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Inflammatory Bowel Disease (IBD), which includes Ulcerative Colitis (UC) and
Crohn’s Disease (CD), is marked by dysbiosis of the gut microbiome. Despite
therapeutic interventions with biological agents like Vedolizumab, Ustekinumab,
and anti-TNF agents, the variability in clinical, histological, and molecular
responses remains significant due to inter-individual and inter-population
differences. This study introduces a novel approach using Individual Specific
Networks (ISNs) derived from faecal microbial measurements of IBD patients
across multiple cohorts. These ISNs, constructed from baseline and follow-
up data post-treatment, successfully predict therapeutic outcomes based on
endoscopic remission criteria. Our analysis revealed that ISNs characterised by
core gut microbial families, including Lachnospiraceae and Ruminococcaceae,
are predictive of treatment responses. We identified significant changes in
abundance levelsofspecificbacterialgenera inresponsetotreatment,confirming
the robustness of ISNs in capturing both linear and non-linear microbiota
signals. Utilising network topologicalmetrics, we further validated these findings,
demonstrating that critical microbial features identified through ISNs can
differentiate responders fromnon-responderswith respect tovarious therapeutic
outcomes. The study highlights the potential of ISNs to provide individualised
insights into microbiota-driven therapeutic responses, emphasising the need
for larger cohort studies to enhance the accuracy of molecular biomarkers.
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This innovative methodology paves the way for more personalised and effective
treatment strategies in managing IBD.
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Introduction

The advent of high-throughput sequencing in clinical
research has enabled the molecular profiling of individuals at
an unprecedented scale (Reuter et al., 2015; Lightbody et al.,
2019). High-dimensional data (such as genomics, transcriptomics,
proteomics, metabolomics, lipidomics, metagenomics, etc.) have
been combined with advanced computational and modelling
approaches including network-guided data integration and
interpretation followed by machine learning techniques to identify
molecular drivers or groups of molecular drivers associated with
clinical phenotypes to predict drug response, prognosis and
diagnosis. Network and systems biology provides a mechanistic
framework (in the form of signaling pathways, functional processes,
disease-associated gene-sets, regulons etc.) to integrate and interpret
the high-dimensional molecular datasets by considering the
biological context.

However, most network-based computational approaches do
not take individual-specific signals into account. Despite the
power of traditional network-based approaches in leveraging the
functional context, the true potential of networks in uncovering
inter-individual variability has not been realised (Gregorich et al.,
2022). Traditional approaches are also not well equipped to deal
with the characteristics of typical clinical datasets–especially the
high dimensionality of variable space driven by sequencing/data
generation and low dimensionality of sample space driven
by financial constraints/patient availability (Gregorich et al.,
2022; Yousefi et al., 2023b). Most traditional and canonical
approaches also do not capture the effects of inter-individual
variation on relationships representing molecular or species-
level interactions–thus making the methods not amenable to
systemic effects driven by cross-talk, feedbacks, synergisms and
antagonisms. Since diseases are seldom caused by individual nodes
and mostly by a concerted series of events orchestrated by multiple
entities/molecules, traditional approaches fail to capture such
systemic effects (Gregorich et al., 2022; Yousefi et al., 2023b). Given
that variation (at baseline and beyond) among individuals is one
of the primary determinants dictating clinically relevant outcomes
such as therapeutic response (Chaput et al., 2017; Rashidi et al.,
2021; Moser, 2020; Liu et al., 2016b; Geeleher et al., 2014), it is
imperative that individual-to-individual variation at the level of
specific molecules, strength and directionality of the relationship
between molecules are incorporated into network approaches.

In the context of Inflammatory Bowel Disease (IBD), a chronic
inflammatory disorder of the gastro-intestinal tract with significant
heterogeneity (Ananthakrishnan, 2015), the gut microbiome plays
an important role in determining response to therapy (Doherty et al.,
2018; Ananthakrishnan et al., 2017; Caenepeel et al., 2023).
Furthermore, given the role of gut microbial community network
structures in driving substrate cross-feeding (Heinken et al.,

2021; Henriques et al., 2020), metabolizing drug and therapeutic
molecules (Javdan et al., 2020; Zimmermann et al., 2019) and
additionally modulating disease progression by interacting with the
host (Sudhakar et al., 2022; Lloyd-Price et al., 2019; Presley et al.,
2012; Tang et al., 2017), relational attributes (i.e., network based
relationships between bacterial taxa) could potentially capture
mechanisms which would otherwise be not fully represented in
traditional linear approaches that either do not consider inter-
individual variation or do notmodel inter-taxa relationships or both.
Previous studies that have inferred individual or patient specific
networks to predict different clinical phenotypes have typically
used transcriptomics, proteomics and mutation profiles of samples
from patients with various disorders including IBD (Yu et al.,
2017; Zeng et al., 2016; Liu et al., 2016a; Zhang et al., 2022;
Liu et al., 2020; Brooks-Warburton et al., 2022).

In this study, for the first time, we developed ISN-based
strategies on microbiomes to predict therapeutic responses in IBD. In
particular,weanalyzedthe16Sfecal-profilingatbaselineandfollow-up
(Figure 1A)ofIBDpatients(Ulcerativecolitis(UC)andCrohn’sdisease
(CD)) before receiving medically approved therapies (anti-TNF for
CD, UC; Vedolizumab for CD, UC; Ustekinumab for CD) using a
customized computational pipeline (Figure 1B) harnessing the utility
andpowerofthegeneralizableLIONESSalgorithm(Kuijjeretal.,2019)
which enables the modelling of networks for individual samples. The
information contentwithin the ISNswas thenused to identify features
(bacterial taxa, relationships between bacterial taxa, graph-topology
based prioritization of taxa and network properties) predictive of
different outcomes, namely, clinical response, endoscopic response,
and modulation of biomarkers. To properly harness the power of
networks,weusedarangeofnetworktopologymeasuresandmetricsto
identify (Supplementary Figure S1; Supplementary Table S1) critical
nodes which could characterize the response or the lack thereof to
therapeutic treatments.

Methods

Cohort description

A cohort of 296 patients with active inflammatory bowel
disease (IBD) was recruited when attending the IBD outpatient
clinic of the University Hospitals Leuven (Belgium), including 203
with Crohn’s disease (CD) and 93 with ulcerative colitis (UC),
all initiating biological therapy. Across the cohort, 328 biological
treatments were administered, including 140 anti-TNF, 123 anti-
integrin, and 65 anti-interleukin 12/23 therapies. During the study,
32 patients (17 with CD and 15 with UC) transitioned from one
biological therapy to another, and each consecutive treatment was
analyzed independently with an updated treatment history. For
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FIGURE 1
(A) Basic description of the cohorts used in the study. UC, Ulcerative colitis; CD, Crohn’s disease; VDZ, Vedolizumab; UST, Ustekinumab; TNF, anti-TNF
agents. Sampling strategies for every cohort (i.e., time at which samples were drawn) were followed as per routine clinical practice. (B) Graphical
representation of the workflow in the study to infer Individual Specific Networks (ISNs) for predicting therapeutic response especially
endoscopic response.

a detailed description of the patient cohort used in this study,
please refer to Caenepeel et al. (2023).

Ethical approval

The ethics committee of the University Hospitals Leuven
approved the study (IRB approvals, B322201213950/S53684
and B322201627472/S57662). All individuals gave written
informed consent.

Microbial load measurement by flow
cytometry

Cell counting for all samples was performed in duplicate. Briefly,
0.2 g frozen (−80°C) aliquots were dissolved in physiological solution
to a total volume of 100 mL (8.5 g/L NaCl; VWR International,

Germany). Subsequently, the slurry was diluted 1,000 times. Samples
were filtered using a sterile syringe filter (pore size of 5 μm; Sartorius
Stedim Biotech GmbH, Germany). Next, 1 mL of the microbial
cell suspension obtained was stained with 1 µL SYBR Green I
(1:100 dilution in DMSO; shaded 15 min incubation at 37°C; 10,000
concentrate, Thermo Fisher Scientific, Massachusetts, United States).
The flow cytometry analysis was performed using a C6 Accuri flow
cytometer (BD Biosciences, New Jersey, United States) based on
Doherty et al. (2018) Fluorescence events were monitored using
the FL1 533/30 nm and FL3 >670 nm optical detectors. In addition,
also forward and sideward-scattered light was collected. The BD
Accuri CFlow software was used to gate and separate the microbial
fluorescence events on the FL1/FL3 density plot from the faecal
sample background. A threshold value of 2,000 was applied on the
FL1 channel. The gated fluorescence events were evaluated on the
forward/sideward density plot, as to exclude remaining background
events. Instrument and gating settings were kept identical for all
samples (fixed staining/gating strategy (Doherty et al., 2018)). Based
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on the exactweight of the aliquots analysed, cell countswere converted
tomicrobial loads per gramof faecalmaterial. FaecalMoisture content
wasdeterminedas thepercentageofmass loss after lyophilisation from
0.2 g frozen aliquots of non-homogenised faecal material (−80°C).

DNA extraction and sequencing

Faecal DNA extraction and microbiota profiling was performed
as described previously (Gevers et al., 2014). Briefly, DNA was
extracted from faecal material using the MoBio PowerMicrobiome
RNA isolation kit with the addition of 10 min incubation at 90°C
after the initial vortex step. The V4 region of the 16S rRNA gene
was amplified with primer pair 515F/806R (Caporaso et al., 2011).
Sequencing was performed on the Illumina MiSeq platform (San
Diego, California, United States), to generate paired-end reads of
250 bases in length in each direction. After de-multiplexing, fastq
sequences were merged using FLASH (Magoč and Salzberg, 2011)
software with default parameters. Successfully combined reads were
filtered based on quality (>90% of nucleotides with quality score of
30 or higher for every read) using Fastx tool kit (http://hannonlab.
cshl.edu/fastx_toolkit/). Chimeras were removed with UCHIME
(Edgar et al., 2011). Faecal samples were processed altering
the protocol above to dual-index barcoding. Pre-processing was
performed using the DADA2 (Callahan et al., 2016) pipeline v1.6.0.

Relative microbiome profiling (RMP)

For the relative microbiome matrix, each sample was downsized
to 10,000 reads by random selection of reads. Samples with less than
10,000 reads were excluded (two samples). The taxonomy of reads
was assigned using RDP classifier 2.12 (Wang et al., 2007).

Quantitative microbiome profiling (QMP)

The quantitative microbiome profiling matrix was built
as described by Vandeputte et al. (2017). In short, samples
were downsized to even sampling depth, defined as the ratio
between sampling size (16S rRNA gene copy number corrected
sequencing depth) and microbial load (average total cell count per
gram of frozen faecal material). 16S rRNA gene copy numbers
were retrieved from the ribosomal RNA operon copy number
database rrnDB (Stoddard et al., 2015). The copy number corrected
sequencing depth of each sample was rarefied to the level necessary
to equate the minimum observed sampling depth in the cohort.
Samples with resulting rarefied read counts <150 were excluded
from QMP analyses. Rarefied genus abundances were converted
into numbers of cells per gram.

Relative microbiome sequence variant
profiling

Characterisation of the microbiota profiles below genus-level
was performed using the DADA2 (Naftali et al., 2016) pipeline
sequence variants, with taxonomy assignment by RDP classifier

v 2.12 (Wang et al., 2007). A phylogenetic tree for the sequence
variants was reconstructed using the dada2 sequence variant
sequences, by maximum likelihood reconstruction (GTR model)
using PhyML (Guindon et al., 2010). Sequence variants were
grouped into species clusters by collapsing sequence variants
with less than 0.005 branch length distance in the sequence
variants tree. Competition between species clusters with increasing
inflammation levels was evaluated by assessing the correlation
between calprotectin levels and species clusters dominance, i.e.,
their relative proportion of the total genus abundance per
sample, excluding samples for which the genus total abundance
sum was zero.

Pre-processing and filtering

From all the available samples within a particular cohort,
we applied the following pre-processing and filtering. Taxa
(Operational Taxonomic Units, OTUs) with low prevalence (<25%)
and samples with low sequencing depths (<500 reads) were excluded
as part of the filtering step.

Population-based network analysis

Computation of the population-based network was performed
from all the available samples within a particular cohort
using the package rMAGMA (https://gitlab.com/arcgl/rmagma)
(Cougoul et al., 2019). MAGMA represents the population-based
network as a co-abundance microbiome network. By virtue of
accounting and correcting for noisy data structures, large number
of zero counts, overdispersion (high skewness), compositionality
(all the abundances in a row sum to a fixed number) and correcting
for covariates, MAGMA provides the needed checks and balances
in analysing microbiome datasets. MAGMA employs a copula
Gaussian graphicalmodel combinedwith a generalised linearmodel
(GLM) marginal distribution. The marginal OTUs are adjusted to
zero-inflated negative binomial (ZINB) distribution, and the penalty
parameter ρ was used to balance fit and complexity. The optimal
penalty parameter ρ∗ is selected automatically from rMAGMA
using the StARS (stability approach for regulation selection)
approach (Liu et al., 2010). Covariates can also be integrated
into the pipeline and inserted into the estimate. Thus, the OTUs’
connections are regressed from the covariates. The result of this
algorithm is a sparse non-confounded low dimensional matrix of
co-occurrences. Age, gender, disease duration and disease location
at baseline were encoded as covariates. The resulting network is a
co-abundance network of the selected taxa for a particular cohort. It
is represented as a binary network indicating whether two taxa
are associated {0, 1}. The binary network is a simplification of
the underlying continuous sparse network (i.e., it assumes value
1 if the corresponding entry is non-zero). Hence, we retrieved
and used the continuous network, which constitutes the basis
for downstream analysis. Additionally, the MAGMA algorithm
identifies individuals lacking at least ten common taxa with the
other samples, preventing the calculation of size factors. Following
the recommendations of the package developers, these individuals
were excluded from the analysis. Supplementary Table S2 displays
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the number of samples and taxa in each cohort thatmet the inclusion
criteria.

Inference of individual specific networks

The LIONESS algorithm (Kuijjer et al., 2019) was used to
infer ISNs. ISNs represent networks for which weights of edges
(between nodes, which are the bacterial taxa) vary on a sample-
to-sample basis. Briefly, individual-specific edge weights relate
to how influential a sample is in relation to the entire set of
samples forming the population-based network for a cohort.
Specifically, this influence is determined from the divergence
in the association value when the sample is left out of the
calculation. This approach has strong reconstruction properties
and has been successfully applied in different fields to identify
biologically meaningful subtypes and gene modules (Jahagirdar and
Saccenti, 2020; Kuijjer et al., 2019). Samples are iteratively left out
from the population-based network to calculate the ISNs, and the
leave-one-out aggregate network is obtained by recalculating the
microbiome co-occurrence.The edge weights of the n-th ISN is then
computed as

eqij = N(e
α
ij − e

α−q
ij ) + e

α−q
ij (1)

where eαij and eα−qij are, respectively, the edge weights of the
population-based network and the q-th leave-one-out network, for
any pair of microbes (ij), and N is the number of samples. We
performed this process to infer the ISN for each sample in the cohort,
resulting in a network measure for each sample (Equation 1).

Differential network analysis

To identify the bacterial taxa associated with the therapeutic
outcomes of interest from the ISNs, LIMMA (Ritchie et al., 2015)
was used. Notably, the LIMMA analysis focuses on the interactions,
not the nodes themselves. This step, therefore, yields information
about the differential connectivity among the ISNs of samples
belonging to different therapeutic outcomes within the same cohort.
Following the guidelines of the original publication (Kuijjer et al.,
2019), the solution space was reduced (there is a vast variability
in the quantity and composition of the identified significant
microbiome co-abundances between groups) by only considering
edges where the difference between group weights is. Hence, edges
where, in absolute value, the difference between the average edge
weight of responders and non-responders was lower or equal
than were discarded. The cutoff was chosen as a relaxation of
the default threshold in the guidelines (Bioconductor - lionessR).
The LIMMA analysis was performed for every cohort and every
response variable, thus yielding a separate corresponding set
of discriminatory features. Only those features with a p-value
and an FDR (BH) were considered. Over-representation analysis
was performed using the hypergeometric test, and results with
FDR were considered significant. Further details are provided
in the Supplementary, in the “LIMMA analysis and results”
section.

Prediction of therapeutic response and
feature identification

Support vector machine (SVM, package e1071, 1.7 version) and
Random Forest (RF) (with the randomForest R package (Breiman,
2001), 4.7 version) classifiers were used to identify edge-based
features predictive of therapeutic response. In both, the input data
are the edges of the individual-specific network, while the target
variable is the remission for Endoscopic outcome.

In RF, a down-sampling procedure was added to deal with
the imbalance of the samples (randomForest package), considering
the same number of individuals per class for the training task.
Feature selection was performed on the out-of-bag observations
via a 5-fold cross validation, repeated 10 times. Using a custom
implementation built on rfcv function of package randomForest, for
each instance of cross-validation (CV), for each tree, the feature set
is computed as the top features on the out-of-the-bag observations,
i.e., the observations not used to build the model on that tree.
Hence, to find the top features – the best predictor across all the
folds – the ranking of the feature was aggregated through the
RankAggreg package (Pihur et al., 2009) (0.6 version).

In detail, for each fold, variables were ranked via their variable
importance. A rank aggregation procedure selected the global
top variables; hence, the selected top variables (ISN-edge) were
consistently at the top of the variable importance ranking inmultiple
folds of the CV.

As another independent method, an SVM-based classifier, with
a radial kernel, was employed. Here, a leave-one-out (LOO) cross
validation is implemented. In each iteration, the features with the
highest univariate correlations (calculated on the training set) are
retained. Those features are then employed on a radial-basis SVM to
predict the outcome and evaluate the observation left out.

Network topology metric-based
identification of taxa associated with
therapeutic response

In addition to the edge-based features, network topology-
based metrics were used to identify features that could segregate
therapeutic response or non-response. Ten metrics (namely average
shortest path length, betweenness centrality, closeness centrality,
clustering coefficient, degree, eccentricity, neighbourhood
connectivity, radiality, stress and topological coefficient) were used
to capture critical nodes with different network attributes. Those
ten metrics are calculated for each ISN node, then compared among
individuals.TheCytoscape-R interface tool RCy3was used to load as
well as analyse the ISNs. The network metrics were calculated using
NetworkAnalyzer in Cytoscape (Su et al., 2014). ISNs with less than
four nodes were not considered due to the limitation imposed by
NetworkAnalyzer.

For each cohort, nodes where network statistics could not
be calculated were handled either by replacing them with zeros
or by elimination of the node itself. Nodes can have no data
for a specific topology metric if said metric could not be
calculated for a said node, such as eccentricity for isolated
nodes. A ten-fold cross-validation structure was performed for
the classification performance (random-forest and support-vector
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machine) inference wherein the actual cross validation was carried
out for nine-folds. For the random-forest classifier, the top 20
features as ranked by their variable importance in each step of the
cross-validation were used. Instances (and their variations based on
protocols as described above for handling nodes with blank data)
with AUC ≥ 75% were considered significant. Every cohort for
every time point was treated independently due to the incomplete
longitudinal overlap between samples.

Enterotype dynamics analysis

In order to analyse the impact of treatment on microbial
interactions, particularly in relation to Bact2 dysbiosis, we
performed an Enterotype dynamic analysis on networks derived
from before (w0) and after (w24) the treatment. In particular, we
focused on CD patients treated with anti-TNF and the dynamics
in their microbial interactions. To achieve this, the multiplex
network differential analysis (MNDApipeline) (Yousefi et al., 2023b)
using the R package PLEX.I (Yousefi et al., 2023a), was applied. In
particular, individuals were first grouped into three categories: 1)
Bact2-Bact2, i.e., individuals with Bact2 enterotype both before and
after the treatment; 2)Other-Other, i.e., individuals with enterotypes
other than Bact2 both before and after the treatment; and 3) Bact2-
Other; i.e., individuals with Bact2 enterotype before the treatment
that transitioned to another enterotype after the treatment. For
each of those categories, two aggregate networks were obtained by
averaging the ISNs before (w0) and after (w24) the treatment.

The aggregate networks were standardised using the absolute
value function ensuring that all co-occurrence magnitudes were
non-negative. The two aggregate networks for each category, were
then stacked to build a multiplex network.

1. Two networks (one at week 0, one at week 24) aggregating ISNs
of individuals with the Bact2 enterotype both before and after
treatment.

2. Two networks (one at week 0, one at week 24) aggregating ISNs
of individuals with the Bact2 enterotype before treatment who
switched to a different (Other) phenotype after treatment.

3. Two networks (one at week 0, one at week 24) aggregating ISNs
of individuals without the Bact2 enterotype consistently before
and after treatment.

Leveraging the MNDA pipeline, nodes (microbes) within each
multiplex network were embedded into a low-dimensional space.
This embedding process translates microbial interaction data into
a format suitable for detailed mathematical analysis, preserving
relationships between nodes while facilitating the computation of
distances and similarities. As the multiplex networks consist of two
layers each for one time point, there are two points for everymicrobe
in the embedding space each indicating their interaction at one time
point. Once the nodes were embedded, the cosine distances between
all pairs of nodes were calculated. The cosine distance considers the
angle between two vectors, capturing relative changes in microbial
interactions between time points. The network embedding process
and cosine distance calculation were performed 50 times to ensure
the robustness of the results (Yousefi et al., 2023a; Yousefi and
Schwikowski, 2024). These distances were then ranked, and a rank

sum was obtained, providing a cumulative measure of changes in
microbial interactions for each category.

Next, a p-value was calculated for each distance measure to
assess the significance of observed changes.These p-valueswere then
corrected for multiple comparisons using the Benjamini-Hochberg
(BH) procedure, which controls the false discovery rate. Nodes
(microbes) with a corrected p-value of less than were deemed
significant. This threshold indicates that observed changes in their
interactions are unlikely to be due to random chance, highlighting
these nodes as key players in themicrobial dynamics associated with
treatment.

Such strategy can be extended to each ISN individually,
thus finding key microbial dynamics nodes for each individual.
We dive into this in section: “Enterotype analysis on selected
ISNs” of the Supplementary Material.

Results

Fractional abundance comparison

CD and UC patients treated with anti-TNF manifested similar
progression of the fractional abundances of the microbiome.
In both cases, the dominant families (i.e., those with fractional
abundances >10%) are Bacteroidaceae, Lachnospiracea and
Ruminococcaceae (Figure 2A). The microbiome sampled after
the anti-TNF treatment shows increased abundance levels
of Lachnospiracea in both CD (34%–42%) and UC patients
(31%–34%), with a more pronounced increase for CD patients.
On the other hand, Bacteroidaceae’s fraction diminishes (CD:
28%–23%; UC 24%–19%), together with a mild decrease in
Ruminococcaceae (CD: 17%–16%; UC 26%–23%). Such differences
can be due to the patients’ heterogeneity but are also driven by
different effects of the anti-TNF treatment on CD and UC patients.
Moreover, it is important to note that the follow-up date considered
was week 24 for CD and week 14 for UC, which could also have
influenced the magnitude of the changes observed in terms of the
fractional abundances.

As expected, the microbiome’s abundance before the treatment
is comparable among patients that were administrated VDZ
or anti-TNF treatment. However, after the treatment, both
CD and UC patients administrated VDZ showed an increase
in the proportion of Ruminococcace, in contrast to patients
administered anti-TNF (Supplementary Figure S2). For CD
patients treated with UST, the only notable difference before and
after treatment is the proportional increase of Ruminococcacea
(Supplementary Figure S3).

We also employed a paired test on the progression of the
fractional abundance among matched individuals before and after
(week 24 for CD and 14 for UC) the treatment, via a T-test.
Considering only dominant families (i.e., prevalence > 10%) and
after Bonferroni correction, the mean of the Lachnospiraceae family
among matched individuals is significantly different for CD treated
with TNF (p-value = 8.0∗10−3, adjusted p-value 0.024) and UST
(7.5∗10−3, adjusted 0.023) (Supplementary Table S3). When also
non-dominant families are considered, the adjusted p-values are not
significant anymore.
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FIGURE 2
Comparison of abundance and connectivity of CD and UC patients treated with anti-TNF before and after treatment. In panel (A), Fractional (relative)
family abundance in CD and UC patients treated with anti-TNF, both before and after the treatment. Panel (B) shows the difference in connectivity
before and after the treatment with anti-TNF for the CD patients, with taxa grouped per family. The sum of the co-occurrence between taxa pairs is
calculated for each family-family pair (loops are admitted) and shown on the edge. The node size is proportional to the number of taxa per family. In
(C), the differences in connectivity in UC individuals treated with anti-TNF are shown.

Taxa-level analysis

We applied the MAGMA algorithm to build a population-
based network for each combination of disease (CD vs. UC),
therapy (anti-TNF vs. UST vs. VDZ) and time point (w0, w14,

w24) separately, correcting for age, gender, disease duration and
disease location as covariates. The MAGMA output network
comprises nodes representing taxa and the significant interactions
between them–both positive and negative. We see that the
network computed for CD patients treated with anti-TNF at
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baseline, i.e., before treatment, shows a giant component, i.e.,
a group of taxa which are highly connected with each other
and also having an important and central role in the co-
occurrence network (Supplementary Figure S4A). Moreover,
the majority of Bacteroicidae taxa are disconnected, while
Ruminoccoccoae and Lachnospiracea’s taxa have high centrality.

UC patients, however, display a different network structure
compared to CD patients. At baseline (Supplementary Figure S4C),
there is not a highly hierarchical cluster but a more horizontal
structure, with more hubs spread out. This is shown by, after
taking the absolute value of the network, a lower average
node strength than the CD equivalent (Supplementary Figure S5;
Supplementary Table S4, 0.085 for UC TNF w0 vs. 0.129 CD TNF
w0) and a lower eigenvector centrality (Supplementary Table S4,
0.044 for UC TNF w0 vs. 0.117 CD TNF w0). We guide the
interested reader to the Supplementary (section “Comparison of
networks metrics across graphs”) for in-depth information about
the metrics utilized for comparing CD and UC patients before
and after treatments (Supplementary Figure S5). Notably, taxa in
the Bacteroicidae’s family are very isolated, in accordance with the
results from CD patients. Moreover, taxa in the Lachnospiracea
family have more negative connections after the treatment (w14)
than before (Figure 2C).

Even while there are differences in taxa’s connectivity for CD
and UC patients treated with anti-TNF, there is no remarkable trend
in the connectivity - neither upward (increasing) nor downward
(decreasing). Upon aggregating the taxa per family, the total
connectivity, measured using the MAGMA co-occurrence, is stable
within and between families, with notably a tiny decrease (−0.4)
in the connectivity of the Lachnospiracea family (Figure 2B). This
connectivity is measured as the sum of the edge weights between
nodes belonging to two target families, normalized, i.e., divided, by
the amount of possible interactions between nodes of these families.
Remarkably, the change is higher in UC patients, with a decrease
in the magnitude in the Lachnospiracea family (−0.9) (Figure 2C).
This leads to stronger negative associations between taxa in the
Lachnospiracea family, in both CD and UC, since the connectivity,
respectively for CD and UC, before treatment was {−2.7,−1.5},
and {−3.1,−2.4} after treatment (Supplementary Figures S4E–H).
Moreover, in both CD (Supplementary Figure S6A) and
UC patients (Supplementary Figure S6B) treated with VDZ, the
connectivity, both within the Lachnospiracea family, and also
involving Lachnospiracea and taxa of other families, increases
after the treatment, respectively by 1.5 and 2.3 for CD and
UC patients. This increase is due to a stronger association (co-
occurrence) between taxa, captured by the model resulting
in higher estimated MAGMA edges. Moreover, the figure
shows a general trend of connectivity increase, not limited to
Lachnospiracea’s taxa.

The population-based network built onUC patients treated with
anti-TNF, considered in absolute value, shows a higher average
node strength after the treatment (Supplementary Table S4). Such a
result is in accordance with Caenepeel et al. (2023), that highlighted
20 genera significantly associated with anti-TNF therapy, of which
19 were found to be increasing during therapy. Moreover, our
analysis highlights the differences in compositions, both in terms of
fractional abundances and connectivity structures, between CD and
UC patients.

FIGURE 3
Prediction AUCs of the various cohorts relevant to endoscopic
response at different time points based on the edge weights of the
ISNs. Instances wherein the accuracies are ≥0.65 are indicated by
adjacent red dots.∗Cohorts displaying ≥0.65 accuracy values for at
least one method across multiple time-points.

Alpha and beta diversity

As an exploratory analysis, we computed α-diversity (within-
sample diversity), for each cohort, with Endoscopic remission as our
binary outcome, in accordance with the work of Caenepeel et al.
(2023). We found significant differences in the α-diversity between
responders and non-responders for CD patients, and CD +
UC combined at baseline treated with VDZ (respective p-
values stand at and respectively), but not for anti-TNF or UST
(Supplementary Figure S7). Thus, we might conclude separating
responders from non-responders for VDZ is easier than for anti-
TNF or UST. Nonetheless, we should keep in mind that anti-TNF
was used as first-line intervention while UST and VDZ were used
more as second-line intervention, as per Caenepeel et al. (2023).

Baseline ISNs predictive of remission share
core bacterial signatures at the family (and
genus) level

For every combination of disease (CD, UC), treatment (anti-
TNF, VDZ, UST) and timepoint (w0, w14, w24), we computed the
MAGMA network, identifying the significant associations between
taxa. Then, we used the MAGMA network as an input to create
individual specific networks (ISNs) which are networks with the
same nodes as the original network, but with tailored edge weights
for each individual (IS-edges). We used the weights of the IS-edges
as the features in SVM and Random Forest models, to predict
endoscopic remission, and test the associations of said edges with
the endoscopic outcomes. Thus, we identified the most relevant
taxon-taxon interaction related to the cohorts (Figure 3).

At baseline (week 0), we identified predictive associations
with endoscopic outcome for the (CD + UC) VDZ and
CD VDZ cohorts. By comparing the bacterial features, we
inferred common core signatures (Supplementary Figure S8;
Supplementary Tables S5A, B), such as the bacterial families
Lachnospiraceae and Ruminococcaceae, which are associated
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with the endoscopic outcome across cohorts at baseline. These
are also supported by relative compositional abundances wherein
Lachnospiraceae accounted for almost a third (32% for CD
VDZ, 31% for CD UC VDZ of the total measurements at the
family level (Supplementary Figure S2) across multiple cohorts.

However, a significant proportion of the core signature
attributed to the Lachnospiraceae (41%) and Ruminococcaceae
(25.3%) families could not be classified at the genus level.
Zooming into individual cohorts, for example the CD VDZ cohort
(Figure 4; Supplementary Tables S5C–E), brings out the underlying
microbial community interactions which could be potentially
driving the association with the outcomes. Figure 4 is a graphical
representation whereby the predictive features (bacterial co-
abundance-based relationships) associated with multiple outcomes
are broken down into a network of bacterial families which are
further decomposed into genera level instances. Considering
endoscopic outcome, genera such as Roseburia, Fusicatenibacter,
Dorea, Faecalibacterium, Alistipes stand out in terms of their
contribution to the interactions in the context-specific networks.
These interactions could be driven by the underlying differences
in alpha diversity between patients in remission and those not
(Supplementary Figure S7A). As highlighted in the previous section,
there is a statistically significant difference (p-value: 0.039) in the
α-diversity of the microbiome at baseline between individuals in
remission and those not in remission. When considering the CD
VDZ cohort at baseline, genera level correlations between the two
significant outcomes (clinical and endoscopic) are comparable for
both of the two major families - Ruminococcaceae (r = 0.93, p =
0.02) and Lachnospiraceae (r = 0.927, p = 0.00092) (Figure 4).

Treatment-responsive bacterial genera are
involved in modulating
outcome-associated microbial
co-abundance networks of CD patients
treated with TNF inhibitors

Despite not achieving significant AUC levels at baseline,
the ISNs of CD patients treated with TNF inhibitors were
predictive of endoscopic outcome at week 24 (max AUC
= 0.76) (Figure 3). Seven of the ten bacterial features
identified by unique family-genera tags and associated with
endoscopic outcome at week 24 were characterised by
their membership to the Lachnospiraceae family (Figure 5;
Supplementary Tables S5A, B). Along with Ruminococcaceae,
members of the Lachnospiraceae family were not only identified as
core bacterial families associated with endoscopic outcome at week
24, but also with the orchestration of treatment-responsiveness
(Supplementary Figure S9A; Supplementary Tables S6C, D) as
measured by their memberships covering altered genera.

About 55.5% of the ISN edges (representing co-abundance of
genera) predictive of endoscopic outcome at week 24 for the CD
TNF cohort had at least one of the two genera annotated as being
responsive (Supplementary Figure S9B). ISN features predictive of
endoscopic outcome associated features at week 24 encompassed
only 5 responsive genera (Blautia, Fusicatenibacter, Dorea, Roseburia
and Intestinimonas) (hypergeometric test p-value = 1.55∗10−2 ),
among which Roseburia was reported independently Caenepeel et al.

(2023) as well to be a key driver of endoscopic outcome in
response to TNF treatment. Meanwhile, the responsive genera of
Blautia were involved in about 34.3% of the ISN edge features
associated with endoscopic outcome at week 24. Overall, the five
responsive genera comprise about two-thirds of the overall feature
space (nodes) (Supplementary Figure S4) involved in the edges of the
ISNs predictive of endoscopic outcome. In other words, genera whose
levels fluctuate in response to treatment are also involved in interactive
relationships, which could potentially drive the outcomes.

Enterotype-based analysis

As noted in multiple studies, including the seminal work by
Caenepeel et al. (2023), the Bact2 enterotype is associated with
significant dysbiosis. Individuals who revert to a normal microbiota
profile post-treatment generally exhibit improved disease outcomes.

This study specifically investigatedCDpatients treatedwith anti-
TNF therapy, categorising patients based on their enterotype before
(week 0) and after (week 24) treatment into three groups: Bact2-
Bact2 (consistent Bact2 enterotype), Bact2-Other, and Other-Other.
An averagedmicrobial interaction networkwas constructed for each
group to reflect the interactions between taxa. Using the MNDA
pipeline, eachmicrobewas projected into an embedding space twice:
once for week 0 and once for week 24. This dual projection allows
for the calculation of microbial dynamics, defined as the distance
between projections before and after treatment. The aim was to
identify the most variable microbes, characterised by the greatest
changes in distance. Significant microbial dynamics were identified
using permutation networks. Significant nodes (taxa) are the ones
identified as dynamics, i.e., with a remarkable distance before and
after treatment.

Figure 6 plots the top 10 significant nodes (microbes) and
their top 10 neighbours. Among 21 significant microbes on Bact2-
Bact2 enterotype (Figure 6A), families such as Lachnospiraceae (5
occurrences), Bacteroidaceae (3 occurrences), Ruminococcaceae
(3 occurrences), Streptococcaceae (2 occurrences), and
Erysipelotrichaceae (2 occurrences) were prominently
represented. Figure 6B shows similar data for individuals
transitioning from Bact2 to another enterotype. Among 23
significant microbes, families like Bacteroidaceae (6 occurrences),
Lachnospiraceae (4 occurrences), Ruminococcaceae (3
occurrences), Streptococcaceae (2 occurrences), Bifidobacteriaceae
(2 occurrences), and Porphyromonadaceae (2 occurrences) were
recurrent.

Among the Bact2-Bact2 and Bact2-Other dynamics
analysis, 11 taxa are significant in both (2x Bacteroidaceae
Bacteroides, Bifidobacteriaceae Bifidobacterium, Coriobacteriaceae
Collinsella, Lachnospiraceae Blautia, Lachnospiraceae
Roseburia, Pasteurellaceae Haemophilus, Rikenellaceae
Alistipes, Ruminococcaceae Flavonifractor, Ruminococcaceae
Subdoligranulum, Streptococcaceae Streptococcus). Of the microbes
significant in Bact2-Bact2 individuals, the Bacteroidaceae family is
themost represented, while Lachnospiraceae is themost represented
in Bact2-Other individuals. An equivalent for individuals in non-
Bact2 enterotype that remains unchanged after treatment (Other-
Other) is shown in Supplementary Figure S10. Significant nodes for
the dynamics analysis are available in Supplementary Tables S7A–C.
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FIGURE 4
Summary of co-expression-based relationships between bacterial families (nodes) associated with prediction of clinical (red edges) and endoscopic
(green edges) outcomes in the CD VDZ cohort at baseline. The thickness of the edges between the nodes represents the number of instances (as
indicated by the edge labels) of the corresponding relationships at the level of bacterial families. The heatmap alongside the nodes displays the
corresponding breakdown of the bacterial features at the level of genera across the clinical and endoscopic outcomes. Unclassified bacterial features
at the family level and one bacterial family feature (Bacteroidaceae) correlated with the former are not shown in the figure.

Furthermore, this study compared the distance difference
before and after treatment for Bact2-Bact2 vs. Bact2-other.
The 124 input microbes are ranked based on the absolute
distance difference, to highlight those with the most variation
among Bact2 -Bact2 compared to Bact2-other. The top 10
differential microbes are Ruminococcaceae Butyricicoccus,
Bifidobacteriaceae Bifidobacterium (x2), Lachnospiraceae
Roseburia, Lachnospiraceae sp., Lachnospiraceae Clostridium_
XlVa (x2), Lachnospiraceae Blautia, Porphyromonadaceae
Parabacteroides, and Erysipelotrichaceae sp.

This section focuses on identifying key microbes for
different enterotype before and after treatment by averaging
ISNs. To illustrate the potential for individual-level insights,

we analyzed separately one individual per enterotype
combination ((Bact2-Bact2, Bact2-Other, Other-Other),
identifying 24, 31, and 29 significant nodes, respectively
(Supplementary Tables S7D–F; Supplementary Figures S11–13).
More details are available in the Supplementary, in section
“Enterotype analysis on selected ISNs”.

Discussion

In this study, we used a distinct approach wherein networks are
inferred at the level of individuals or samples to highlightmicrobiota
derived signals associated with drug response outcomes. This
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FIGURE 5
(A) Overlap of bacterial features associated with clinical outcome at week 14 in the CD TNF cohort predicted by different classification schemes. (B)
Members in the family-genera feature space predictive of endoscopic outcome at week 24 in the CD TNF cohort.

approach enables identifying signatures at an inter-individual level
in contrast to most existing approaches which make generalizations
by aggregating samples. Concomitantly, we compared our results
with those from Caenepeel et al. (2023). To discover signatures
associated with endoscopic response albeit via a method which does
not consider inter-individual variations.

There are many similarities between the work of Caenepeel et al.
(2023), and our current work. First of all, Roseburia and Blautia
are two genera with different abundances before and after TNF
treatment in the work of Caenepeel et al. (2023). Our analysis
captured these genera for CD individuals treated with TNF.
Moreover, Blautia is involved in 34.3% of the ISN edge features
associated with endoscopic outcome at week 24. Hence, in this
case, the information we can gather from testing the differential
abundances as observed in Caenepeel et al. (2023). Agrees with our
observations from a network point of view.

The analysis of Caenepeel et al. (2023), also highlighted 20
genera significantly associated with anti-TNF therapy, of which 19
were found to be increasing during therapy. Our study expands
those findings, as both UC and CD patients treated with TNF
show remarkable network wiring differences after the treatment.
This suggests that the TNF therapy strongly impacts taxa and their
(re)-wirings.

Moreover, Ruminococcus is a critical genus, being significantly
different with respect to disease location and with many orders
of magnitude of differential abundance shift correlated with the
observed decrease in serum CRP. In agreement with the above,
we also observed taxa belonging to Ruminoccocae to predict
therapeutic outcomes across cohorts at baseline (w0). Moreover,
we found strong co-abundances between the Ruminoccae and
Lachnospiraceae families. In addition, Ruminococcus2’s association
with Lachnospiraceae was captured as a relevant feature by
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FIGURE 6
Comparative analysis of averaged microbial co-expression networks for the top-10 most significant microbes and their primary neighbors between
months 0 and 24 in (A) bact2-bact2 enterotype and (B) bact2-other enterotype. Microbes (network nodes) detected by MNDA are highlighted in dark
grey; their distance-1 neighbors are marked in light grey. The edge thickness in the networks represents co-occurrence magnitude, while edge colours
indicate the sign of the correlation: red edges signify a greater average edge weight at 24 weeks than at baseline (0 weeks), whereas green edges
indicate the reverse.

multiple models for CD patients treated with TNF at w14.
While TNF-treated patients are one of the main focus in our
analysis, our approach managed to predict efficacious signatures
for some of the cohort-treatment combinations involving UST
and VDZ treatment, something that was not captured in the
analysis by Caenepeel et al. (2023).

Caenepeel et al. (2023) also found no prediction link
between genera and remission directly. Still, we found that the
connections between taxa are informative for particular cohort
combinations (CD or UC) and treatment. This hints toward
the complementary value interactions provided as supported by
other independent studies using networks (Choobdar et al., 2019;
Tosadori et al., 2021; Brooks-Warburton et al., 2022). Moreover,
as we employed non-linear models (such as Random Forest or
SVM), there is a case to be made that the association between
the microbiome and the remission is not linear in nature. There
are differences in the prediction results from RF and SVM.
SVM is a margin-based classified and the radial kernel allows
SVM to handle non-linear relationship; RF, on the other hand,
is an ensemble method built on decision trees; The prediction
differences can be driven by the ability of SVM to handle smaller
datasets with complex, non-linear boundaries; however, RF is less
prone to overfitting due to the averaging on multiple decision
trees.

Employing our ISN-driven strategy for faecal-sample derived
microbial measurements from CD and UC patients exposed
to different biological therapies at different time points aids
in the transformation of high-dimensional data into actionable
information which could provide hints at identifying potential

response-related biomarkers. For example, Lachnospiraceae and
Ruminococcaceae families are not only linked to therapeutic
outcomes at baseline but also to specific therapies used (CD
VDZ, CD UC VDZ and CD UST). At a network level,
Lachnospiraceae and Ruminococcaceae are also co-abundant (for
example, in the CD VDZ cohort w.r.t clinical and endoscopic
outcomes), i.e., their abundance patterns are congruent with each
other w.r.t multiple outcomes. Although also co-abundant with
other families, the co-abundance between Lachnospiraceae and
Ruminococcaceae is relatively stronger. This, along with previous
observations of reported positive correlation between the two
families (Amaretti et al., 2019), suggests that they could have inter-
dependent roles and could metabolically cross-feed each other.
Interestingly,bothLachnospiraceaeandRuminococcaceaetogether
also comprise about 80% of the most abundant Firmicute families
(Jalanka-Tuovinenetal.,2011;Tapetal.,2009)whichinturnaccount
for about 84% of the active fraction of the core human healthy
gut microbiota (Peris-Bondia et al., 2011). Lachnospiraceae and
Ruminococcaceae are also involved in core metabolic functions
including breaking down complex plant derived carbohydrates
(Brulc et al., 2009; Flint et al., 2012), in the production ofmolecules
suchasbutyratewhicharebeneficial for thehomeostasisof intestinal
epithelial cells (Duncan et al., 2002; Barcenilla et al., 2000) and
have shown to be depleted in IBD patients (Frank et al., 2007).
Most importantly though, changes in the Lachnospiraceae and
Ruminococcaceae abundance levels were associated with anti-
TNF-alpha treatment efficacy (Park et al., 2022). Thus, it can
be postulated that as patients respond to treatment, baseline
levels of Lachnospiraceae and Ruminococcaceae, besides other
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external factors such as diet, lifestyle modification etc., could
potentially contribute synergistically to the direct and indirect
effects of treatment in restoring the healthy phenotype. These
observations also open the door to using baseline levels ofmicrobial
markers to stratify patients and optimize dosage and therapeutic
combinations.

Since our ISN-based approach does not use differential
abundances obtained using linear methods, we wanted to check
if microbial features ISN-driven highlighted in our prediction
models also exhibit differential abundances between and after
treatment. The above condition was fulfilled to different extents
across multiple cohorts, including the CD TNF cohort, thus
suggesting that our ISNs capture linear and non-linear signals
associated with treatment outcomes. Overlapping responsive genera
across time points and outcomes lends further credence to the
inferred microbiota features. In particular, for the CD TNF cohort,
multiple treatment responsive genera were found to be common
to the ISNs predictive of clinical and endoscopic outcomes at
week 14 and week 24 respectively. This hints at the possibility
that certain key genera (such as Blautia, Fusicatenibacter, Dorea,
Roseburia) are involved in the natural progression of multiple
levels of treatment-linked remission. Changes in abundance levels
of some of these genera, such as Blautia and Roseburia, were
significantly associated with response to Infliximab, a chimeric
mouse-human IgG1 monoclonal antibody against TNF-alpha
(Wang et al., 2018).

The Enterotype analysis highlights the dynamic nature of
microbial interactions in CD patients treated with anti-TNF,
with specific microbial families showing notable variations in
co-expression patterns. These findings provide insights into the
microbial shifts associated with therapeutic interventions and
their potential implications for disease outcomes. We aggregated
ISNs based on their Enterotype evolution before/after treatment,
but a valid alternative would be to compute population-based
networks for individuals sharing an Enterotype trajectory.
However, the showcased pipeline could potentially be extended
to directly compare two ISNs of interest, as was done in a
previous study (Yousefi et al., 2023b).

ISNs are at the core of our analysis pipeline. We applied
various network topological metrics to each of the inferred ISNs
to identify critical nodes aka microbial features and thereafter
tested if these critical microbial features can segregate responders
and non-responders with respect to different treatment outcomes.
Features driving the segregation based on network metrics were
in agreement with previously described results (Lachnospiraceae,
Roseburia, Blautia, Faecalibacterium, Clostridium XIVa, Dorea,
Alistpies and Subdoligranulum) inferred using non-network
metric approaches on a cohort-to-cohort basis. Due to the
lack of microbial networks associated with drug response
prediction in IBD, we could not independently cross-validate
our findings from similar network-based approaches. However,
as discussed before, many of the network-metric derived
microbial features predictive of therapeutic response have been
previously reported in studies based on differential abundance
and other linear models (Park et al., 2022; Wang et al., 2018).
Compared to inter-outcome congruence, intra-outcome congruence
(Supplementary Table S8B) was quite widespread, suggesting that
multiple network topological metrics capture common microbiota

features differentiating responders and non-responders with
respect to the same outcome. This is exemplified by our finding
that topological coefficient (TC) is predictive of all the three
outcomes independently for the CD TNF cohort at week 14, with
the Lachnospiraceae family being the primary microbial feature
driving the network-rewiring. Furthermore, TC was identified
as prevalent metric predicting diverse therapeutic outcomes
across multiple cohorts. These results justify the use of network-
metrics, which, due to their ability to capture contextual and
neighbourhood information, have been harnessed for identifying
critical nodes for the purpose of drug target re-positioning
(Badkas et al., 2021; Ramadan et al., 2016). Besides, the convergence
of results inferred by multiple approaches using the ISNs derived
from the same datasets highlights the significance of our findings,
although further independent validation using larger sample sizes is
warranted.

Although our findings are intriguing from the IBD research
and clinical viewpoints, there are several drawbacks in our
study. (a) For a disease as complex as IBD, multiple levels
of biological complexities (aka translated to different levels of
data and interactions between then) are involved. Since we
focussed only on the microbiome in this study, other levels
of -omic data need to be incorporated. (b) The use of stool
samples as a proxy for the active gut microbial composition is
a contested claim. Ideally, mucosal sampling in contrast with
stool samples, would be a better representation of the in-vivo
context. (c) We have not captured measurements of the microbiota
at a strain-level resolution which is known to represent specific
properties and functions. (d) Although we have used networks
to represent the microbial signatures, we have not used the
potential underlying mechanistic aspects such as metabolic cross-
feeding, microbe-microbe interactions (Sudhakar et al., 2021;
Andrighetti et al., 2020; Sudhakar et al., 2022) etc. (e) Larger sample
sizes with a larger share for both the discovery and validation
cohorts need to be set up. (f) To extract meaningful taxa and
taxa-taxa interactions, we focused on two widely used prediction
algorithms (SVM and RF) without doing extensive hyperparameters
tuning but using, when available, the standard parameters, given
the analysis complexity and the amount of different cohorts. Careful
hyperparameter tuning has the potential to increase the prediction
performance.

Finally, we note that the observed links between microbial
signatures and remission-related outcomes are still associative;
hence, further studies are needed to ascertain whether or not
the modulation of the microbiota is a consequence or a cause of
remission post treatment.

Conclusion

Networks capture not only the behavior of individual entities but
also the relationships between them – thus they capture systemic
effects. To go one step further, networks comprising features which
exhibit changes in quantitative or qualitative properties can be
reconstructed at the level of individual samples. In this study,
we used this fundamental principle to construct ISNs from fecal
microbial profiles measured at baseline and post treatment from
IBD patients treated with different clinically approved therapeutic
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agents.Thereafter, we tested if the inferred ISNs at baseline and post-
treatment can predict therapeutic response. Our results suggest that
ISNs, by capturing linear and non-linear effects as exemplified by
results emerging from the comparison with Caenepeel et al. (2023),
indeed predicted therapeutic outcomes successfully although there
were differences from cohort to cohort. We identified several
instances of common microbiota features which were able to
commonly predict more than one outcome for the same cohort,
suggesting that a core set ofmicrobiota can drivemultiple outcomes.
Further optimization of dosage, dissecting disease heterogeneity
and compiling larger cohort sizes are expected to highlight the
power of ISNs to a greater extent in IBD and other complex
diseases.
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