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Purpose: PEXS was first described in 1917, yet its etiology still needs clarification.
An imbalance between oxidants and antioxidants plays a significant role. PEXS
leads to various ocular complications, including increased risk during cataract
surgery due toweak zonules, lens dislocation, and reduced visual outcomes. Our
study investigates whether metabolomics can provide insights into this ocular
pathology.

Methods: The study included 183 patients undergoing cataract surgery at Pauls
Stradins Clinical University Hospital. 104 patients did not have PEXS, while 79
were diagnosedwith the condition. Intraocular fluid samples from these patients
were analyzed using targeted metabolite analysis, performed through HILIC
liquid chromatography coupled with mass spectrometry detection.

Results: The aqueous humor of PEXS patients contains statistically significant
higher levels of cystine (p < 0.001), citrulline (p < 0.001), phenylalanine (p =
0.041), tyrosine (p=0.025), serine (p=0.030), arginine (p=0.017), lactic acid (p=
0.055), tryptophan (p = 0.055), and creatinine (p = 0.022). These results suggest
a potential link to ferroptosis.

Conclusion: Ferroptosis is a form of programmed cell death characterized
by iron-dependent LPO. The inhibition of the antiporter system Xc

− leads to
increased oxidative stress, suggesting that the changes seen in PEXS could
be linked to ferroptosis. Our findings indicate that cysteine synthesis occurs

Abbreviations: PEXS, pseudoexfoliation syndrome; ECM, extracellular matrix; PEX, pseudoexfoliation;
ROS, reactive oxygen species; PEXG, pseudoexfoliative glaucoma; LOXL1, lysyl oxidase-like 1; CVD,
cardiovascular disease; Cys, cysteine; CySS, cystine; Glu, glutamate; GPX4, glutathione peroxidase 4;
RSL3, RAS-selective lethal 3; LPO, lipid peroxidation; 4-HNE, 4-hydroxynonenal; LOXs, lipoxygenases;
PUFAs, polyunsaturated fatty acids; POR, cytochrome P450 oxidoreductase; MUFAs, monounsaturated
fatty acids; TBARS, thiobarbituric acid reactive substances; LDL, low-density lipoprotein; Pyr, pyruvate;
LDH, lactate dehydrogenase; mTORC1, mammalian target of rapamycin complex 1; Trp, tryptophan;
Kyn, kynurenine; 5-HT, 5-hydroxytryptamine or serotonin; IDO, Indoleamine 2,3-dioxygenase; NO,
nitric oxide; Cit, citrulline; ASS, arginine succinyl synthetase.
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via the transsulfation pathway, attributable to inhibiting the antiporter system
Xc

−. Treatment of pseudoexfoliation should lower the oxidative stress inside
the anterior chamber by reducing the uptake of PUFAs, lower iron levels, and
cysteine supplementation.

KEYWORDS

pseudoexfoliation syndrome, cysteine, antiporter system Xc
−, arginine, tryptophan,

oxidative stress, iron

1 Introduction

Finnish ophthalmologist John Gustaf Lindberg presented the
first description of pseudoexfoliation syndrome (PEXS) in his
doctoral thesis in 1917 (Grzybowski et al., 2019). However, the
precise etiology of PEXS still needs to be determined. PEXS leads
to the accumulation of extracellular material in various ocular
tissues (Tuteja et al., 2024). It is believed that it is a systemic
disorder that presents primarily with implications beyond just the
eye. It is characterized by the gradual and chronic deposition and
buildup of grayish-white material in various organs (Tuteja et al.,
2023). Using transmission electron microscopy, similar fibers
to PEX have been found in autopsy tissue specimens of the
heart, lungs, liver, kidney, skin, and cerebral meninges (Schlötzer-
Schrehardt et al., 1992). Clinically unilateral PEXS supports the
notion that it is fundamentally a bilateral disorder, characterized by
a markedly asymmetric clinical presentation (Hammer et al., 2001).
An imbalance between oxidants and antioxidants may play a part
in developing PEXS, a disease marked by faulty extracellular matrix
(ECM) remodeling (Mastronikolis et al., 2022). PEXS impacts
tissues made up of elastic fibers, like the walls of blood vessels, the
trabecular meshwork, and the lamina cribrosa (Vazquez and Lee,
2014). Oxidative stress and inflammation are pivotal contributors
to the pathogenesis of PEXS (Botling Taube et al., 2019). The
predominant presence of elastic fiber epitopes, particularly elastic
microfibrillar components such as elastin, vitronectin, amyloid P,
fibrillin-1, MAGP-1, emilin, LTBP-1, and LTBP-2, supports the
current theory that PEXS is a form of elastosis that primarily
affects elastic microfibrils (Ritch and Schlötzer-Schrehardt, 2001).
The ECM is a complex three-dimensional network comprising
collagen, elastin, fibronectin, hyaluronic acid, proteoglycans, and
glycoproteins. This intricate structure provides essential support to
tissues by encapsulating cells and maintaining hydration and pH
homeostasis (Roma-Rodrigues et al., 2019).

Cardiovascular conditions significantly associated with
PEXS included ischemic heart disease, aortic aneurysms, and
homocystinuria (Siordia J. et al., 2016). The association between
PEX and ischemic heart disease was statistically significant, with
a p-value of 0.045 (Siordia JA. et al., 2016). The prevalence of
Alzheimer’s-related dementia is elevated in patients with PEXS
(Cumurcu et al., 2013). There is a hypothesis positing PEXS as
a systemic disorder (Amari et al., 1994). These changes are only
marginally functional and not life-threatening (Slettedal et al.,
2015). PEXS leads to a variety of ocular complications. It is
associated with an augmented propensity for complications
during cataract surgery (Shivkumar et al., 2022). It is linked to
complicated initial cataract surgery due to weak zonules and
late-in-the-bag dislocation (Vanags and Laganovska, 2020). These

complications reduce visual outcomes after cataract operations
(Vazquez-Ferreiro et al., 2021). The presence of material on the
zonules might account for the clinically observed phenomenon of
zonular weakness and the subsequent subluxation or dislocation
of the lens (Yüksel and Yılmaz Tuğan, 2023). Proteomic studies of
the lens zonule indicate that human zonules are predominantly
composed of non-collagenous acidic glycoproteins, with fibrillin-
1 being the most abundant component (Pan et al., 2023). Patients
with PEXS who underwent cataract surgery by trainees had
higher rates of posterior capsular rupture with vitreous loss
and worse visual outcomes compared to those operated on by
experienced consultants (Singh et al., 2021). PEXS is the leading risk
factor for secondary open-angle glaucoma called pseudoexfoliative
glaucoma (PEXG). Approximately 30%–50% of individuals with
PEXS progress to developing glaucoma (Ritch, 1994). It is a
significant cause of blindness on a global scale (Sahay et al., 2022).
It has been studied that patients with PEXG benefit from a greater
intraocular pressure reduction after cataract surgery compared
to controls (Ramezani et al., 2021).

Metabolomics is a pivotal aspect of our biological existence,
serving as fundamental building blocks and regulatory elements
within cells. Metabolites are crucial in facilitating intercellular
communication and orchestrating discrete physiological processes.
The discernment and characterization of specific metabolites
present a profound opportunity to enhance our understanding
of disease progression, thereby enabling interventions at the
foundational origins of pathological conditions (Qiu et al., 2023).
The metabolome encompasses the collection of small-molecule
metabolites within a cell during specific physiological conditions.
Themetabolome is a more time-sensitive indicator of perturbations,
providing more accessible and accurate measurements than the
transcriptome or proteome (Kell et al., 2005). Biofluids emerge
as exceptional proxies for organs or tissues, given that their
constituent elements closely mirror the metabolic activities of the
originating organ or the organs they encapsulate (Evans et al.,
2020). Ferroptosis is a form of programmed cell death first
described in 2012 (Dixon et al., 2012). Recent advancements
in mass spectrometry have enabled high-throughput analysis of
metabolites, shedding light on ferroptosis regulation. Research
on the role and regulation of ferroptosis in eye diseases remains
scarce, with most investigations concentrating on retinal disorders
like age-related macular degeneration and retinitis pigmentosa
(Wei et al., 2024). Cysteine (Cys), crucial for glutathione
(GSH) synthesis, supports glutathione peroxidase 4 (GPX4) in
preventing ferroptosis, while ubiquinone or Coenzyme Q10
(CoQ10) metabolism inhibits ferroptosis independently of
GPX4. Additionally, several PUFA-containing lipid enzymes
can induce ferroptosis (Nguyen et al., 2022). Cells undergoing

Frontiers in Molecular Biosciences 02 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1487115
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Zemitis et al. 10.3389/fmolb.2024.1487115

ferroptosis may exhibit elevated ECM production or release
(Yan et al., 2024).

We methodically examined the intraocular fluid composition
among individuals afflicted by PEXS during this investigation. Our
emphasis lies in discerning potential disparities in the metabolic
profiles of individuals manifesting PEXS. Although prior studies
have explored pseudoexfoliation syndrome analysis in relation to
aqueous humor, our objective is to conduct a larger population-
based study aimed at identifying patterns that could provide insights
into the underlying biochemical and pathological processes of this
complex ocular pathology.

2 Materials and methods

2.1 Study group

The investigation encompassed the analysis of aqueous humor
specimens derived from a cohort comprising 183 patients who had
undergone cataract surgery at Pauls Stradins Clinical University
Hospital. Within this selected cohort, 68 were male and 115 were
female. The mean age of individuals diagnosed with cataracts
and operated on was 73.6 years, with a standard deviation of ±
9.42. The age spectrum ranged from a minimum of 50 years to
a maximum of 94 years. Notably, 104 patients lacked PEX, while
79 individuals manifested this ocular condition. It is crucial to
emphasize that study participants who were presented with co-
occurring ocular pathologies—such as diabetes, glaucoma, or age-
related macular degeneration—were kept in the study population.
Age-related macular degeneration data was not collected as part of
this study, as it was not included in the study protocol. Therefore,
the potential role of age-related macular degeneration in aqueous
humor metabolomics was not assessed as a confounding factor as a
limiting factor for our study. The demographic characteristics and
comorbidities are shown in Table 1.

A paracentesis was conducted before the surgical procedure
started, and a 27Gneedlewas used to biopsy the aqueous humor.The
aqueous humor is a more suitable fluid for analysis when studying
the changes occurring in the anterior chamber, as compared to
blood. A volume ranging from 50 to 120 µL of aqueous humor was
aspirated and then transferred to Eppendorf tubes, depending on
the volume of the accessible fluid. Samples were stored on-site at
−18°C and delivered the same day in an ice box to Riga Technical
University’s Faculty of Materials Science and Applied Chemistry for
further analytical work and archive storage at −80°C.

2.2 LC-MS based metabolite analysis

Metabolites were extracted using a methanol-based extraction
protocol. 10 μL of the aqueous humor sample were transferred
to an empty Eppendorf tube and mixed with 80 µL methanol
and 10 µL isotopically labeled internal standards. Each sample was
vortexed for 15 s and then centrifuged for 10 min at 10.000 RPM.
The supernatant was transferred into an HPLC glass vial.

Targeted quantitative metabolite analysis was conducted
using HILIC-based liquid chromatography combined with mass
spectrometric detection employing a Thermo Orbitrap Exploris

120 mass spectrometer. An ACQUITY UPLC BEH Amide 1.7 μm
2.1 × 100 mm analytical column (Waters) was employed for
chromatographic separation. The gradient elution was carried
out using 0.15% formic acid and 10 mM ammonium formate in
water as mobile phase A and a solution of 0.15% formic acid and
10 mM ammonium formate in 85% acetonitrile as mobile phase B.
The initial conditions were set to 100% in mobile phase B. After
6 min, a 0.1 min gradient (6.0–6.1 min) was started, and the mobile
phase B level was reduced to 94.1%. From 6.1 to 10 min, mobile
phase B was set to 82.4%, and from 10 to 12 min, mobile phase B
was set to 70.6%. The column was then equilibrated for 6 min at
initial conditions. The total analysis time was 18 min. The mobile
phase flow rate was 0.4 mL/min, the injection volume was 2 μL, and
the column temperature was 40°C. We utilized a well-established
method developed in our lab, building on the foundational work
of Prinsen et al. (2016). This method has been widely applied in
metabolomics and has been previously reported in multiple studies
(Elbere et al., 2024; Fritsch et al., 2023).

For MS detection, an Orbitrap Exploris 120 (Thermos Fisher
Scientific) mass spectrometer was used. The MS analysis was
performed in ESI positive and ESI negative modes using full scan
detection; the scan range was set from 50 to 600 m/z, and the
mass resolution was set to 60,000. The ESI spray voltage was set
to 3.5 kV in positive mode and 2.5 kV in negative mode; the gas
heater temperature was set to 400°C; the capillary temperature was
set to 350°C; the auxiliary gas flow rate was set to 12 arbitrary
units; and the nebulizing gas flow rate was set to 50 arbitrary
units. For quantitative analysis, seven-point calibration curves
with internal standardization were used. Tracefinder 51.1 General
Quan (Thermo Fisher Scientific) software was used for LC-MS
data processing and quantification. Every reported metabolite was
identified at levelA (Alseekh et al., 2021) using an authentic standard
compound previously mapped to the analytical system. Detailed
information about metabolite identification (RT, m/z, HMDB IDs)
is provided in the Supplementary Table S1. Many of the metabolites
analyzed are commonly studied in metabolomic research and are
associated with oxidative stress, energy metabolism, and amino acid
metabolism (Liu X. et al., 2023).

2.3 Statistics

Metabolite concentrations from the targeted metabolomics
analysis were analyzed with MetaboAnalyst 6.0 (Pang et al.,
2024) and GraphPad Prism 9 (Mitteer and Greer, 2022). Before
statistical analysis, data was log10 transformed, and every
metabolite was scaled by mean-centering and divided by the
square root of the standard deviation. This was done to make
metabolites of different ranges statistically comparable using
Gaussian generalized estimating equations (Bartel et al., 2013).
The data before and after normalization and scaling is presented
in the supplementary material. Significance tests were done
using a nonparametric test. In addition, absolute measured
concentrations of metabolites were plotted for bar plots to increase
data transparency. P-values were calculated using the Mann-
Whitney U test for nonparametric data, with the test selection
based on the normality of the data distribution assessed by the
Shapiro-Wilk test.
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TABLE 1 Summary of demographics and ophthalmic co-morbidities among patients included in the study.

PEXS (n = 79) No PEXS (n = 104) p-value

Age, mean (SD) 76.0 ± 8.24 71.8 ± 9.87 0.002

Gender 0.001

Male 33 (18.0%) 35 (19.1%)

Female 46 (25.1%) 69 (37.7%)

Axial Length, median (SD) 23.4 ± 1.24 23.6 ± 2.67 0.032

Cataract hardness (SPONCS) 0.032

1 (Subcapsular with clear nucleus) 0 (0.0%) 3 (1.6%)

2 (Mild hardness) 17 (9.3%) 40 (21.9%)

3 (Moderate hardness) 40 (21.9%) 22 (12.0%)

4 (Advanced hardness) 5 (2.7%) 17 (9.3%)

5 (Hypermature/Morganian) 17 (9.3%) 22 (12.0%)

Glaucoma 0.001

 Present 27 (14.8%) 13 (7.1%)

 Absent 52 (28.4%) 91 (49.7%)

Diabetes 0.146

 Present 19 (10.4%) 27 (14.8%)

 Absent 60 (32.8%) 77 (42.1%)

The t-test was used to compare distributions of age, the Mann-Whitney U test for nonparametric axial length, while the chi-squared test was employed to analyze associations among
categorical variables.

We performed multivariate analyses using MetaboAnalyst
6.0 to explore the overall data structure and identify potential
outliers, employing Principal Component Analysis and Partial
Least Squares-Discriminant Analysis. Outliers were identified
through visualization of score plots, and their evaluation also
considered potential biological variation. These findings suggest
that outliers are likely to reflect biological variability rather than
experimental errors. Consequently, the outliers were not removed
from the study population to avoid compromising the validity of
the data. The presence of outliers in metabolomic studies often
reflects intrinsic variability within the population, underscoring
the importance of considering interindividual variability when
interpreting metabolomic data. These examinations are detailed in
the supplementary material. Future studies could further explore
these variations to uncover potentiallymeaningful subgroupswithin
the study population.

3 Results

During our analysis of the study groups, we identified
statistically significant differences between patients with PEX and

those without, as detailed in Table 1. The average age of patients in
the PEX group (76.0 ± 8.24) was significantly higher than in the non-
PEX group (71.8 ± 9.87), with a mean difference of 4.23 years (95%
CI [1.52 – 6.94]). This difference was statistically significant, t (181),
p = 0.002, d = 0.460. This finding aligns with the well-established
association between PEX and aging (Rumelaitiene et al., 2023).
Aging is associated with changes in metabolic pathways related to
oxidative stress and cellular senescence, which may partially overlap
with those seen in PEX (Maldonado et al., 2023).

Gender association with PEXS (present/absent) was not
statistically significant between males (41.8%/58.2%) and females
(33.7%/66.3%), X1 (1) = 0.943, p = 0.331, Cramer’s V =
0.0832. While in our study females were more predominant
than males, there is no clearly established gender predilection
(Forsius et al., 2002). Notably, no follow-up research has yet
explored PEX and its ophthalmological associations in the Baltic
countries (Rumelaitiene et al., 2023).

Glaucoma association with PEXS (present/absent) was
statistically significant in patients with glaucoma (34.2%/65.8%)
and without glaucoma (12.5%/87.5%), X1 (1) = 11.1, p = < 0.001,
Cramer’s V = 0.260. PEX is a well-established risk factor for the
development of glaucoma (Jeng et al., 2007). Glaucoma has been
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FIGURE 1
Metabolic analysis of aqueous humor samples from PEXS compared to control patients. (A) Heatmap of the relative changes of all quantified
metabolites. (B) Volcano plots show fold changes (FC) and p-values between PEX and control patients; significant thresholds are FC > 1.3 and p-value
<0.1 (dashed lines). Significant values are annotated.

FIGURE 2
Graphical representation of all changed metabolites. The graph shows
the -log10 (p-value) ( y-axis) versus individual compounds (x-axis)
analyzed in the study. Points are colored based on the -log10 (raw
p-value), with red representing the most significant metabolites. The
dotted horizontal line indicates the threshold for statistical
significance. Key metabolites with notable differences, including
Citrulline, L-Cystine, Arginine, Lactic acid, and Phenylalanine, are
labeled for clarity.

linked to metabolic changes, including alterations in lipid and
amino acid metabolism.While these factors may contribute to some
of the observed changes, the discriminant metabolites identified

align closely with the known pathophysiology of PEX, supporting
their relevance to the disease (Rombaut et al., 2023). The potential
confounding effects of age and glaucoma on metabolomic profiles
cannot be entirely excluded. Future studies with larger cohorts and
matched controls are needed to disentangle these influences.

Significant differences were observed in the metabolite
concentration of aqueous humor between patients with and without
PEXS. The intraocular cystine levels were notably higher in patients
with PEXS (median = 124.5, IQR = 86.8–203) compared to those
without PEXS (median = 96.35, IQR = 57.1–129), with a Mann-
Whitney U test result of U = 2,317, p < 0.001, and an effect size of r =
0.306. Citrulline concentrations were similarly elevated in the PEXS
group (median = 14.3, IQR = 8.08–23.0) versus the non-PEXS group
(median = 8.26, IQR = 5.61–16.7), U = 2,492, p < 0.001, r = 0.303.
Phenylalanine levels were also higher in the PEXS group (median =
100.9, IQR= 83.2–124) compared to the non-PEXS group (median =
91.2, IQR = 75.1–112), with U = 3,349, p = 0.041, r = 0.177. Similarly,
tyrosine concentrations were greater in the PEXS group (median =
116, IQR = 88.5–143) than in those without PEXS (median = 102,
IQR = 71.1–129), U = 3,245, p = 0.025, r = 0.195. Serine levels were
elevated in patients with PEXS (median = 91.3, IQR = 67.5–117)
relative to those without PEXS (median = 80.0, IQR = 51.2–109), U
= 3,103, p = 0.030, r = 0.192. Additionally, arginine was significantly
higher in the PEXS group (median = 556, IQR= 283–963) compared
to the non-PEXS group (median = 343, IQR = 170–792), U = 3,108,
p = 0.017, r = 0.209. Lactic acid concentrations were also elevated
in PEXS patients (median = 5,202, IQR = 4,209–6937), relative
to those without PEXS (median = 4,741, IQR = 3,695–6027) U =
3,395, p = 0.035, r = 0.181. Tryptophan showed a similar trend with
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FIGURE 3
Pathway enrichment analysis using SMPDB and KEGG databases. The figure illustrates two pathways: SMPDB is represented on the left side, and KEGG
is depicted on the right side.

higher levels in the PEXS group (median = 60.3, IQR = 40.3–89.7)
compared to the non-PEXS group (median = 52.8, IQR= 30.6–75.8),
U = 3,324, p = 0.055, r = 0.167. Lastly, creatinine concentrations
were significantly higher in the PEXS group (median = 24.7, IQR =
18.2–32.4) compared to those without PEXS (median = 20.7, IQR =
14.7–26.8), U = 2,992, p = 0.022, r = 0.202. Graphical illustrations,
including the metabolic analysis of aqueous humor samples from
PEXS compared to control patients, are presented in Figures 1, 2.

Enrichment analysis showed a statistically significant difference
in the ubiquinone and other terpenoid-quinone biosynthesis
pathway based on the KEGG pathway, with a p-value of 0.0353,
though only one metabolite was altered in this pathway. The
phenylalanine metabolism and phenylalanine, tyrosine, and
tryptophan biosynthesis pathways had low p-values of 0.0509 each,
but these were not statistically significant. Results of enrichment
analysis are shown in Figure 3. A heatmap depicting changes in
metabolites between groups is presented in Figure 4.

4 Discussion

To elucidate our findings, we will conduct a thorough analysis
of the identified metabolites, evaluating their significance and role
in the PEXS progression. Our discussion will aim to clarify the
relevance of these metabolites in the context of programmed cell
death, emphasizing their potential implications in PEXS pathology.

In other metabolic studies, the variations in metabolomic
profiles between aqueous humor and serum for most metabolites
can be linked to the metabolic activity of the ocular tissues
(Snytnikova et al., 2016). A notable distinction in the metabolomic
compositions of human aqueous humor and cornea has been
identified. The elevated levels of organic acids, purines, and GSH
in the cornea can be attributed to their synthesis within the
tissue (Snytnikova et al., 2017). Findings suggest that metabolomic
analysis of aqueous humor and vitreous humor is more appropriate

for estimating the post-mortem interval than serum analysis
(Zelentsova et al., 2020). Metabolic pathway analysis in the
Dmuchowska et al. study revealed that the identified metabolites
engaged in eight distinct metabolic pathways, with cysteine and
methionine metabolism and arginine and proline metabolism being
themost prominently represented. Her research indicates that PEXS
is associated with increased oxidative stress and inflammation,
alongside disruptions in cellular respiration and mitochondrial
energy production (Dmuchowska et al., 2021). According to
Myer et al., neither arginine nor tryptophan proved significant
in PEXS patients’ plasma. According to Myer et al., this implies
that the metabolism of these amino acids in PEXS is affected
locally rather than systemically (Myer et al., 2020). Leruez et al.
reported increased octanoyl-carnitine levels in the plasma of
patients with PEXS (Leruez et al., 2018). Multiple cholesterol esters,
phosphatidylcholines, triglycerides, and ceramides were present
in significantly higher concentrations in the aqueous humor of
patients with PEXG compared to all other groups, according
to Collao et al. (2022). Other researchers have posited that
hyperhomocysteinemia is either a cause or consequence of PEX
(Leruez et al., 2018). Our findings corroborate the hypothesis
that cysteine synthesis predominantly occurs via the transsulfation
pathway, likely attributable to inhibiting the antiporter system Xc

−.
While studies on iron concentration in PEXS patients have yielded
varying results, Talebnejad et al. (2021) reported that patients with
PEXS exhibited reduced serum iron and zinc levels. In contrast,
Cumurcu et al. (2006) found that serum levels of iron and copper
were significantly elevated in the PEX group compared to the control
group. Also, apohemoglobin has been identified in PEX material
(Sharma et al., 2018).These discrepancies in iron concentrationmay
contribute to the differing prevalence and characteristics of PEXS in
various geographic populations (Aström and Lindén, 2007).

During our statistical analysis, we observed that age and the
presence of glaucoma were also statistically significant factors
among patients with PEXS. Although it is well-established that
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FIGURE 4
Heatmap of Metabolite profiles in PEX and control samples. The heatmap displays the relative abundance of metabolites in aqueous humor samples
from PEXS patients (left, teal bar) and controls (right, yellow bar). Each row represents a metabolite (labeled on the left), and each column corresponds
to an individual sample. The color scale ranges from purple (−5) indicating low relative abundance to green (0) representing median levels, and yellow
(+5) showing high relative abundance. Distinct clustering patterns between the PEX and control groups highlight metabolite differences, emphasizing
potential metabolic dysregulation in PEX.

PEXS is closely linked to aging and glaucoma, it remains
uncertain whether the changes identified in our results directly
mirror those associated with these conditions or reflect distinct
underlying mechanisms. Preliminary research has indicated that
patients with glaucoma exhibit metabolic alterations in pathways
related to ascorbic acid metabolism, fatty acid oxidation, and
glutaminolysis (Wang Y. et al., 2021). Age and the presence
of glaucoma are important factors that could influence the
metabolomic profile observed in this study. Elderly populations
often exhibit a wide range of metabolic variability due to
physiological aging. While our study design did not allow for
complete disentanglement of these factors, we acknowledge their
potential impact and recommend that future research incorporate
stratified ormatched designs tominimize these confounding effects.

Cysteine is a building block of glutathione (GSH), which is
composed of Cys, glutamate (Glu), and glycine (Anchordoquy et al.,
2019). GSH is one of the most crucial small-molecule antioxidants

in somatic cells (Lu, 2013). In plasma, Cys predominantly exists in
its oxidized disulfide form, known as cystine (CySS). Furthermore,
the increase in cellular GSH levels upon adding exogenous CySS
suggests that CySS, once reduced to Cys within the cell, can be
utilized for GSH synthesis (Noda et al., 2002). The antiporter system
Xc

− facilitates the import of CySS into cells while simultaneously
exporting Glu in a 1:1 counter-transport ratio (Bannai, 1986). In
1980, Bannai and Kitamura first identified and characterized the
antiporter system Xc

− in cultured human fetal lung fibroblasts
(Bannai and Kitamura, 1980). The system is a heterodimer
consisting of the light-chain subunit SLC7A11 and the heavy chain
subunit SLC3A2 (Huang et al., 2005).Mutations in different subunits
SLC7A9 and SLC3A1 have been linked to cystinuria, an autosomal
recessive disease characterized by the development of kidney stones
(Pras et al., 1995). The antiporter system Xc

− is critically involved
in regulating several forms of programmed cell death, including
ferroptosis, apoptosis, and autophagy-dependent cell death (Tu et al.,
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2021).The loss of the antiporter systemXc
− leads to an oxidative shift

in the aqueous humor, exposing the tissues interfacing with it to an
elevated oxidative environment (Martis et al., 2020).

Ferroptosis enhances cellular susceptibility to lipid peroxidation
(LPO) and iron-induced damage. The activity of the CySS/Glu
antiporter system Xc

−, the synthesis of GSH, and the function of
GPX4 collectively mitigate this vulnerability. These mechanisms
preserve the integrity of essential metabolic pathways, including
mitochondrial respiration, fatty acid metabolism, the mevalonate
pathway, and selenium mercaptan metabolism (Björkegren and
Lusis, 2022). In addition to being induced by the dysfunction
of the antiporter system Xc

−, ferroptosis is often accompanied
by inflammatory reactions (Yang Y. et al., 2022). Disruptions in
iron metabolism can cause damage to macromolecules, including
proteins, nucleic acids, and lipids, either through direct or indirect
mechanisms (Andrews and Schmidt, 2007). Erastin, an inhibitor of
the antiporter system Xc

−, induces GSH depletion by restraining
CySS uptake and promoting ferroptosis (Yagoda et al., 2007). It
can also be caused by the pharmacological inhibition of GPX4,
for example, using RSL3 (Yang and Stockwell, 2008). The trans-
sulfuration pathway can generate endogenous Cys to synthesize
GSHwhenCySS import is inhibited (Zhu et al., 2019).The inhibition
of the antiporter system Xc

− results in elevated cystine levels in the
aqueous humor.

Our pathway analysis, using KEGG, identified alterations in
the biosynthesis of ubiquinone and other terpenoid-quinones.
Research indicates that a reduction in intracellular ubiquinone
levels can promote ferroptosis (Ren et al., 2023). The inhibition
of lipid peroxidation by ubiquinone and the NAD(P)H-dependent
oxidoreductase FSP1 at the plasma membrane safeguards cells
from undergoing ferroptosis (Doll et al., 2019). These findings
support the role of ferroptosis as a contributing factor in
PEX pathology.

Oxidative stress can elevate the expression of pro-inflammatory
cytokines, such as interleukin-6 and TNF-α, by activating crucial
transcription factors like NF-κB (Hussain et al., 2016). When
plasma membranes rupture, ferroptotic cells release intracellular
components as danger signals for the innate immune system. These
signals include products of LPO such as oxidized phospholipids, 4-
hydroxynonenal (4-HNE), and prostaglandin E2, as well as damage-
associated molecular patterns, like high-mobility group protein B1,
DNA, and ATP (Zhang et al., 2023). The LPO product 4-HNE acts
as a pro-inflammatory mediator by activating the NF-κB signaling
pathway, contributing to the progression of chronic diseases
(Jang et al., 2016). In individuals with PEXS and PEXG, there were
increased concentrations of 4-HNE and 8-hydroxydeoxyguanosine,
a widely used marker for DNA damage resulting from oxidative
stress (Sova et al., 2010), observed in both the aqueous humor
and serum (Koçak et al., 2023).

Lipoxygenases (LOXs) are enzymes that rely on either non-
heme iron or manganese to catalyze the specific dioxygenation of
1Z,4Z-pentadiene units within polyunsaturated fatty acids (PUFAs),
producing hydroperoxy fatty acids (Chrisnasari et al., 2022). LOXs
and cytochrome P450 oxidoreductase (POR) have been identified
as the major enzymes responsible for catalyzing LPO (He et al.,
2022). Intracellular bioactive iron facilitates LPO by mediating
the Fenton reaction and/or sustaining the enzymatic activities of
LOXs and POR (Wang L. et al., 2021).

Arachidonic acid and adrenic acid containing
phosphatidylethanolamines are particularly susceptible to ROS
attack and thus serve as primary substrates for LPO. These long-
chain PUFAs are preferentially converted into their acyl-CoA esters
by acyl-CoA synthetase long-chain family member 4 (Doll et al.,
2017). Supplementing cells with PUFAs promotes ferroptosis,
whereas monounsaturated fatty acids (MUFAs) suppress ferroptosis
by inhibiting LPO (Tesfay et al., 2019). The thiobarbituric acid
reactive substances (TBARS) assay has been extensively utilized
to measure LPO in biological fluids (Aguilar Diaz De Leon and
Borges, 2020). TBARS, which are major breakdown products of
lipid peroxides, are significantly elevated (by 200%) in the aqueous
humor of patients with PEXS (Gartaganis et al., 2005).

Lactate dehydrogenase (LDH) is an enzyme that plays a crucial
role in glycolysis. It facilitates the conversion of pyruvate (Pyr)
to lactic acid when oxygen levels are low, and vice versa under
aerobic conditions. Located in the cytoplasm, LDHactivity increases
outside the cell during oxidative stress due to cell membrane
damage caused by LPO. This leads to higher levels of lactic acid
(Jovanovic et al., 2010). Cys can be converted into Pyr, releasing
free sulfate as a by-product. This conversion occurs through Cys
catabolism, where Cys is first oxidized to cysteine sulfinate, which
can be further metabolized into Pyr and inorganic sulfate. This
process is significant in various tissues, including the eye, where the
free sulfatemight accumulate (Stipanuk andUeki, 2011). Sulfation of
proteins is a post-translational modification that influences protein-
protein interactions, enzyme activity, and receptor binding. For
instance, sulfation enhances the binding affinity of specific proteins
to their ligands, which is vital in cellular communication and signal
transduction pathways (Yang et al., 2015).

Tyrosine was also the first amino acid described when
staining PEX material (Dvorak-Theobald, 1954). Within a peptide,
tyrosine can undergo post-translational modifications such as
nitration, phosphorylation, or sulfation, ultimately influencing the
protein’s function. Tyrosine sulfation stands out as a distinct post-
translational modification found in secreted and membrane-bound
proteins of multicellular eukaryotes. In contrast to many other
enzyme-catalyzed modifications, tyrosine sulfation is considered
irreversible (Chen and Tsai, 2022). Tyrosine-sulfated proteins
fulfill three roles: to integrate as standalone components of the
extracellular matrix, to directly reattach to cells, or to indirectly
reattach to cells via interactions with membrane-bound proteins
(Kanan and Al-Ubaidi, 2015). Our hypothesis suggests that
tyrosine-sulfated peptides are responsible for forming fibrillar
material in PEXS syndrome. Immunoreactivity for keratan sulfate
and dermatan sulfate proteoglycans has been observed within
the PEX material deposited on the anterior surface of the
lens capsule (Winkler et al., 2002).

Tryptophan (Trp) is needed for organisms’s responses to dietary
and environmental signals (Cervenka et al., 2017). Tryptophan
catabolism occurs through two main pathways. One, the serotonin
pathway, involves tryptophan hydroxylase and produces serotonin
(5-HT), a precursor for melatonin. The second pathway involves
the conversion of Trp to kynurenine (Kyn) (Tsuji et al., 2023).
5-HT and 3-hydroxy anthranilic acid (3-HA) significantly enable
tumor cells to evade ferroptosis through mechanisms distinct
from Cys-mediated ferroptosis inhibition (Liu D. et al., 2023).
Indoleamine 2,3-dioxygenase (IDO) is essential for tryptophan
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catabolism, explicitly starting the kynurenine degradation pathway
(Mbongue et al., 2015). IDO induces ferroptosis by inhibiting the
antiporter system Xc

− (Yang J. et al., 2022). Notably, the activation
of IDO is commonly evaluated using the Trp/Kyn ratio, which was
not elevated in our study. Ultraviolet-B and ultraviolet-C irradiation
catalyze tryptophan oxidation (Takikawa et al., 1986). Notably,
increased time spent outdoors during youth is identified as a risk
factor for PEXG (Leruez et al., 2018). Trp conversion is markedly
augmented through the activation of IDO by interferon-γ, nitric
oxide (NO), other cytokines, or superoxide anions (Nagalaxmi et al.,
2016). Higher levels of IDO due to ultraviolet light and NO inhibit
the antiporter system Xc

−.
Arginine serves as a metabolic precursor for several bioactive

metabolites, including NO, urea, creatine, polyamines, proline,
glutamate, guanabutamine, and hyperarginine, each of which is
involved in various physiological processes (Martí and Reith, 2021).
Arginine activates the mammalian target of rapamycin complex 1
(mTORC1) upstream of the Rag family of GTPases, either through
the lysosomal amino acid transporter SLC38A9 or via the GATOR2-
interacting CASTOR1 (Guo et al., 2023). Disruption of mTORC1
regulation is closely linked to various diseases, such as diabetes,
cancer, and neurodegenerative disorders (Takahara et al., 2020).
Arginine is critical for ferroptosis induced by erastin but not for
ferroptosis induced by RSL3, as observed in MEF and HT1080
cells. Elevated arginine concentrations contribute to diminished
intracellular GSH levels by promoting fumarate synthesis. Fumarate
functions as a reactive, α,β-unsaturated electrophilic metabolite,
covalently binding to GSH, forming succinic GSH. This interaction
subsequently impairs antioxidant activity (Guo et al., 2023).

Citrulline (Cit) is synthesized by ornithine carbamoyl
transferase and functions within the urea cycle via arginine succinyl
synthetase (ASS). In NO producing cells, citrulline facilitates the
synthesis of arginine through ASS, thereby contributing to the Cit-
NO cycle. NO is a crucial inflammatory mediator, and its excessive
production can exacerbate cardiovascular stress (Curis et al., 2005).
Cit exerts regulatory control over NO synthesis through a negative
feedback mechanism, thereby mitigating organ damage associated
with oxidative stress (Gough et al., 2021). The intraocular fluid
concentrations of NO are elevated in eyes with PEXS and PEXG
compared to those in control subjects (Borazan et al., 2010).

Cit treatment has been demonstrated to significantly inhibit
the expression of inflammatory cytokines, including TNF-α, IL-6,
and IL-β. Moreover, the p65-dependent NF-κB signaling pathway
is notably suppressed. These results indicate that Cit can attenuate
inflammation in the thymus by mitigating the NF-κB signaling
pathway activation induced by iron overload (Yin et al., 2023). PEX
material contains traces of ferritin, although at a significantly lower
concentration than the gelatin coating (Davanger, 1978).

Our findings suggest that ferroptosis may be implicated in the
pathogenesis of PEXS, though further validation in in vitro models
is necessary to confirm this hypothesis. The findings of this study
should be interpretedwith caution, as potential confounding factors,
such as age and the presence of glaucoma, may have influenced the
observed metabolomic patterns. Addressing these factors in future
studies will be essential to further validate and refine these results.

Myopia is a common refractive error that has been increasingly
linked to changes in the ocular metabolome, including the
aqueous humor profile. Several studies have demonstrated that

myopia, particularly high myopia, can influence the biochemical
composition of aqueous humor, potentially contributing to changes
in intraocular pressure and the development of associated ocular
comorbidities (Grochowski et al., 2020). While our study does
not directly address the relationship between myopia and aqueous
humor metabolomics, it is important to acknowledge that myopia
could represent a confounding factor in studies of aqueous humor
biomarkers.

We find that PEXS may reflect ferroptosis in the anterior eye
segment and in any cell expressing the antiporter system Xc−.
This indicates that therapeutic strategies could extend beyond
ocular treatment to encompass broader aspects of the patient’s
health. A potential approach to managing pseudoexfoliation could
involve lowering oxidative stress within the anterior chamber
by reducing the uptake of PUFAs, lowering iron levels, and
supplementing cysteine with stable forms like N-acetyl cysteine.
Additionally, reducing dietary intake of PUFAs may help decrease
lipid peroxidation and support the patient’s overall health. These
strategies could contribute to improved ocular health and general
wellbeing.

Despite the small size of our study population, our findings
align with those reported by other researchers. We suggest that
future studies replicate our methods to further explore these results
and validate our conclusions. While this analysis is not intended to
provide definitive guidelines for patients with PEXS, it represents a
meaningful step forward in understanding the complexities of this
ocular pathology.
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