
TYPE Original Research
PUBLISHED 25 November 2024
DOI 10.3389/fmolb.2024.1493411

OPEN ACCESS

EDITED BY

Laura Conti,
University of Turin, Italy

REVIEWED BY

Ugo Ala,
University of Turin, Italy
Na Xu,
Maastricht University, Netherlands

*CORRESPONDENCE

Junqiang Tian,
ery_tianjq@lzu.edu.cn

†These authors have contributed equally to

this work and share first authorship

RECEIVED 09 September 2024
ACCEPTED 04 November 2024
PUBLISHED 25 November 2024

CITATION

Yao D, Yu W, Ma X and Tian J (2024) A novel
necroptosis-related genes signature to
predict prognosis and treatment response in
bladder cancer.
Front. Mol. Biosci. 11:1493411.
doi: 10.3389/fmolb.2024.1493411

COPYRIGHT

© 2024 Yao, Yu, Ma and Tian. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

A novel necroptosis-related
genes signature to predict
prognosis and treatment
response in bladder cancer

Dongnuan Yao1,2,3†, Weitao Yu1,2,3†, Xueming Ma1,2,3 and
Junqiang Tian1,2,3*
1Department of Urology, Lanzhou University Second Hospital, Lanzhou, China, 2Gansu Province
Clinical Research Center for Urinary System Disease, Lanzhou University Second Hospital, Lanzhou,
China, 3The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China

Background:Necroptosis, a form of programmed inflammatory cell death, plays
a crucial role in tumor development, necrosis,metastasis, and immune response.
This study aimed to explore the role of necroptosis in BLCA and construct a
new prognostic model to guide clinical treatment and predict individualized
treatment response.

Methods: The transcriptome profiling and the corresponding clinical data
of BLCA patients were obtained from the Cancer Genome Atlas database
(TCGA) and GEO databases. Univariate, multivariate and LASSO Cox regression
analyses were used to identify and construct prognostic features associatedwith
necroptosis. We constructed and validated a prognostic model associated with
the patient’s overall survival (OS). A nomogram was established to predict the
survival rates of BLCA patients. Finally, the correlation between risk scores and
tumor immune microenvironment, somatic mutations, immunotherapy, and
chemotherapy was comprehensively analyzed.

Results: The study found two distinct NRG clusters and three gene subtypes,
with significant differences in pathway enrichment and immune cell infiltration
associated with different NRG clusters in the TME. In addition, we screened out
six necroptosis prognosis-related genes (including PPP2R3A; CERCAM; PIK3IP1;
CNTN1; CES1 and CD96) to construct a risk score prognostic model. Significant
differences in overall survival rate, immune cell infiltration status, and somatic
mutations existed between the high and low-risk scores in BLCA patients. Finally,
drug sensitivity analysis showed that high-risk patients benefited more from
immunotherapy and chemotherapy drugs.

Conclusion: This study explores the importance of necroptosis in the prognosis
of patients with BLCA, and the prognostic features associated with necroptosis
that we identified can serve as new biomarkers to help develop more precise
treatment strategies.
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BLCA, necroptosis, tumor microenvironment (TME), prognostic model, treatment
response

Frontiers in Molecular Biosciences 01 frontiersin.org

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2024.1493411
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2024.1493411&domain=pdf&date_stamp=2024-11-22
mailto:ery_tianjq@lzu.edu.cn
mailto:ery_tianjq@lzu.edu.cn
https://doi.org/10.3389/fmolb.2024.1493411
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1493411/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1493411/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1493411/full
https://www.frontiersin.org/articles/10.3389/fmolb.2024.1493411/full
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Yao et al. 10.3389/fmolb.2024.1493411

Introduction

Bladder cancer is the second most common urological
malignancy globally, accounting for 549,000 new cases and about
200,000 deaths per year (Compérat et al., 2022).The recurrence rate
of BC continues to be high and the prognosis remains poor despite
all therapeutic efforts (Rey-Cárdenas et al., 2021). Therefore, it is
urgent to develop potentially effective biomarkers to predict and
improve the prognosis of patient, and be able to provide effective
assistance for the development of new therapies.

Necroptosis is a form of programmed inflammatory cell death,
which is a cellular response to environmental stress (Khoury et al.,
2020; Yan et al., 2022). The occurrence of cell necroptosis is
associated with the activation of death receptors on the membrane
(Dovey et al., 2018). Death receptors are activated downstream of
the necroptotic pathway mediated by the canonical death receptor
composed of RIPK1-RIPK3-MLKL (Yan et al., 2022). Activated
RIPK3 can phosphorylateMLKL (mixed lineage kinase domain-like
protein) (Samson et al., 2020). Oligomerization of MLKL disrupts
the integrity of plasmamembranes (Wang et al., 2014). Subsequently,
the cell undergoes ion influx, cell swelling, and membrane lysis,
followed by the uncontrolled release of intracellular substances,
which ultimately leads to cell death (Bertheloot et al., 2021;
Gao et al., 2022). The necroptotic signaling pathway plays a role in
tumor development, tumor necrosis, tumor metastasis, and tumoral
immune response (Najafov et al., 2017). It may be pro- or anti-
tumorigenesis, depending on the type of tumor (Gong et al., 2019).

The significance of necroptosis in cancer has been increasingly
appreciated, and in-depth research on necroptotic processes
might be helpful in creating novel strategies for controlling
cancer (Tong et al., 2022). Previous studies have reported that
the expression levels of MLKL and CASP8 in tumor samples
were higher than those in normal tissues in KIRC (Kidney
Renal Clear Cell Carcinoma), KIRP (Kidney Papillary Renal
Cell Carcinoma), and BLCA (Bladder Urothelial Carcinoma)
(Zhong et al., 2023). TRAF2-inhibition was shown to activate NF-
κB signaling in different cellular systems, and intratumoral NF-
κB-necroptosis signatures were associated with poor prognosis in
human hepatocarcinogenesis (Vucur et al., 2023). Some studies also
recognized that necroptotic cancer cells can trigger CD8+T cells-
driven anti-tumor immunity (Aaes et al., 2016). Furthermore, some
widely used conventional anticancer therapies have demonstrated
pro-necroptotic activities (Sprooten et al., 2020). Therefore, we
hypothesized that necroptosis-related biomarkers are crucial in
bladder cancer prognosis. In addition, there are still few studies on
NRGs in BLCA.

In this study, we identified necroptosis-related subgroups and
gene subtypes based on the expression of necroptosis-related genes.
A novel prognostic prediction model was constructed to provide
a more accurate individualized prognostic prediction for bladder
cancer patients. Finally, we investigated the correlation of risk
scores with TME (tumor microenvironment), mutation profiles,
immune infiltration, and immunotherapy and chemotherapy. Our
study could be beneficial for more understanding of necroptosis
characteristics and identifying potential biomarkers, which could
provide fresh perspectives on treatment approaches and the
prognosis of BLCA.

Materials and methods

Data acquisition and processing

The mRNA expression data, mutation data, and clinical
information of 412 bladder cancer samples as well as 19
normal bladder samples were retrieved and downloaded from
the TCGA official website (https://portal.gdc.cancer.gov/). To
facilitate differential analysis, we convert the fragments per
kilobase of transcript per million mapped reads (FPKM) values
to transcripts per kilobase million (TPM) values in TCGA-
BLCA cohort. Additionally, gene expression data and clinical
information were obtained from the GEO database, specifically
from the dataset GSE32894 (n = 308) (https://www.ncbi.nlm.
nih.gov/geo/). The expression values at the probe level (probe
ID) were converted to the corresponding gene symbol according
to their annotation files without further standardization. If
multiple probes matched with the same gene, the average value
was calculated as the expression value of the gene. Clinical
variables included age, sex, staging, duration of follow-up, and
survival status. The raw data were first standardized to fragments
per kilobase million expression levels prior to comparison
and figuring out the expression of NRGs (necroptosis-related
genes) (Li et al., 2022). After excluding patients with extensive
missing gene expression values, the final analysis included
406 BLCA patients from the TCGA dataset and 308 BLCA
patients from the GEO dataset. We integrated the BLCA samples
from the TCGA and GEO databases, applying batch effect
correction using the “ComBat” method to minimize platform
differences. All data were preprocessed by the “limma” and “sva”
R packages (Ritchie et al., 2015).

Consensus clustering analysis and
functional annotations

Combined with the published literature and the MsigDB
database (https://www.gsea-msigdb.org/gsea/index.jsp), 67
necroptosis-related genes were finally obtained. Initially, we
analyzed the survival differences of necroptosis-related genes
using Kaplan-Meier (KM) approach. The “Limma” package
was employed to analyze the expression differences between
cancerous and adjacent normal samples based on the expression
profile of necroptosis-related genes. Univariate Cox regression
analysis was conducted to identify prognosis-related necroptosis
genes, with a screening criterion of p-value <0.05. Using the
ConsensusClusterPlus R program, necroptosis clusters with k-
values from 1 to 9, were identified based on the expression of 43
survival differential necroptotic genes, the ideal cluster number
was found to be k = 2 (Zhu et al., 2024). The classification
was verified by PCA based on the expression of prognosis-
related NRGs mRNA.

To detect pathway enrichment differences between NRG
clusters, we utilized the GSVA algorithm to compute enrichment
scores for each gene set, enabling us to explore the biological
functional differences between NRG clusters. The hallmark gene
sets used in GSVA were obtained from the MSigDB database.
Differential analysis between the NRG clusters was performed
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using the “limma” package in R. To ensure the statistical
significance of our results, a p-value threshold of <0.05 was
set to identify significantly enriched pathways. Additionally,
ssGSEA was employed to assess the infiltration levels of various
immune cells in tumor samples by calculating immune cell
infiltration scores for each sample based on characteristic immune
cell gene sets. In this study, we comprehensively evaluated the
immunological characteristics of each BLCA sample across
different NRG clusters using the ssGSEA algorithm within the
“GSVA” R package.

Identification of DEGs related to
necroptosis and functional analysis

Differential analysis was conducted using the “limma” package
in R to identify differentially expressed genes (DEGs) between
the two NRG clusters. p-value <0.05 and a log2 foldchange
(log2FC) > 0.585 were used as the thresholds to screen the
differential genes (Ritchie et al., 2015). In order to explore the
pathways of differential gene enrichment, gene ontology enrichment
analysis and Kyoto Encyclopedia of Genes and Genomes pathway
enrichment analysis were also carried out through the R packages
“clusterProfiler” and “org.Hs.e.g.,.db”, with a critical value of p < 0.05
(Carlson et al., 2019; Yu et al., 2012).

Necroptosis gene subtypes analysis in
BLCA

For a more thorough analysis, we utilized unsupervised
consensus clustering to separate the bladder cancer patients
into three different gene subtypes (necroptosis -related gene
subtypes A-C).

Construction and validation of the NRGs
prognostic model

Based on the 2000 DEGs we identified, we utilizing univariate
Cox regression analysis to identify prognostically relevant genes,
and p < 0.05 was considered the cut-off value. LASSO regression
was then employed to lessen the risk of overfitting, and finally,
multivariate Cox regression was used to identify significant genes
associated with the prognosis of BLCA (Zhu et al., 2024; Qin et al.,
2023). For each patient, the risk score was calculated as: NRG_
score = Σ (Expi∗coefi) n, where coefi and Expi represent the
regression coefficients and expression levels of each signature
genes. The BLCA samples were randomly divided into training
and testing cohorts in a 1:1 ratio using the “caret” R package to
ensure a balanced and unbiased distribution. Then, according to
the median risk score, the samples in the training and testing
sets were divided into high- and low-risk groups. The accuracy
of the risk model was assessed using Kaplan-Meier survival
analysis and time-dependent receiver operating characteristic
(ROC) curves. A nomogram predicting patient survival at 1, 3,
and 5 years was created using the “survival”, “rms”, and “regplot”
R packages.

Correlation of the prognostic signature
with TME and immune infiltration

The ESTIMATE algorithm was performed to estimate the
immune and stromal cells in BLCA. The ESTIMATE algorithm
predicts the infiltration levels of immune cells and stromal cells
by calculating immune and stromal scores. To quantify the total
number of tumor-infiltrating immune cells in each sample, we
applied the CIBERSORT method to compare the infiltration of 21
immune cell types between the high- and low-risk groups.

Mutation and drug susceptibility analysis

Mutational data from the TCGA database were annotated
in MAF format using the “maftools” R package, and the tumor
mutational burden (TMB) score was calculated for each bladder
cancer patient in the high-risk and low-risk groups. The R package
“pRRophetic” was used to predict the half maximum inhibitory
concentration (50% inhibition of the concentration, IC50) of the
anticancer drugs in high-risk and low-risk groups.

Statistical analysis

R software (version 4.2.2) was used for data analysis. Differences
between two groups were compared using Wilcoxon rank-sum test.
The Spearman test was used to examine the correlation between
different variables in this study.The p-values were two-sided and the
p-value <0.05 was considered statistically significant.

Results

Identification of NRG clusters and immune
cell infiltration analysis in BLCA

To comprehensively analyze the expression characteristics of
necroptosis-related genes (NRGs) in BLCA, we integrated the gene
expression matrices from both the TCGA and GSE32894 datasets
into a comprehensive matrix. Through Kaplan-Meier survival
analysis, we identified 43 NRGs that were significantly associated
with the overall survival of BLCApatients (Supplementary Table S1)
(Supplementary Figure). These genes are primarily involved in the
regulation of apoptosis, inflammatory responses, and cell survival
pathways. Based on the expression profiles of 43 NRGs, the entire
cohort was reasonably divided into NRG Cluster A (n = 291)
and NRG Cluster B (n = 423) by consensus clustering analysis
(Supplementary Table S2) (Figure 1A). Subsequently, Principal
component analysis (PCA) revealed significant differences between
the two clusters (Figure 1B), further validating the robustness
of the clustering analysis. Survival analysis showed a significant
difference in survival rates between Cluster A and Cluster B,
with the Kaplan-Meier survival curve indicating that patients in
Cluster B had a significantly better survival outcome than those
in Cluster A (Figure 1C). This difference may reflect substantial
variations in gene expression and tumor biological characteristics
between the two groups. Further heatmap analysis illustrated the
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FIGURE 1
Necroptosis related gene expression and subtype identification in bladder cancer. (A) Consensus matrix heatmap defining two clusters (k = 2). (B) PCA
analysis showed significant genomic differences between the two clusters. (C) Kaplan–Meier survival curves between necroptosis clusters. (D) NRG
expression levels and differences in clinicopathologic features between the two distinct clusters. (E) Abundance of 23 infiltrating immune cell types in
the two NRG clusters. (F) GSVA pathway enrichment analysis between NRG clusters, red represented activated pathways, while blue represented
inhibited pathways in the heatmap.

association between NRG clusters, NRG gene expression levels, and
clinicopathological features (Figure 1D).These findings suggest that
NRGs may play an essential role in tumor heterogeneity and patient
prognosis.

TME includes a rich diversity of immune cells, cancer-associated
fibroblasts (CAFs), endothelial cells (ECs), pericytes, and other cell
types (de Visser and Joyce, 2023).The complex interactions between
immune cells and tumor cells play a crucial role in tumor growth,
progression, metastasis, and immune evasion. Our study revealed
significant differences in immune cell infiltration between the two
NRG clusters (Figure 1E). Compared to NRG cluster B, patients in
NRG cluster A exhibited higher levels of immune cell infiltration,
such as activated B cells, activated CD4 T cells, activated CD8 T
cells, activated dendritic cells, and Gamma delta T cell. NRG cluster
A, on the other hand, exhibited considerably reduced levels of
CD56 bright natural killer cell, Monocyte, and T helper type 1
cells infiltration. To further investigate the underlying biological
functions that distinguish the two NRG clusters, we performed
GSVA enrichment analysis (Supplementary Table S3) (Figure 1F).
The analysis revealed that immune-related pathways, including
natural killer cell-mediated cytotoxicity, T cell receptor signaling,
and chemokine signaling pathways, were significantly enriched in
NRG Cluster B. In contrast, metabolic pathways such as fatty acid

metabolism, linoleic acid metabolism, and peroxisome pathways
were predominantly enriched in NRG Cluster A. These differences
indicate that the metabolic and immune regulatory features of
different NRG clusters may play a crucial role in mediating the
observed clinical outcome differences.

DEGs identification and enrichment
analysis in NRG clusters

Differentially expressed genes (DEGs) between NRG clusters
were identified using the “limma” R package, with filtering
criteria set at |log2FC| > 1 and FDR <0.05. This analysis
revealed 2,000 DEGs between NRG Cluster A and Cluster B
(Supplementary Table S4) (Figure 2A). To further elucidate the
biological functions of these DEGs, we conducted Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses. GO analysis revealed that DEGs were
predominantly involved in the positive regulation of cell adhesion,
regulation of cell−cell adhesion and leukocyte cell−cell adhesion.
The corresponding cellular components were primarily located in
the collagen-containing extracellular matrix and on the external
side of the plasma membrane. In terms of molecular functions, the
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DEGs were mostly associated with extracellular matrix structural
constituents and cytokine receptor binding (Figure 2B). KEGG
analysis indicated that DEGs were significantly enriched in
cytokine-cytokine receptor interaction, cytoskeleton inmuscle cells,
andHumanT-cell leukemia virus one infection (Figure 2C). Further
consensus clustering analysis identified three distinct necroptosis-
related gene subtypes, designated as subtype A (n = 299), subtype
B (n = 242), and subtype C (n = 173), each exhibiting unique
gene expression profiles (Supplementary Table S5) (Figure 2D).
Kaplan-Meier survival analysis revealed significant differences
in prognosis among these subtypes, with patients belonging to
gene subtype C exhibiting the poorest prognosis, while those in
subtype B demonstrated the most favorable outcomes (Figure 2E).
Additionally, the clinical characteristics of BLCA patients were
found to be closely associated with these gene subtypes (Figure 2F).
Notably, significant variations were observed in the expression
levels of NRGs across the three necroptosis gene subtypes. It
was found that individuals with high expression of CASP8,
CFLAR, DIABLO, FASLG, GATA3, ID1, IDH1, MYCN, RIPK3,
RNF31, TLR3, TNFRSF21, TNFSF10, TRIM11, and ZBP1 had a
better prognosis. (Figure 2G), highlighting the heterogeneity of
necroptosis pathways in bladder cancer and their potential impact
on patient prognosis.

Construction and validation of NRGs
prognostic model

We employed the “caret” R package to randomly divide all
patients into training and testing sets in a 1:1 ratio. Based
on 2000 differential genes, we first identified prognostic genes
through univariate Cox regression analysis and Kaplan-Meier
survival analysis. To refine the selection and prevent overfitting,
we applied LASSO regression and identified 13 genes significantly
associated with prognosis (Supplementary Table S6) (Figures 3A,B).
Subsequently, multivariate Cox regression analysis narrowed down
the list to six key genes—PPP2R3A, CERCAM, PIK3IP1, CNTN1,
CES1, and CD96—which were used to construct a prognostic
model (Supplementary Table S7).The risk score for each patient was
calculated as follows: risk score = (0.3910×PPP2R3A expression)
+ (0.2288×CERCAM expression) + (0.1782×CNTN1 expression)
+ (0.1137×CES1 expression) + (−0.2256×PIK3IP1 expression) +
(−0.2775×CD96 expression). Based on the median risk score,
patients in both the training and testing sets were stratified into
high-risk and low-risk groups (Figure 4). Kaplan-Meier survival
analysis indicated that high-risk BLCA patients had significantly
poorer overall survival (OS) compared to low-risk patients across
both cohorts (Figures 3C,D). The prognostic performance of the
model was further evaluated using ROC analysis, yielding an Area
Under the Curve (AUC) of 0.725, 0.716, and 0.712 for 1-, 3-, and
5-year survival in the training set, respectively (Figure 3E). In the
testing set, the AUC values were 0.687, 0.678, and 0.686 for 1-, 3-
, and 5-year survival, respectively (Figure 3F), demonstrating the
robust predictive accuracy of our gene signature in BLCA prognosis.
Additionally, we observed significant differences in risk scores
between NRG clusters, with NRG Cluster A exhibiting a higher
risk score compared to NRG Cluster B (Figure 3G). Among the
necroptosis-related gene clusters, notable differences in risk scores

were identified, with gene Cluster B showing the lowest risk score
and gene Cluster C displaying the highest risk score (Figure 3H).
A Sankey diagram further illustrated the distribution of patients
among two NRG score groups, two necroptosis-related clusters, and
three gene subtypes, revealing that the majority of patients in NRG
Cluster B were associated with gene subtype B, which had a lower
risk score and correspondingly better prognosis (Figure 3I).

Construction of the prognostic nomogram

To enhance the accuracy of predicting the prognostic outcomes
of bladder cancer patients, we developed a nomogram that integrates
patient age, pathological stage, and the risk score derived from our
prognostic model. This nomogram provides a comprehensive tool
for estimating 1-, 3-, and 5-year OS probabilities (Figure 5A). The
red marker in the nomogram illustrates an example prediction,
demonstrating that a higher total score corresponds to a poorer
prognosis. Calibration plots confirmed the nomogram’s predictive
reliability, showing strong agreement between the predicted and
observed survival rates (Figure 5B).

Relationship of TME and immune
infiltration with NRG_score

Using the ESTIMATE algorithm, we first calculated the
difference in TME scores between the high- and low-risk groups
(Supplementary Table S8). The results of the analysis showed that
the StromalScore, ImmuneScore, and ESTIMATEScore of the low-
risk group are significantly lower compare to high-risk (Figure 6A).
Furthermore, we used the CIBERSORT algorithm to calculate the
fraction of Tumor-Infiltrating Immune Cells in each TCGA-BLCA
sample (Supplementary Table S9). Subsequently, we performed a
Spearman correlation analysis to investigate the association between
the NRG-based prognostic score (NRG_score) and immune cell
infiltration. The results showed that naïve B cells (R = − 0.13,
p = 0.034, Figure 6C), plasma cells (R = − 0.26, p = 1.1e−05,
Figure 6H), activated CD4 T cells (R = − 0.17, p = 0.0048, Figure 6I),
CD8 T cells (R = − 0.27, p = 2.4e−06, Figure 6K), gamma delta
T cells (R = − 0.15, p = 0.0089, Figure 6L) and Tregs (R = −
0.24, p = 3e−05, Figure 6M) were negatively correlated with the
risk score, whereas M2 macrophages (R = 0.25, p = 1.5e-05,
Figure 6D), M0 macrophages (R = 0.27, p = 3e-06, Figure 6E),
neutrophils (R = 0.12 p = 0.047, Figure 6F), activated NK cells
(R = 0.13, p = 0.026, Figure 6G), resting memory CD4 T cells
(R = 0.17, p = 0.0033, Figure 6J) and resting mast cells (R =
0.15, p = 0.00089, Figure 6N) were positively correlated with the
risk score. The positive correlation between M2 macrophages and
high-risk scores is particularly noteworthy. M2 macrophages are
generally recognized as tumor-associatedmacrophages (TAMs) and
are known to exhibit immunosuppressive functions that facilitate
tumor progression by promoting angiogenesis, extracellular matrix
remodeling, and immune evasion. The increased infiltration of
M2 macrophages in high-risk patients, as evidenced by the
significant correlation, suggests an immunosuppressive TME that
could contribute to the poor prognosis observed in BLCA patients.
This finding highlights the importance of the TME in shaping
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FIGURE 2
Identification of necroptosis-related DEGs subtypes in BLCA. (A) Venn diagram of differential genes between NRG Cluster A and Cluster B. (B) Bubble
plot of GO pathway enrichment analysis for the DEGs between necroptosis clusters. (C) DEGs enrichment studies across two necroptosis-related
clusters using KEGG. (D) Consensus matrix heatmap defining three gene subtypes (k = 3). (E) The three gene subtypes’ Kaplan-Meier OS curves. (F)
Relationships between clinicopathologic features and the three gene subtypes. (G) Variations in the expression of 43 NRGs across three gene
subtypes.∗p < 0.05,∗∗p < 0.01,∗∗∗p < 0.001.

clinical outcomes and suggests that targeting M2 macrophage
polarization could represent a promising therapeutic strategy to
improve prognosis in high-risk BLCA patients.

Furthermore, we analyzed the relationship between the six
key genes used to construct the prognostic model and various
immune cells, revealing significant correlations between most

immune cell types and these genes (Figure 6B). For instance,
the expression of CD96 showed a positive correlation with
M2 macrophages, indicating its potential role in modulating
immune responses within the tumor microenvironment. The
results further revealed the significance of these genes as potential
therapeutic targets.
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FIGURE 3
Construction of a prognostic signature based on the DEGs between NRG clusters. (A, B) LASSO COX regression analysis. (C, D) The K-M curves in high-
and low-risk groups of training and testing sets. (E) 1, 3, 5-year ROC curve in training set. (F) 1, 3, 5-year ROC curve in testing set. (G) Variations in risk
score among NRG clusters. (H) Variations in risk score among different gene subtypes. (I) Sankey diagram showed the correspondence of NRG cluster,
gene subtype, risk score, and survival status.

Relationship of TMB and mutations with
NRG_score

Previous studies have shown that TMB can be used as a
predictive marker for immunotherapy, where a higher TMB is
generally associated with better responsiveness to immunotherapy.
However, our analysis demonstrated no significant difference in
TMB scores between the high- and low-risk groups (p = 0.64)
(Figure 7A), suggesting that both groups may exhibit limited
responsiveness to immunotherapy. Furthermore, Spearman
correlation analysis indicated no significant association between
TMB and risk scores in either the high- or low-risk group
(R = − 0.068, p = 0.17) (Figure 7B). This finding implies that

the prognostic differences between these groups are not driven
by variations in TMB, but potentially by other molecular or
microenvironmental factors. In terms of tumor somatic mutations,
we observed that the overall mutation rate was higher in the high-
risk group (95.05%) compared to the low-risk group (92.09%),
with TP53 being the most frequently mutated gene in both
groups. Specifically, the mutation frequency of TP53 reached
55% in the high-risk group and 39% in the low-risk group,
indicating its pivotal role in tumor progression and aggressiveness
in BLCA. Other top mutated genes shared between both groups
included TTN, KMT2D, MUC16, ARID1A, KDM6A, PIK3CA,
SYNE1, KMT2C, and RYR2 (Figures 7C, D). The higher mutation
frequency of key oncogenes in the high-risk group suggests an
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FIGURE 4
Differences in the patient’s survival status and risk score distribution between the training and the testing sets. (A, C, E) The patient survival status and
risk score distribution in the training set. (B, D, F) The patient survival status and risk score distribution in the testing set.

FIGURE 5
Construction and validation of a nomogram. (A) Nomogram to predict the 1-year, 3-year and 5-year OS rate of BLCA patients. (B) Calibration curve for
the OS nomogram model.
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FIGURE 6
Analysis of TME and correlations of immune cell types in high and low risk groups. (A) Differences in ImmuneScore, StromalScore and ESTIMATEScore
between high- and low-risk groups. (B–N) Correlation between risk score and immune cells.

increased genetic instability, which may contribute to poorer
clinical outcomes.

Drug susceptibility analysis

Through drug susceptibility analysis, we found that the
IC50 values of Bleomycin, Bortezomib, Camptothecin, Cisplatin,
Docetaxel, Embelin, Imatinib, Paclitaxel, Pazopanib, and Sunitinib
were significantly lower in the high-risk group compared to the low-
risk group, indicating that these drugs may have a better therapeutic
effect on BLCA patients with high-risk scores (Figures 8A–J). For

instance, the IC50 values of Bleomycin (p = 4.2e-06), Bortezomib
(p = 1.1e-14), Camptothecin (p = 2.8e-12), and Cisplatin (p <
2.22e-16) were substantially lower in the high-risk group, suggesting
enhanced sensitivity to these agents. This increased drug sensitivity
could potentially be attributed to the higher genetic instability
or distinct tumor microenvironment characteristics of high-risk
patients, which may render them more responsive to DNA-
damaging agents and other therapeutic interventions.

These findings underscore the clinical relevance of risk
stratification in guiding therapeutic decisions for BLCA patients.
High-risk patients, with their increased drug sensitivity, may benefit
more from chemotherapy agents such as Cisplatin and Docetaxel,
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FIGURE 7
Analysis of TMB and mutations in high- and low-risk groups. (A) TMB in high- and low-risk groups. (B) Relationships between NRG_score and TMB. (C,
D) The somatic mutation features waterfall plot determined by high and low NRG scores.

FIGURE 8
Relationships between the NRG score and susceptibility to chemotherapy or targeted therapies for BLCA. (A–J) The estimated IC50 values of
immunotherapy or chemotherapy drugs between high- and low-risk groups.
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as well as targeted agents like Bortezomib and Pazopanib. By
identifying patients who are likely to respond more favorably
to these treatments, personalized therapy can be better tailored,
improving overall patient outcomes and reducing unnecessary
treatment-related toxicity.

Discussion

Necroptosis is a form of programmed cell death that occurs
downstreamof PRK1 andRIPK3,which assemble into an oligomeric
complex and then phosphorylates MLKL to form the necrosome
(Sprooten et al., 2020; Galluzzi et al., 2018).Activated “necrosome”
complex is translocated to the plasma membrane. This process
eventually leads to cell death characterized by permeabilization
of the plasma membrane, cell swelling, and loss of cellular and
organelle integrity (Tong et al., 2022; Negroni et al., 2020; Sun et al.,
2012). Necroptosis exerts different effects at different stages of
cancer cell proliferation and metastasis. Related studies have also
shown the correlation between necroptosis and tumoral immune
response, chemotherapy and tumor prognosis (Najafov et al., 2017;
Kang et al., 2018; Moriwaki et al., 2015). Previous studies have
highlighted correlations between necroptosis, tumoral immune
responses, chemotherapy sensitivity, and overall prognosis in
various cancers. However, the specific role of necroptosis in
bladder cancer (BLCA) remains insufficiently studied. Here,
based on the expression level of necroptosis-related genes in
individuals, we used consistent clustering analysis to reveal the
heterogeneity of bladder cancer and constructed a new prognostic
model of genes associated with necroptosis to provide more
accurate treatment and improve health management for bladder
cancer patients.

In this study, we systematically explored the expression
characteristics of 67 necroptosis-related genes (NRGs) in BLCA
by integrating data from the TCGA and GSE32894 datasets.
We identified 43 NRGs that were significantly associated with
overall survival (OS) through Kaplan-Meier analysis. Based on
the expression profiles of these NRGs, the cohort was stratified
into two distinct clusters, A and B, with Cluster B showing
significantly better survival rates. Principal component analysis
(PCA) validated these two clusters, and the observed differences
in survival suggest that necroptotic pathways might play divergent
roles in tumor progression, likely due to differences in downstream
pathway activation or inhibition. This finding is crucial for
developing targeted therapies that can modulate necroptosis in
a subtype-specific manner. In analyzing the results of immune
cell infiltration, we observed that patients in NRG Cluster A
exhibited higher levels of infiltration by various immune cells,
which may indicate a stronger immune response capability in
their tumor microenvironment. In contrast, NRG Cluster B
displayed different characteristics in immune cell infiltration,
suggesting that the composition and functional differences of
the tumor microenvironment may be closely related to the
biological behavior of the tumors and their clinical outcomes.
Through further GSVA enrichment analysis, we found that NRG
Cluster B was significantly enriched in immune-related pathways
compared to NRG Cluster A, which primarily enriched metabolic
pathways. This difference in metabolic and immune characteristics

may play a crucial role in tumor development across different
NRG clusters.

Through differential analysis between the two necroptosis
clusters, we identified 2000 differential genes and performed GO
functional enrichment analysis, which showed that DEGwas closely
related to leukocyte cell−cell adhesion and positive regulation of
cell adhesion. Leukocyte cell-cell adhesion plays a significant role in
the progression and immune response to cancer. The mechanisms
involved in this adhesion process can influence both tumor growth
and the effectiveness of the immune response against cancer cells
(King et al., 2004; Koning et al., 2023).

Based on the differential expression analysis between the two
identified necroptosis clusters, we further stratified patients into
three gene subtypes, each exhibiting distinct gene expression
patterns and clinical outcomes. We constructed good predictive
prognostic models using NRG_score and validated the predictive
power of the models by ROC, DCA and consistency calibration
curves. The results show that NRG_score is reliable as an
assessment of BLCA prognosis. In order to make the NRG_
score more convenient to use in the clinic, we developed a
nomogram that was derived from patient characteristics and
the NRG score.

This study collected 67 genes associated with necroptosis
through literature mining and analyzed them. Six differentially
expressed prognostic genes associated with necroptotic patterns
were obtained by univariate Cox regression, LASSO regression
and multivariate Cox regression analysis, including PPP2R3A,
CERCAM, CNTN1, CES1, CD96, and PIK3IP1. The first four
genes are risk factors, and the last two genes are protective factors.
PPP2R3A was highly expressed in the high-risk group, indicating
that these genes may be related to the oncology process for
patients with PAAD, and they seemed to be cancer-promoting genes
(Wu et al., 2022). CERCAM, as a gene associated with cell adhesion
as well as extracellular matrix remodeling, its role in tumors is
mainly to promote tumor epithelial cell migration and promote
cancer progression (Yang et al., 2023). Compared with normal
cells, CERCAM was upregulated in bladder cancer, and CERCAM
overexpression significantly promoted bladder cancer cell viability,
DNA synthesis and cell invasion, while CERCAM silencing was
inhibitory (Zuo et al., 2021). Reports have demonstrated CNTN1
to be upregulated in many types of cancer such as lung cancer,
oesophageal squamous cell carcinomas, gastric cancer, thyroid
cancer, prostate cancer and hepatocellular carcinoma, suggesting
its contribution to carcinoma progression, invasion, and metastasis
(Li et al., 2021). CES1 is also a transcriptional target gene of
pregnane X receptor (PXR) (Yang and Yan, 2007). The activation of
PXR was found to markedly lower the concentration of circulating
androgens, suppress prostate regeneration, and inhibit the growth
of human prostate cancer cells (Ke et al., 2020; Zhang et al.,
2010). The expression of CD96 in most cancer tissues is higher
than in paracancerous and normal tissues. At the same time, the
abundance of CD96 positively correlates with the infiltration level
of immune cells in many cancers. Targeting CD96 in cancer may
enhance the killing function of immune cells, thereby improving
patient outcomes (Feng et al., 2023; Liu et al., 2020; Mittal et al.,
2019). One study demonstrates that hepatic PIK3IP1 expression
negatively regulates PI3K activity in this tissue and suppresses the
development of HCC (Chen et al., 2019). These results suggest that
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PPP2R3A, CERCAM, CNTN1, CES1, CD96, and PIK3IP1 could all
have an impact in cancer. In our study, we found that they are closely
related to the prognosis of BLCA and may be potential therapeutic
targets for BLCA.

The analysis showing variations in TME scores and immune
cell infiltrates between different risk groups provides insights
into the complex interplay between necroptosis and the immune
response in cancer. The positive correlation of NRG_score with M0
and M2 macrophages. Tumors recruit both circulating monocytes
and tissue resident macrophages to the TME and polarize
them toward an M2 phenotype, creating TAMs, via a variety
of soluble and mechanical factors, TAMs function to enhance
tumor progression by promoting genetic instability, angiogenesis,
fibrosis, immunosuppression, lymphocyte exclusion, invasion, and
metastasis (Anderson et al., 2021; Dan et al., 2020). Suggesting that
high NRG_score may be associated with an immunosuppressive
microenvironment, potentially promoting tumor progression.

The acquisition of somatic mutations is one of the
major mechanisms responsible for the dysregulation of
proliferation, invasion and apoptosis, which is required for
oncogenesis (Chang et al., 2016). The results showed that the total
somatic mutation rate in the high-risk group was higher than that
in the low-risk group. We used the constructed prognostic model to
predict the benefit of chemotherapy and immunotherapy in patients
with BLCA, and found that Bleomycin, Bortezomib, Camptothecin,
Cisplatin, Docetaxel, Embelin, Imatinib, Paclitaxel, Pazopanib, and
Sunitinib benefited significantly in the high-risk group compared
with the low-risk group.

It is undeniable that our study based on public databases still
has certain limitations, the sample size is limited, and the prognostic
model needs further in vitro experimental studies and clinical trials
to verify its accuracy.

Conclusion

In summary, in this study, we found that necroptosis is
associated with the progression and survival outcomes of BLCA,
and it also influences the regulation of the tumormicroenvironment.
Our prognostic model constructed with six NRGs was effective in
predicting patient outcomes. These BLCA-related NRGs not only
provide a new approach for treatment and prognostic assessment
but also hold significant potential for personalized medicine. By
identifying specific genetic profiles, we can tailor targeted therapies
and immunotherapy strategies, enhancing treatment efficacy
and improving patient prognosis. This personalized approach
emphasizes the need for ongoing research to integrate these findings
into clinical practice, ultimately optimizing therapeutic decisions for
BLCA patients.
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