
networks, in which five miRNAs and 6 TFs were found to be active in
the network.ThesemiRNAs andTFs are implicated in various cellular
processes, including cell proliferation, differentiation, apoptosis, and
immune responses, which are critical to the development and
progression of both NSCLC and AMI. Furthermore, we predicted
potential drugs based on common targets and obtained ten candidate

drugs, providing more treatment options for related diseases. It
is worth emphasizing that zoledronic acid targets two hub genes
simultaneously and has shown in past experiments that it can reduce
the risk of both cancer and cardiovascular disease. Therefore, our
research suggests that zoledronic acid anhydrous may have great
therapeuticprospects as a treatment for the comorbidityof lungcancer
and myocardial infarction.

However, this study’s limitations involve the need for further
experimental validation of the shared hub genes and pathways
identified in AMI and NSCLC. There is no specific relationship
among the selected datasets. If patients with AMI who also have
NSCLC were included as the research subjects, the results might be
more representative. Additionally, the diagnosis of NSCLC andAMI
should not rely solely on these signature genes and pathways but also
needs to consider clinical symptoms and laboratory tests. Also, the
availability of extensive and valuable public datasets for AMI and
NSCLC is somewhat limited, highlighting the need for additional
data in future studies to substantiate our findings.
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