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University), Moscow, Russia

Introduction: Kidney diseases pose a serious healthcare problem because of
their high prevalence, worsening of patients’ quality of life, and high mortality.
Patients with kidney diseases are often asymptomatic until disease progression
starts. Expensive renal replacement therapy options, such as dialysis or kidney
transplant, are required for end-stage kidney disease. Early diagnosis of kidney
pathology is crucial for slowing down or curbing further damage. This study
aimed to analyze the features of the protein composition of blood plasma in
patientswith themost common kidney pathologies: kidney calculus, kidney cyst,
and kidney cancer.

Methods: The study involved 75 subjects. Proteins associated with kidney
pathologies (CFB, SERPINA3, HPX, HRG, SERPING1, HBB, ORM2, and CP)
were proposed. These proteins are important participants of complement and
coagulation cascade activation and lipid metabolism.

Results: The revealed phosphorylated proteoforms (CFB, C4A/C4B, F2, APOB,
TTR, and NRAP) were identified. For them, modification sites were mapped on
3D protein models, and the potential role in formation of complexes with native
partner proteins was assessed.

Discussion: The study demonstrates that the selected kidney pathologies have
a similar proteomic profile, and patients can be classified into kidney pathology
groups with an accuracy of (70–80)%.

KEYWORDS

kidney diseases, kidney calculus, kidney cyst, cancer, tandem mass spectrometry,
protein analysis, phosphorylation, candidate markers

1 Introduction

Understanding the molecular foundations of disease development opens up new
opportunities for designing novel diagnostic approaches as well as searching for candidate
biomarkers and protein drug targets. The pathogenesis of multifactorial diseases is
determined by changes in gene expression and, therefore, changes in the protein
profile of biospecimens as well as the presence of modified (aberrant) proteoforms
(Kopylov et al., 2023; Tikhonov et al., 2021; Nikolsky et al., 2023). Comparative
case–control studies fail to provide insight into whether there are any differences between
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etiologically similar disease groups or determine specificity of the
revealed candidate markers for segmentation of diseases of a certain
organ. Implementation of research findings into medical practice is
significantly impeded by low specificity of candidate biomarkers. In
this context, conducting system research that focuses on the features
of molecular profiles of etiologically similar diseases or diseases of
one organ or tissue is rather relevant.

Our study addresses the most widespread kidney diseases.
The comparison groups involved patients with kidney calculus,
kidney cyst, and malignant kidney neoplasm. These pathologies
are extremely common nowadays: up to 15% of global population
are prone to the development of kidney calculus (Moftakhar et al.,
2022) and at least 25%, simple kidney cysts (Garfield and
Leslie, 2024). The annual incidence of kidney cancer is 400,000
new cases (Cirillo et al., 2024). There is heterogeneity in global
epidemiology of these diseases: their highest prevalence is typical
of Europe and North America.

These diseases have a largely similar clinical presentation
(Table 1), thus hampering timely and accurate clinical diagnosis.
Malignant transformation of kidney cysts (Tseng, 2015; Lu et al.,
2021; Lai et al., 2019) and disease mimicry [e.g., renal cell
carcinoma mimics kidney cyst (Jiang et al., 2015; Yu et al., 2017)]
are possible.

Symptoms, clinical presentation, risk factors and even candidate
molecular factors are often similar for kidney pathologies. Today,
searching for markers or an ensemble of markers that would meet
the clinical requirements for specificity, accuracy and sensitivity in
the context of early diagnosis of kidney diseases is still ongoing.
Thus, blood biochemistry test is recommended for suspected
kidney cancer, with special attention paid to albumin blood
level, the erythrocyte sedimentation rate, lactate dehydrogenase
(LDH) and alkaline phosphatase activities, as well as blood levels
of ionized and total calcium. These serologic factors are not
specific to oncopathology (Table 1) but may affect the choice
of treatment approach, as well as diagnostic and secondary
prophylaxis options (Chen et al., 2017).

Elevated levels of reactive oxygen species, lipid peroxidation
products, proinflammatory cytokines, and proangiogenic factors
are typically detected in patients with kidney calculus (Wigner et al.,
2021). Parameters recommended to be measured in these
patients include the levels of cations (calcium, potassium,
and sodium), C-reactive protein, creatinine, and albumin
(EAU, 2024b; Vitale et al., 2008).

In patients with kidney cyst, blood chemistry parameters often
remain normal if the cyst neither exerts pressure on adjacent tissue
nor disturbs the renal function. For this disease, there are very
few publications addressing the biochemical markers in blood of
patients diagnosed with kidney cyst.

A proteomic analysis of blood samples collected from
patients with verified diagnosis of kidney calculus, kidney
cyst, or kidney cancer was conducted to identify proteins
making the greatest contribution to segmentation of
comparison groups. Phosphorylated proteoforms specific to
groups of patients with kidney diseases were analyzed, and
potential signaling pathways for pathology development were
identified.

2 Materials and methods

2.1 Ethical consideration

Patients and healthy volunteers provided written consent to
participate in the study, which was approved by the Local Ethics
Committee of the Sechenov University (protocol No. 10–19 dated
17 July 2019). All handlings and use of material were provided
according to theWMADeclaration of Helsinki on Ethical Principles
for Medical Research Involving Human Subjects (the revision
approved in Fortaleza, 2013). All the participants were aware of
the research purpose. Informed consent was obtained from all the
participants.

2.2 Participants

The study involved 75 subjects, including 51 patients having
a verified diagnosis of a urologic disease: kidney calculus, kidney
cyst, and kidney cancer, as well as 24 conditionally healthy subjects
(control group). The inclusion criteria for the group of participants
diagnosed with a urological disease were as follows:

– patient’s age ≥18 years;
– ICD 10 code of the underlying disease: N20.0 “Calculus of

kidney”, N28.1 “Cyst of kidney, acquired”, C64 “Malignant
neoplasm of kidney, except renal pelvis”.

The non-inclusion criteria were as follows:

– patients diagnosed with cancer of other organs and systems;
– psychoactive substance and alcohol abuse;
– pregnant or breastfeeding women.

The kidney disease (KD) group consisted of patients having
kidney calculus and kidney cyst. The final diagnosis in the kidney
cancer group (KC) was made based on multislice computed
tomography (MSCT) and histologic examination.

Triple-phase helical computed tomography of the abdomen
and the peritoneal cavity (kidneys) using the bolus-tracking
technique was conducted regardless of disease stage in order to
differentiate between benign and malignant tumors. Scans were
acquired before and after administration of a contrast agent to
assess its accumulation. Contrast enhancement of the neoplasm
was determined by comparing the Hounsfield scale parameters
(in Hounsfield units, HU) before and after administration of
the contrast agent. Changes in contrast by at least 15 HU were
regarded as contrast enhancement and viewed as a functionally
active tumor region (EAU, 2024a). Malignancy and tumor grade
were verified by postoperative histological examination.

Cystic structures were detected and classified using the Bosniak
system. The group of patients with kidney disease comprised
patients with Bosniak I or II cysts as these cystic structures
are benign.

The number of subjects in the kidney disease (KD) group was
25; in the kidney cancer (KC) group, 26; and in the healthy (CNTR)
group, 24 (Table 2). The comparison groups were matched with
respect to the number of subjects and their age, sex, and height
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TABLE 1 Comparison of clinical presentation of the development of kidney pathology.

Parameter Kidney calculus Kidney cyst Kidney cancer

Disease and risk factor control

Symptoms • severe pain on either side of lower
back

• pain or stomach ache
• hematuria

• nausea or vomiting
• fever and chills

• pain in the side, stomach or low back
• hematuria

• fever
• changes in urination habits

• pain or dull ache in the side or lower
back

• hematuria
• fever

• changes in urination habits
• rapid, unexplained weight loss

Diagnosis Ultrasound computed tomography
(USCT) or urography

Computed tomography (CT)
Magnetic resonance imaging (MRI)

Contrast-enhanced ultrasound (CEUS)

USCT or contrast-enhanced MRI;
Histological diagnosis

BMI Overweight (Moftakhar et al., 2022) n/d Obesity (Gray and Harris, 2019)

Diabetes mellitus Yes (Moftakhar et al., 2022) Yes (Wei et al., 2020) Yes (Tseng, 2015)

Hematuria Yes (Nagendra et al., 2023) Yes (Boo et al., 2022) No (Takeuchi et al., 2021)

Hypertension Yes (Moftakhar et al., 2022) Yes (Kim et al., 2014) Yes (Gray and Harris, 2019)

Cigarette smoking Yes (Moftakhar et al., 2022) Yes (Sousa et al., 2021) Yes (Gray and Harris, 2019)

Adults aged >40 years Yes (Moftakhar et al., 2022) Yes (Wei et al., 2020) Yes (Tseng, 2015)

Sex Yes n/d Yes (Ferlay et al., 2018; Moch et al.,
2016)

Hereditary predisposition Yes (Howles and Thakker, 2020;
Singh et al., 2022)

Yes (Satariano et al., 2024; Park et al.,
2021; Dillman et al., 2017)

Yes (Truong et al., 2022; Shuch and
Zhang, 2018; Bratslavsky et al., 2021;

Yanus et al., 2024)

Molecular factors

Creatinine (serum) Elevated (Katwal et al., 2022;
Shastri et al., 2023; Shen et al., 2022;

Pan et al., 2024)

n/d Elevated (Liu et al., 2020; Zhang and
Bu, 2022)

Urea (serum) Elevated (Katwal et al., 2022) n/d Elevated (Sun et al., 2021; Bai et al.,
2021; Li et al., 2019)

Uric acid (serum) Elevated (Kc and Leslie, 2024;
Tung et al., 2024; Alelign and Petros,

2018)

Elevated (Abbiss et al., 2019) Elevated (Allegrini et al., 2022;
Dai et al., 2020)

Calcium (ionized or total) Elevated (Alelign and Petros, 2018) Elevated (Mangolini et al., 2016) Hyperelevated (Vakiti et al., 2024)

Albuminuria Elevated (Alelign and Petros, 2018;
Brewin et al., 2021)

Elevated (Boo et al., 2022) Elevated (Luo et al., 2023a; Luo et al.,
2023b; Mok et al., 2020)

C-reactive protein Elevated (Shoag and Eisner, 2014) Elevated (Bergmann et al., 2018) Elevated (Zhou et al., 2015)

Lactate dehydrogenase (LDH) Elevated (Devi et al., 2023; Ding et al.,
2021; Xiao et al., 2023)

n/d Elevated (Claps et al., 2022; Wu et al.,
2021; Mishra and Banerjee, 2019)

Interleukin-1 (IL-1) Association (Xiao et al., 2022) Association (Yang et al., 2019) Association (Sindhughosa and
Pranamartha, 2017)

PKD1/PKD2 n/d Association (Yang et al., 2023;
Al-Hamed et al., 2019)

Association (Meguro et al., 2023)

Alkaline phosphatase Elevated (Palsson et al., 2019; Zhu et al.,
2023)

n/d Elevated (Stebbing et al., 2014; Stanford
and Bottini, 2023)
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TABLE 2 Anthropometric characteristics of the study participants.

Parameter Kidney disease (KD) Kidney cancer (KC) Healthy group
(CNTR)

ICD-10 code of
the underlying

disease

N20.0 “Calculus of kidney”;
N28.1 “Cyst of kidney, acquired”

C64 “Malignant neoplasm of
kidney, except renal pelvis”

– –

Sex female male female male female male

Number of participants (n) 15 10 11 15 12 12

Age (years) 59 ± 11.83 (p = 0.47) 58.5 ± 13.74 (p = 0.6) 57 ± 7.88 (p = 0.72) 60 ± 5.47 (p = 0.6) 60.5 ± 3.7 59.5 ± 2.19

Weight (kg) 76 ± 12.85 (p = 0.05) 86.5 ± 12.73 (p = 0.001) 98 ± 12.37a (p = 0.002) 95 ± 9.97a (p = 0.0003) 68.5 ± 5.92 68.5 ± 7.35

Height (cm) 164 ± 7.17 (p = 0.32) 179.5 ± 4.84 (p = 0.05) 164 ± 3.03a (p = 0.38) 182 ± 6.88a (p = 0.05) 171.5 ± 9.21 173.5 ± 6.89

BMI (kg/m2) 28.3 ± 5.18 (p = 0.01) 25.43 ± 3.86 (p = 0.001) 35.9 ± 4.72a (p = 0.001) 27.8 ± 3.65a (p = 0.0002) 23.51 ± 1.57 22.89 ± 1.66

a– according to the available data; p-value (Benjamini–Hochberg adjusted) are provided with respect to the values of the control (comparison) group of patients of the respective sex.

distribution. Differences in these parameters between comparison
groups were non-significant among males and females (p ⩾ 0.05).

The body mass index (BMI) parameters come under notice,
which differed significantly in the KD and KC groups compared to
patients in the control group. The mean BMI among all the female
urologic patients was 32.1 ± 4.95 kg/m2, which corresponded to
overweight or class 1 obesity. Among male patients, this parameter
was 26.62 ± 3.76 kg/m2, mostly corresponding to normal body
weight or overweight. Patients diagnosed with kidney cyst or
kidney calculus had BMI = 28.3 ± 5.18 kg/m2 (females) and 25.43
± 3.86 kg/m2 (males). For study subjects diagnosed with kidney
cancer, BMI was 35.9 ± 4.72 kg/m2 among females (corresponding
to class 1 and 2 obesity) and 27.8 ± 3.65 kg/m2 among males (mostly
overweight and class 1 obesity). The control group consisted of
conditionally healthy subjects with BMI lying in the normal range.

2.3 Blood sample collection

Blood samples in study subjects were collected strictly after
fasting, at 8.00–10.00 a.m., in a clinical diagnostic laboratory.
For proteomic analysis, blood samples were collected from
the cubital vein into vacutainer tubes containing 3.8% sodium
citrate anticoagulant (Improvacuter, Guangzhou Improve Medical
Instruments Co., Ltd., Guangzhou, China). The samples were
centrifuged at 3,000 rpm during 6 min at room temperature.
Each plasma sample (500 µL) was collected into two dry
Eppendorf polypropylene microtubes, frozen, and stored at −80°C
until analysis.

2.4 Blood chemistry test

Blood chemistry tests were conducted on a Torus 1,200 semi-
automatic chemistry analyzer (Moscow, Russia). Reaction mixtures
were prepared in accordance with the manufacturer’s instructions.
The measurements were performed using the kinetic method, the

endpoint method, and fixed time. Quality control was performed by
measuring control “normal” (TruLabN) and “pathological” (TruLab
P) sera (DiaSysDiagnostic SystemsGmbH,Germany).The reference
values from the application sheets are summarized in Table 3.

2.5 Preliminary preparation of blood
plasma for HPLC-MS/MS analysis

Preliminary preparation of blood plasma for proteomic analysis
was thoroughly described in Stepanov et al. (2023). The protein
fraction was precipitated with methanol (JT Baker, Landsmeer, the
Netherlands). Alkylation was performed in the presence of 2%
4-vinylpyridine solution (Aldrich, Gillingham, United Kingdom)
in 30% isopropanol solution (Fisher Chemical, Laughborough,
United Kingdom). Trypsinolysis (∼400 ng trypsin per sample,
Promega, Madison, Wisconsin, United States) involved two steps
andwas performed in 75 mM triethylammoniumbicarbonate buffer
(pH 8.2). The hydrolysates were vacuum dried before storage
(Concentrator Plus, Eppendorf, Hamburg, Germany). Before mass
spectroscopy measurements, the dry residue was re-dissolved using
0.1% formic acid (Acros Organics, Geel, Belgium).

2.6 Mass spectrometry analysis

Spectra were acquired on a Xevo™ G2-XS Q-TOF quadrupole
time-of-flight mass spectrometer (Waters, Wilmslow, United
Kingdom) in the positive ionization mode within a normal dynamic
range of masses. The capillary voltage was 3 kV; the cone voltage
was 67 V. The drying gas flow rate was 680 L/min; the focusing gas
velocity was 50 L/min. The source temperature was set at 150°C;
desolvation temperature was set at 350°C. Ions were surveyed in the
data-independent acquisitionmode (SONAR).The fullMS scanning
was performed in a range of 300–1,300 m/z with a low-energy
CID fragmentation at 6 eV, followed by scanning in the SONAR
mode with quadrupole mass start at m/z = 178 and quadrupole
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TABLE 3 Blood chemistry parameters of venous blood and their reference values.

Parameter Abbreviation Reference values Units

Male Female

Alanine aminotransferase ALT 10-40 (Eliseev, 2023) 7–35 U/L

Aspartate aminotransferase AST <40 (Eliseev, 2023) <40 U/L

Alkaline phosphatase ALP <270 (Eliseev, 2023) <240 U/L

Albumin ALB 35–50 g/L

Triglycerides TRIG 40–49 years 0.63–3.37
>50 years 0.70–3.25 (Eliseev, 2023)

40–49 years 0.50–2.10
>50 years 0.62–2.79

mmol/L

Creatinine Cr >60 years 71–115 (Eliseev, 2023) >60 years 53–106 μmol/L

Glucose Glu >60 years 4.6–6.4 μmol/L

mass stop at m/z = 1,287 with a 22 Da mass window and high-
energy CID fragmentation range from 15 to 37 eV. The total time
for a complete scan cycle was set at 0.418 s. Mass correction using
leucine–enkephalin (m/z = 556.2771, z = 1+) injected every 30 s
at a concentration of 50 pg/mL was active at scanning times from
0.5 to 59 min.

Chromatographic separation was performed on an Acquity™
UPLC H-Class Plus chromatography system (Waters, United
Kingdom) using a BEHC18 column (1.7 µm particle size, geometry
2.1 × 50 mm; Waters, United Kingdom) at 40°C and a flow rate of
0.3 mL/min in gradientmobile phases A (water) and B (acetonitrile)
supplemented with 0.1% formic acid and 0.03% acetic acid. The
following elution gradient was applied: 0–1.5 min, 3% B; up to
26.5 min, 19%B; up to 42 min, 32%B, and up to 43.5 min, 97%B; the
column was then exposed to the isocratic mode up to 47.5 min and
3% B at 49 min. The post-run column equilibration lasted 6 min.

The obtained data were analyzed using the PLGS (Protein Lynx
Global Server, version 3.0.3, Waters, United Kingdom) software
employing the UniProt KB database with preset parameters for the
SONAR/MSE scanning mode (Stepanov et al., 2023). The data were
processed using the Apex 3D mode with a lock-mass correction
of leucine–enkephalin (m/z = 556.27711+) within 0.2 Da detection
window. Low-energy and high-energy intensity thresholds were
adjusted to 60 and 10 counts, respectively, between 0.5 and 49 min of
the acquired data. Spectral data after processing were browsed
against Uni Prot KB (release September 2023) protein sequences
with a concatenated reverse-sequences database. Ions were surveyed
with a peptide tolerance of ±25 ppm and fragment ion tolerance
of ±75 ppm using at least three fragment ion matches per peptide
and at least two peptide matches per protein after digestion with
trypsinwith amaximumof onemissed cleavage. S-pyridylethylation
was applied as a fixed type of modification, while S, T and Y
phosphorylation (SEP, TPO and TPR) was applied as a variable
modification. Peptide and protein identifications were percolated
using the 2% false discovery rate.Themass spectrometry proteomics
data have been deposited to the ProteomeXchange Consortium via
the PRIDE (Perez-Riverol et al., 2021) partner repository with the
dataset identifier PXD051799 “Kidney disease proteome research”

(Reviewer account details: Username: reviewer_pxd051799@ebi.ac.
uk; Password: R858MIv3).

2.7 Data analysis

PSMs detected with PLGS were processed with two steps:

1. Filtering: only samples with more than 70 unique proteins (by
UniProt ID) identified in sample were chosen for next steps;

2. Imputation: missing concentration values for PSMs were
predicted using ordinary least squares (OLS) linear regression
based on the available intensity values.

Differentially expressed proteins were identified for a sample (N
= 57) filtered according to the following criteria:

1. Protein is found in ≥50% samples within a group;
2. Concentration was imputed in ≤50% protein samples

within a group.

The fold change value was calculated as follows:
If Cctrl > Ctest, then fCh = Ctest

Cctrl
; else fCh = Cctrl

Ctest

∗(−1), where Ccntr
is the median protein concentration in the control group; Ctest is the
median protein concentration in the comparison group; fCh is the
fold change.

The p-value was determined by Mann–Whitney U rank test
(Mann and Whitney, 1947) in the scipy. stats package (SciPy,
2024b). False discovery control was performed employing the
Benjamini–Hochberg procedure (Benjamini and Hochberg, 1995)
also using the scipy. stats package (SciPy, 2024a).

Principal component analysis (PCA) and Sparse partial
least-squares discriminant analysis (sPLS-DA) with 0.95
ellipse confidence were conducted using the MixOmics
software package for R programming language (mixOmics,
2024) based on the examples of using these methods
(sPLSDA SRBCT Case Study, 2024; mixOmics Vignette, 2024) for
a group of proteins (N = 104) that were identified in no less than
20 samples.
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TABLE 4 Blood chemistry parameters of study subjects.

Parameter Kidney disease (KD)a Kidney cancer (KC)a Healthy group (CNTR)a

Glu (μmol/L) 5.2 ± 1.96 (p = 0.002) 5.25 ± 1.29 (p = 0.002) 3.8 ± 1.39

TRIG (μmol/L) 1.16 ± 0.55 (p= 0.000001) 0.98 ± 1.72 (p = 0.00003) 0.32 ± 0.24

ALB (g/L) 36 ± 13.18 (p = 0.86) 35.5 ± 9.37 (p = 0.86) 35 ± 7.81

ALT (U/L) 9.5 ± 4.22 4.0 ± 4.3 n/d

AST (U/L) 10.05 ± 4.47 10.57 ± 3.44 n/d

ALP (U/L) 132.5 ± 29.85 171 ± 75.62 n/d

Cr (μmol/L) 67 ± 18.62 64 ± 16.9 n/d

a– according to the available data; p-value (Benjamini–Hochberg adjusted) are provided with respect to the values of the control (comparison) group of patients of the respective sex.

The acceptance criteria for protein identification were based
on the Human Proteome Project Mass Spectrometry Data
Interpretation Guidelines 3.0 (Malsagova et al., 2024): a candidate
feature in the proteomic data had to meet the unicity criterion,
meaning that certain proteins had to be covered by more than
one unique protein-specific peptide without interference from any
other protein.

3 Results

3.1 Analysis of blood chemistry data

In all study subjects, blood chemistry parameters were either
normal or lay within the lower limit of the normal range. Slight
decline in albumin level as well as reduced creatinine level and
alanine aminotransferase activity were observed in the group
of patients with kidney cancer. Blood glucose, triglyceride, and
albumin levels were either normal or slightly decreased in the group
of conditionally healthy subjects (Table 4).

For all thee selected parameters, the resulting values lie within
the normal range. However, triglyceride and glucose levels in the
KD and KC groups are significantly elevated compared to the CNTR
group. The normal ranges of blood chemistry parameters in the KC
group are possibly caused by the fact that in almost all the cases, there
was a malignant tumor structure sized ≤7 cm, correlating with stage
T1 according to the UICC TNMClassification ofMalignant Tumors
2017, eighth edition (Brierley et al., 2017).

3.2 Plasma proteins

A total of 644 proteins were identified in the analyzed samples;
163 of them were shared among comparison groups (Figure 1A).
Only few proteins were specific to groups of patients with kidney
pathologies KC or KD. For this reason, no analysis of group-specific
proteins was conducted.

The identified proteins shared by the analyzed comparison
groups are expectedly involved in important biological processes
(Figure 1B): classical antibody-mediated complement activation

(R-HSA-173623, n = 46); FCGR activation (R-HSA-2029481, n
= 45); binding and uptake of ligands by scavenger receptors
(R-HSA-2173782, n = 54). A full list of shared proteins is
provided in Supplementary Table S1.

Table 5 summarizes proteins whose blood level (fold change)
differs for the selected comparison groups (KD and KC) with
respect to control. The blood levels of proteins involved in immune
response are simultaneously elevated in two comparison groups
(kidney disease (KD) and kidney cancer (KC)) with respect to
the control group. Thus, the blood level of complement factor B
(P00751) in patients with kidney cancer increased 1.7-fold (р =
0.004); similar elevation was observed in patients in the kidney
disease group (1.4-fold; p = 0.13). Furthermore, the blood levels of
such proteins as alpha-1-acid glycoprotein 2 (P19652) (р = 0.02) and
ceruloplasmin (P00450) (р = 0.04) in patients in the kidney disease
and kidney cancer groups were also simultaneously increased 1.4-
fold and 1.3-fold, respectively. The maximum change in protein
level was observed for hemoglobin subunit beta (P68871): its level
increased more than twofold (p = 0.08) in the KD group and more
than fourfold, in the KC group (р = 0.0008).

The comparison groups could not be segmented by principal
component analysis (PCA): the proteomic profiles were found
to densely overlap (Figure 2A). For achieving discrimination, we
performed selection and classification of descriptors using sparse
partial least-squares discriminant analysis (sPLS-DA) (Figure 2B).
The 12.5% and 15% variance in the consolidated proteome
was interpreted by discriminant analysis (Figure 2B). Figure 2B
demonstrates that the proteomic profiles corresponding to the
control group differ to the maximum extent from the group of
patients having a pathology. Meanwhile, the profiles of the KD and
KC groups overlap as indicated by the large area of proteomic profile
overlaps. Figure c shows that in general, the analysis provides a fair
result of data segmentation into comparison groups (70%–80%).

In all three images in Figure 2A–C, the values referring to the
control group, the KD group, and the KC group are shown in red,
blue, and green, respectively. The absolute weights of the sparse
loading vectors for each sPLS-DA dimension in the data set are
presented in Supplementary Table S2; Figure 3 shows proteins with
the greatest weights, including those whose level varied significantly.
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FIGURE 1
(A) UpSet plots of proteins shared among the studied groups. Intersection size denotes the number of proteins unique to a certain comparison group
(a single point in the diagram) and shows the number of proteins shared by at least two comparison groups (dots of one sector). (B) The phylogenetic
plot showing the distribution of biological processes in which proteins shared by the comparison groups are involved. Radial ribs correspond to
molecular functions; ribs groups denote the biological processes according to their color. Each radial rib corresponds to a specific protein and is
denoted with a respective protein-coding gene.

Proteins making the greatest contribution to segmentation
of comparison groups can either be classified into the four key
biological processes, including lipid transport and metabolism,
complement system activation, iron and heme transport,
and implementation of adaptive immunity or are acute
phase proteins (Figure 3).

3.3 Phosphorylated proteoforms

Post-translational modifications (PTMs) often affect protein
function (Nikolsky et al., 2023). In this study, we analyzed
the possible phosphorylated proteoforms, one of the most
common native protein modifications. Table 6 lists the results of
searching for phosphorylated proteoforms, including those carrying
phosphorylated serine (SEP), phosphorylated threonine (TPO) and
phosphorylated tyrosine (PTR).

Table 6 shows that the phosphorylated proteoform of
apolipoprotein B-100 was observed in eight blood biosamples in
the KC and KD groups. Such proteoforms as complement factor
B (n = 9), prothrombin (n = 6), and transthyretin (n = 5) are also
more common in groups with a kidney pathology compared to the
control group. Observation of these phosphorylated proteoforms
in the investigated blood samples is interesting in terms of their
abundance in the comparison groups. Meanwhile, these results do
not provide information enabling precise classification of each group
of patients with a pathology (KC and KD): occurrence of PTM-
containing proteoforms is approximately identical in both groups,

being indicative of the synergistic pathogenesis of the selected
groups of urologic diseases (kidney calculus, kidney cyst, and kidney
cancer).The results also suggest that this study needs to be continued
using a significantly larger number of study subjects (patients having
a kidney pathology (KC, KD) and control group (CNTR).

Analysis of the location of a modifying moiety with respect
to the interface of binding to native partner proteins (the
Interface column) helps assess the potential effect of a PTM on
protein structure and functions. Table 7 lists the data on the
topology and geometrical parameters of the identified proteoforms.
Experimentally determined 3D structures in Protein data bank,
including those forming complexes with partner proteins, were
identified for four proteins listed in Table 7. For these proteins, it
was found that the region carrying modified amino acid residues
is located on the protein globule surface and is accessible for
interacting with a partner protein. In three cases, the regions
carrying modified amino acid residues are located directly at
the interface of binding to the partner protein or near the
binding site (see Table 7, KSASA ≤ 1). The KSASA parameter
characterizes changes in the solvent-accessible surface area for a
peptide in the protein chain and the protein–protein complex. This
parameter indirectly indicates the location of peptide (in our case,
carrying amodifyingmoiety) with respect to the interface of binding
to the partner protein.

The type of structural motif of the protein comprising the
peptide carrying a modifying moiety was identified in each case.
Thus, for CFB complexes, the partner of complement factor C4a
(PDB ID 2XWJ) modified peptide is located in the dense β-hairpin
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TABLE 5 Most significantly altered proteins measured in the study cohorts (estimated as fold changes; |FC| > 1.5, Benjamini–Hochberg adjusted p-value
cut-off p < 0.05 for one or both comparison groups).

UniProt ID Gene Protein Pathway
description

KD KC

Fold changes Adj. p-value Fold changes Adj. p-value

P00751 CFB Complement factor
B

Complement
activation,

alternative pathway

1.4 0.13 1.7 0.004

P01011 SERPINA3 Alpha-1-
antichymotrypsin

Acute-phase
response

1.5 0.045 1.4 0.05

P02790 HPX Hemopexin Positive regulation
of immunoglobulin

production

1.5 5.6 × 10−5 1.4 0.0003

P04196 HRG Histidine-rich
glycoprotein

Positive regulation
of immune

response to tumor
cell

1.4 0.09 1.7 0.02

P05155 SERPING1 Plasma protease C1
inhibitor

Complement
activation, classical

pathway

1.5 0.003 – –

P68871 HBB Hemoglobin
subunit beta

Oxygen transport 2.1 0.08 4.1 0.0008

P19652 ORM2 Alpha-1-acid
glycoprotein 2

Acute-phase
response

1.4 0.02 1.4 0.02

P00450 CP Ceruloplasmin Iron ion transport 1.4 0.04 1.3 0.04

P01825 IGHV4-59 Ig Immunoglobulin-
mediated immune

response

1.6 0.005 1.5 0.01

FIGURE 2
Discriminant analysis of studied cohorts: principal component analysis, PCA (A). PCA indicates the intersample variance: the closer points lie in PCA,
the more similar the proteomic profiles of the respective samples are. On each axis, the percentage corresponds to the total variance between all the
points (PC1 = 83%, PC2 = 16%). Sparse partial least-squares discriminant analysis (sPLS-DA) for proteome (B) data type with 0.95 ellipse confidence
level. sPLS-DA allows one to choose informative variables for segmentation of comparison groups. The designed score scattering plots show the
relationship between the control group and patients (KD, KC), and the degree of variations that were explained by each component consisting of PC1 =
12.5% and PC2 = 14.9% for proteomic data (C) One of the most common metrics, Receiver Operating Characteristic Area Under the Curve ROC AUC,
allows one to estimate quality of comparison group classification. The OX axis shows specificity (%), while the OY axis shows sensitivity (%).
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FIGURE 3
Names of the genes encoding proteins contributing most to segmentation of comparison groups clustered with respect to shared biological
processes. Arrows show DEPs (p < 0.05).

of the beta-containing ribbon functional domain (Figure 4A). In
proteins of different organisms, this domain type is involved in
formation of protein–protein and protein–nucleic acid complexes
(e.g., in zinc finger proteins, where the ribbon domain is stabilized
by coordination bonds with a zinc cation) (Li et al., 2022). The
KSASA parameter of the CFB/C4a complexes is 0.6, indicating
that the revealed CFB peptide carrying a modifying moiety is
engaged in organization of the binding interface of the complex.
Other members involved in activation of the complement cascade
C4a/C4b also form complexes with partner proteins (PDB ID
6YSQ, Figure 4B).The identifiedmodified peptides in the complexes
are a part of β-hairpins of the sandwich functional domain.
The sandwich functional domain in proteins is also an essential
structural participant of protein complex formation (Nikolsky et al.,
2024). In our study, the identified peptides carrying a modifying
moiety also resided directly in the binding interface (KSASA = 0.5)
of two complement factors, C4a and C4b. Figure 4C illustrates the
prothrombin protein in complex with coagulation factors Va and
Xa; the region carrying modified amino acid residues is located in
an unstructured domain residing on the protein globule surface.
However, the modification site in this complex is remote from the
protein binding interface (KSASA = 1).

No full-atom models are available for three proteins (APOB,
TTR, and NRAP) in PDB. The lack of structural data on these
proteins in the PDB and AlphaFold databases makes it difficult
to map the phosphorylation site with respect to the interface
of binding to the partner protein. However, potential partners
(presented in Table 7) were identified for the remaining proteins.

Structural analysis of proteins associated with development
of diseases (primarily, cancer) is interesting for researchers (e.g.,
a recent study of the occurrence of α-helix- and β-strand-
carrying structural domains in proteins encoded by over- and
underexpressed genes) for 21 cancer types. The authors called this

study “pan-cancer structurome” and demonstrated an increased
amount of β-sandwich domains and insufficient amount of α-helices
in proteins (Medvedev et al., 2023).

4 Discussion

Kidney diseases are currently extremely common. Although
there exists a broad variety of kidney pathologies according to
the ICD-10 classification, the literature suggests rather similar
clinical presentations of disease development. Moreover, some
studies attest to the “mimicry” of kidney diseases (Tseng, 2015;
Lu et al., 2021; Lai et al., 2019) and malignant transformation
of benign neoplasms (Jiang et al., 2015; Yu et al., 2017). These
factors impede diagnosis and timely choice of an efficient treatment
option. Histological examination is undoubtedly a potent clinical
diagnosis tool providing an unambiguous answer to the question
about the neoplasm nature. However, histology cannot be viewed
from the standpoint of a routine diagnostic approach, since it is
an invasive procedure associated with surgical intervention. It is
important to develop novel minimally invasive approaches that
would allow one to detect transition from a benign kidney neoplasm
to a malignant one. In the present study, we examined changes
in protein compositions and proteoforms in three pathologies:
kidney cyst, kidney calculus, and kidney cancer. For understanding
the molecular differences between the selected pathologies, study
subjects involved patients with acquired cysts requiring no surgical
intervention for the underlying disease (Bosniak I or II cysts);
patients with kidney cancer who predominantly had small-sized
tumors and belonged to group T1 (according to the TNM
classification); patients in this group had no lymph node metastases
(N0). Most patients with kidney calculus were found to have
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medium- and large-sized stones in the kidney and underwent
nephrolithotomy.

We can see that the analyzed pathologies are similar at the
protein level. A small group of proteins (n = 9) was revealed,
which can be classified as differentially expressed proteins (DEPs)
compared to the control group. Because of the specific feature of
the selected pathologies, these proteins are involved in activation
and implementation of the antibody-dependent response of the
immune system (GO:0002250) and simultaneous activation of
the complement system via the classical pathway (GO:0006958).
Proteins (n = 38, |w| >0.1) making the greatest contribution to
segmentation of comparison groups, along with the aforementioned
biological processes, are involved in the complement (GO:0006956)
and coagulation system (GO: 0050817), lipid transport and
metabolism (GO:0006629, GO:0006869), or are acute phase proteins
(GO:0006953). Although a relatively modest accuracy (70 or 80%)
has been achieved in classifying the comparison groups, close
attention to the identified protein factors in combination with
clinical observations will possibly improve this result. We have
generalized the findings and supplemented them with the available
data to reconstruct the potential molecular mechanisms for the
involvement of proteins identified in this study.

4.1 The complement system

The complement system is the key part of the immunity.
Disbalancing of activation regulation of this system may cause
inflammation and further development of different diseases
(Lin et al., 2018). Patients with various tumor pathologies have
increased expression of some complement factors in the classical
complement pathway, which contribute to immune surveillance
through cytotoxicity and lysis of tumor cells (Afshar-Kharghan,
2017). However, overexpression of the membrane and soluble
forms of inhibitors of complement components was observed in
the case of solid tumors, protecting the tumor against complement-
mediated lysis (Reese et al., 2020). Interestingly, our study revealed
increased levels of proteins of the C3/C5 axis, namely, CFB (FC
= 1.7, p = 0.004), and C3 (FC = 1.3, uncertain value), C4B (FC =
1.5, uncertain value), Clu (FC = 1.4, p = 0.065), which is consistent
with the literature data on prognostic significance of these factors in
human kidney cancer (Xi et al., 2016; Netti et al., 2021; Reese et al.,
2020). Proteins CFB, С3, C4A, and C4B are associated with the
development of kidney diseases (see Supplementary Table S5).
Complement activation may induce or promote glomerular injury
in multiple kidney diseases (Vivarelli et al., 2024) (Figure 5).
However, conspicuous is the fact that the role of the axis in
oncogenesis is rather ambiguous, since a number of studies have
demonstrated that tumor grows under C3/C5 activation conditions
through recruitment and activation of myeloid suppressor cells
in tumors (Reis et al., 2018; Pio et al., 2013; Macor et al.,
2018; Berraondo et al., 2016). Acute-phase protein alpha-2-
macroglobulin (A2M) is another circulating component potentially
associated with the C3/C5 axis of complement activation (the
classical pathway). It is a multi-functional high-molecular-weight
homotetrameric glycoprotein interacting with proteinases, which
induces conformational changes in the monomer molecules
and modulates their function (Arimura and Funabiki, 2021;
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Lagrange et al., 2022). The inhibitory mechanism of A2M involves
formation of a tetrameric structure around active proteases and
physically hampers the interaction between proteases and substrates
(the so-called snap-trap mechanism) (Vandooren and Itoh, 2021a).
There are parallels between functioning of C3 and C4 factors and
A2M. The pivotal element of the system is the cleavage of C3
and C4 factors followed by exposure of internal thioester binding
neighboring glycoproteins (Vandooren and Itoh, 2021a). Similar
to C3 and C4, A2M undergoes proteolysis and conformational
changes to expose internal thioester that binds and entraps active
protease (Vandooren and Itoh, 2021b). Along with C3 and C4,
A2M is classified as a member of the thioester-containing protein
(TEP) family (Vandooren and Itoh, 2021a). All these factors
are eventually involved in formation of the membrane attack
complex (MAC), which leads to cell lysis and forces cells release
inflammatory cytokines. MAC formation is regulated (namely,
inhibited) by clusterin protein, which is essential for protecting
own cells against being attacked by the MAC during complement
activation (Lin et al., 2018).

Protein serine proteinase complement factor B (CFB) is involved
in complement activation (Riihilä et al., 2019). CFB binds to
C3b and forms the C3bB complex, participates in formation of
C3 convertase and further C5 convertase, acting as an activator
of the complement system via the alternative pathway (Figure 5).
Dysregulation of these processes may lead to hypercoagulation
and thrombosis development. Hyperactivation of the alternative
complement pathway with involvement of CFB results in the
development of C3 glomerulopathy, which leads to accumulation
of the C3 component and glomerular injury. Vitronectin (VTN,
FC = 1.3, uncertain value), whose expression is upregulated
during complement activation (Ruiz-Molina et al., 2023) is a
defense protein and an inhibitor of complement activation via the
alternative pathway (Figure 5).

4.2 The coagulation system

The proteolytic cascades (the immune system, the complement
and the coagulation system) are finely mutually balanced by
a network of regulatory factors. The complement–coagulation
crosstalk can influence activation, amplification and regulatory
functions in both systems (Heurich and McCluskey, 2023). In our
study, we noted that proteins of the coagulation system (fibrinogen
chain A, B and G (FGA, FGB, FGG, respectively)), as well as
phosphorylated prothrombin (F2), contribute to segmentation of
the comparison groups. Figure 5 shows the potential mechanism
of the crosstalk between the coagulation system and complement
factors, the so-called “coagulo-complementome”. Prothrombin and
thrombin-activatable fibrinolysis inhibitor (TAFI) mediate this
interaction (Danckwardt et al., 2013). Blood clotting factors play an
important role in cancer biology (Bauer et al., 2022). Coagulation
abnormalities are common among cancer patients who have an
increased procoagulant activity due to the release of tumor-derived
procoagulants into the bloodstream (Danckwardt et al., 2013).
Elevated plasma levels of fibrinogen in patients with renal cell
carcinoma were reported in the literature (Selby et al., 2018;
Chen et al., 2024; Tupikowski et al., 2023; Wang et al., 2020).
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FIGURE 4
Mapping of the identified phosphorylated peptides in protein–protein complexes: (A) CFB in complex with complement C4a (PDB: 2XWJ); (B)
complement C4b in complex with complement C4a (PDB: 6YSQ); (C) prothrombin in complex with activated factor Xa and coagulation factor Va (PDB:
7TPP). Modified proteins are shown in green; partners are shown in gray; detected peptides are shown in red; side chains of phosphorylated residues
are shown as stick representation. Full data are available in the Supplementary Tables S3, S4.

Plasma protease C1 inhibitor (SerpinG1) belongs to the
family of serine protease inhibitors and is an important regulator
of the complement, coagulation, and fibrinolytic systems. The
blood levels of the protease/SerpinG1 complexes (C1/SerpinG1,
Thrombin/SerpinG1) are proportional to the level of activation
of these enzyme cascades in blood plasma (Kajdácsi et al., 2020)
(Figure 5). In our study, we observed that the SerpinG1 level in
renal patients was moderately increased (FC = 1.5, p = 0.003).
The “coagulo-complementome” factors show great promise as
therapeutic targets and diagnostic factors (Danckwardt et al., 2013).

4.2.1 Lipid transport and metabolism
Lipid metabolism reprogramming is an obvious sign of cancer.

Lipids play a crucial role at the cellular (membrane biosynthesis
and energy metabolism) and organ levels (intercellular signaling).
Modulation of lipid metabolism allows tumor cells to survive
in a nutrient-deprived environment (Heravi et al., 2022). Lipid
reprogramming in kidney cancer is related to changes in cholesterol
(Wu et al., 2019; Saito et al., 2016; Abduljabbar et al., 2024) and
fatty acid (Lv et al., 2019; Wu et al., 2020) metabolism as well
as lipolysis reduction (Zhang X. et al., 2017). In our study, we
observed significant differences in patients’ weight and BMI for
the KD and KC groups vs. the CNTR group. The mean weight of
females in the KD group was 87 ± 12.6 kg; in the KC group, 98 ±
12.3 kg; and in the CNTR group, 65.8 ± 6 kg. In males, a similar
weight gain was observed in the KD group (86.5 ± 12.7 kg) and
KC group (95 ± 10 kg) vs. the CNTR group (68.5 ± 7 kg) (Table 2).
According to their BMI, male and female subjects in the KD and
KC groups were overweight or had class 1 and class 2 obesity,
respectively. Subjects in CNTR either had normal weight or were
overweight. Obesity is a risk factor for kidney cancer; elevated body
mass index is associated with poor prognosis (Selby et al., 2018).
Along with the risk of developing various cancer types, including
kidney cancer, overweight is also associated with developing such
comorbidities as nonalcoholic fatty liver disease, hypertension, and
type 2 diabetes mellitus. Control over hypertension and obesity, as

well as quitting smoking, are importantmeasures for primary kidney
cancer prevention (Gray and Harris, 2019). At the molecular level,
we observed significant elevation of blood levels of triglycerides (FC
= 3, p = 0.00003) and glucose (FC = 1.4, p = 0.002), as well as
increased levels of histidine-rich glycoprotein (HRG, FC = 1.7, p =
0.02) and serum paraoxonase 1 (PON1, FC = 1.5, uncertain value).
Insulin resistance, the key component of themetabolic syndrome, as
well as elevation of the triglyceride level are associated with kidney
cancer.The assessed triglyceride-glucose index is a prognostic factor
of survival in patients with postoperative renal cell carcinoma
(Qin et al., 2024).

HRG is a plasma protein playing a crucial role in regulating the
immune response, angiogenesis, and hemostasis. It is involved in
various biological processes due to its ability to interactwith heparin,
fibrinogen, platelets, immune cells, and growth factors. Disruption
of HRG function is associated with various diseases, including
breast cancer and hepatocellular carcinoma. HRG dysfunction may
promote tumor tissue growth by disrupting the balance between
pro- and anti-angiogenic factors. PON1 enzyme is involved in
antitumor response; it inhibits migration, invasion and proliferation
of kidney cancer cells and suppresses tumor growth (Li and
Yu, 2019). These proteins have a wide range of functions, are
involved in tumor progression and antitumor response; in the
literature, they are regarded as candidate targets for drugs or
prognostic predictors (Johnson et al., 2014; Oiwa et al., 2022;
Jiang et al., 2021; Schneider et al., 2016).

4.2.2 Acute phase
There is a well-known association between acute phase proteins

(APPs) and oncopathology: a positive correlation between the
elevated APP level and an unfavorable clinical outcome has been
revealed (Janciauskiene et al., 2021a). In this study, we observed
elevated levels of alpha-1-antichymotrypsin (SerpinA3, FC= 1.4, p=
0.05), A2M (FC= 1.3, p= 0.02), alpha-1-acid glycoprotein 2 (ORM2,
FC = 1.4, p = 0.02), hemopexin (HP, FC = 4, uncertain value), and
ceruloplasmin (CP, FC = 1.3, p = 0.04). These proteins are probably
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FIGURE 5
At the first step (1), C1 is bound to the Fc region of the immune complex (IgG-Ag), resulting in С1qrs∗activation. At the second step (2), the activated C1
factor cleaves C4 factor yielding C4a (circulating factor) and C4b (exposure to reactive thioester). The C4b fragment binds to the membrane; the C4a
fragment becomes circulating. At the third step (3), С1qrs∗cleaves C2 into C2b (circulating factor) and C2a (exposure to reactive thioester), which binds
to C4a to give rise to the C4b–C2a complex. The C4b-C2a complex is a C3 convertase, which cleaves the C3 factor to C3a (circulating factor) and C3b
(exposure to reactive thioester) (4). As a result, the fifth step (5) involves formation of C5 convertase (the C4b-C2a-C3b complex), which participates in
cleavage of factor C5 (6) into C5a (circulating factor) and C5b (exposure to reactive thioester) and formation of the membrane attack complex (MAC)
(7). In turn, CFD causes cleavage of CFB into factor Ba (circulating factor) and Bb, which binds to C3b to form C3 convertase and then C5 convertase
(the alternative pathway) (8). Clusterin (CLU) prevents formation of MAC (9). The tetrameric A2M thioster-containing protein (identically to C3 and C4)
entraps active proteases (10). Vitronectin (VTN) is a ligand of factor C9 and modulates its activity (11). The complement and coagulation system
crosstalk is mediated by thrombin-activatable fibrinolysis inhibitor (TAFI), which inactivates C3a and C5a in a negative feedback loop (12). SerpinG1 is
involved in regulation of the enzyme cascade of the complement and coagulation system through formation of the C1/SerpinG1 and thrombin/G1
complexes (13). Protein factors that were identified in our study are shown in red.

associated with the development of different oncopathologies and
are viewed in the literature as candidate biomarkers for cancer
prognosis and diagnosis of complications of cancer treatment
(Janciauskiene et al., 2021a; Lu et al., 2016; Han et al., 2017;
Ohbatake et al., 2016; Janciauskiene et al., 2021b). SerpinA3 is a
serine protease inhibitor involved in regulation of inflammation
and proteolytic activity. In the context of oncopathology, this
protein may modulate the tumor microenvironment by inhibiting
proteases involved in extracellular matrix degradation. SerpinA3,
as well as A2M, alpha-1-acid glycoprotein 2, are considered
candidate biomarkers of various cancers, including kidney cancer
(Jin et al., 2022; Aibara et al., 2021). Hemopexin is also a
circulating protein that plays an important role in protecting
the body against heme toxicity during hemolysis. In patients
with acute kidney injury, HP compensates for oxidative stress,
inflammation, and apoptosis of renal tubular cells as a result
of heme accumulation. However, HP deficiency may increase
the risk of acute kidney failure progression and development of
secondary damage such as diabetic nephropathy. ORM2 is a plasma
protein playing a crucial role in regulation of inflammation and
immune response. Copper-binding protein CP (ceruloplasmin) is
involved in iron and copper metabolism as well as the antioxidant
defense of the body. The protein is involved in regulation of redox

processes, including oxidation of Fe2+ to Fe³+, which is required
for iron binding to transferrin. Disturbances in ceruloplasmin
expression or function are associated with a number of diseases,
including aceruloplasminemia, cirrhosis, and Parkinson’s disease.
IGHV4-59 (FC = 1.6, p = 0.005) is the gene encoding one of
immunoglobulin heavy chain variable regions and being involved in
immunoglobulin-mediated immune response. The IGHV4-59 gene
is engaged in the development of such pathologies as celiac disease
and type 2 diabetes mellitus.

4.2.3 Modified proteoforms
Identification of disease-specific proteoforms is important for

understanding the nature of oncopathology. There currently is lack
of research into identification of modified proteoforms in patients
with kidney cancer. In this study, we focused on phosphorylated
forms of proteins involved in regulation of the complement system
and protein phosphorylation: ApoB, CFB, C4A/C4B, TTR, and
NRAP. Structural analysis was conducted for proteins with the
annotated 3D structure in the open-source PDB (https://rcsb.
org) and AlphaFold (https://alphafold.ebi.ac.uk/) databases, which
showed that the modifying moiety resides in β structure-containing
structural domains of the ribbon, sandwich, and β-barrel types
(according to the CATH database, https://www.cathdb.info/). In

Frontiers in Molecular Biosciences 14 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1494779
https://rcsb.org
https://rcsb.org
https://alphafold.ebi.ac.uk/
https://www.cathdb.info/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Nikolsky et al. 10.3389/fmolb.2024.1494779

nature, these structural domains are involved in organization of
protein- or ligand-binding functional domains. Interestingly, the
phosphorylation site in the detected proteins is solvent-oriented.
An analysis of structural complexes of the identified proteoforms
with native partners demonstrated that the modification site can
be mapped directly at the interface of binding to the partner
or immediately adjacent to it. Phosphorylation often leads to
modulation of protein function both in normal and pathological
conditions. The location of the modification site at the protein
binding interface is indirectly indicative of changes in complex
stability (Nikolsky et al., 2023). In the literature, these modification
variants are found in various oncopathologies. Thus, according to
the PhosphoSitePlus data (Hornbeck et al., 2019), the identified
modification variants ApoB 1287-PTR/1288-TPO and TTR 25-
TPO were found in biosamples collected from patients with T-cell
leukemia; CFB phosphorylation variants were annotated in patients
with gastric carcinoma; C4A/C4B and F2 proteins phosphorylated
at other sites were identified in breast, ovarian, stomach, head/neck,
and colorectal cancers.

Hence, proteins presented in this study can potentially be
associated with the development of kidney diseases; it is promising
to conduct further analysis of their medical significance with a
larger sample size and number of comparison groups. The results
of analyzing the association between the identified proteins and
development of various diseases and disease groups in accordance
with the ICD-10 classification using the Diseases database
(Disease–gene associations mined from literature) (Pletscher-
Frankild et al., 2015) are reported in Supplementary Table S5.
This analysis revealed that proteins described in our study are
most commonly mentioned in the literature in the context
of developing cancer, diabetes mellitus, kidney diseases, and
hypertension.

5 Conclusion

This study addresses the features of the protein profile of plasma
samples collected from patients with kidney diseases. During the
study, we conducted proteomic analysis of blood samples in three
comparison groups of study subjects: thosewith verified diagnosis of
kidney calculus, kidney cyst or kidney cancer as well as conditionally
healthy volunteers. Blood chemistry parameters in all three groups
of study subjects (KC, KD andCNTR)were analyzed at the first stage
of the study. Blood chemistry parameters in all the groups of study
subjects were normal. Plasma proteins were analyzed at the next
stage. DEPs whose blood level was found to be elevated with respect
to that in the control group were identified. Hemoglobin subunit
beta was found to increase most significantly: its level rose more
than twofold (p = 0.08) in the KD group and more than fourfold
(р = 0.0008) in the KC group.

We have identified proteins contributing most significantly to
pathology development, which allowed us to classify patients with
analyzed pathologies into groups. CFB, SERPINA3, HPX, HRG,
SERPING1, HBB, ORM2, and CP proteins associated with the
development of kidney pathologies have been proposed. Important
biological processes have been described, and probable signaling
pathways of pathology development involving the identified
proteins have been elucidated. The paper summarizes important

biological processes involving the identified proteins: classical
antibody-mediated complement activation (R-HSA-173623, n
= 46); FCGR activation (R-HSA-2029481, n = 45); as well as
binding and uptake of ligands by scavenger receptors (R-HSA-
2173782, n = 54).

The third stage of the study involved searching for and analyzing
phosphorylated proteoforms. Phosphorylated proteoforms (CFB,
C4A/C4B, F2, APOB, TTR, and NRAP) have been detected in
the studied blood samples. Phosphorylated proteoforms specific
to groups of patients with kidney diseases were analyzed. PTM
location in protein was determined: its coordinate, the secondary
structure/structural motif, the functional domain, and the potential
role in formation of complexes with native partners. The effect
of phosphorylation on protein geometry (changes in solvent-
accessible surface area; the number of hydrophobic interactions
and hydrogen bonds between the PTM-carrying peptide and the
remaining protein portion) was analyzed. It has been demonstrated
that peptides carrying modified amino acid residues can reside at
the interface of binding to the partner protein or near the binding
site. An analysis of modified proteins shows synergism in the
pathogenesis of selected disease groups.

It has been demonstrated that patients with kidney pathologies
can be classified into groups with an accuracy of (70–80)%. Larger
size of comparison groups will enable more clear segmentation of
the analyzed pathologies and, therefore, allow one to find a faster
solution to the problem of early diagnosis of a particular kidney
disease in practical medicine.
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