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p120-catenin (p120) plays a vital role in regulating cell-cell adhesion at adherens
junctions, interacting with the juxtamembrane domain (JMD) core region of
E-cadherin and regulates the stability of cadherin at the cell surface. Previous
studies have shown significant functions of p120 in cell-cell adhesion, tumor
progression and inflammation. In this review, we will discuss recent progress of
p120 in physiological processes and diseases, and focus on the functions of p120
in the regulation of cancer and inflammation.
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1 Introduction

p120-catenin was initially considered as a tyrosine kinase substrate and was later shown
to interact with E-cadherin (Reynolds et al., 1994). The binding of p120 to JMD in the
cytoplasmic tail of cadherin promotes the formation of dimers on the plasma membrane
of E-cadherin and maintains the surface stability of the cadherin-catenin cell-cell adhesion
complexes (Ishiyama et al., 2010; Vu et al., 2021; Su et al., 2024). Defects in the p120 binding
site or the absence of the p120 serine/threonine phosphorylation would make the cell-cell
adhesion unstable (Fukumoto et al., 2008). In addition to its crucial role in increasing the
stability of cadherin, p120 also reduces the sensitivity of the cadherin-catenin complex to
endocytosis, ubiquitination, and proteosome destruction (Ireton et al., 2002; Davis et al.,
2003; Miyashita and Ozawa, 2007). Loss of p120 affects cell-cell adhesion, contributing
to the dysfunction of adhesion junction (Smalley-Freed et al., 2010; Schackmann et al.,
2013). p120 has other physiological functions such as maintaining epidermal physiological
function (Xie et al., 2018), regulating signal transduction (Xiao et al., 2007; Stepniak et al.,
2009), participating in embryonic development (Oas et al., 2010; Pieters et al., 2016;
Hernández-Martínez et al., 2019) and alleviating pulmonary fibrosis (Zhang et al., 2019).
Non-coding RNAs play an important role in the regulation of p120 and are involved in
physiological and disease processes (Xiong et al., 2024; Deng et al., 2024; Wu et al., 2016).

p120 can inhibit tumor growth and invasion and play a crucial role in tumor
progression as a tumor suppressor (Stairs et al., 2011). Downregulation of p120 is a
common feature of cancer and causes epithelial cells to lose polarity and increase
the proliferation, survival, and invasion of epithelial cells (Venhuizen et al., 2020;
Rajeev et al., 2024). Paradoxically, in addition to this inhibitory effect on tumors,
p120 also has a tumor-promoting effect, promoting tumor migration and invasion
(Tenhagen et al., 2016; Bartolomé et al., 2024; Wang et al., 2024). Glutathionylation and
phosphorylation of p120 can increase the migration and invasion of cancer cells
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(Kaszak et al., 2020; Kukulage et al., 2023). p120 is also essential
for inflammation responses and immunity of the organisms.
It has been reported that the nuclear factor-kappa B (NF-κB)
signaling was activated in the p120-conditioned knockout mice,
leading to immune infiltration and expression of pro-inflammatory
cytokines (Perez-Moreno et al., 2006; Perez-Moreno et al., 2008).
As a key regulator of the NLRP3 inflammasome, p120 is also
involved in the anti-inflammatory response by protecting the
structure and function of mitochondria to regulate NLRP3
assembly and activation (Liu et al., 2019; Kanmani et al., 2023).
p120 positively regulates the production of type-I interferon (IFN-
I), which is critical for the host to eliminate the invading viruses
(Wu et al., 2023). Knocking out of p120 in mice leads to more
infiltration of immune cells and a cascade of inflammatory responses
(Wu et al., 2023; Chignalia et al., 2015).

A growing body of research sheds light on the function of p120
in physiology and disease, andwewill review the recent findings and
progresses of the underlying mechanisms.

2 Functions of p120-catenin in
physiological processes

It has been demonstrated that the JMD of cadherin is required
for recruiting p120 to the adherens junctions (Daniel and Reynolds,
1995; Yap et al., 1998; Thoreson et al., 2000), and the expression
of different cadherin cytoplasmic domains and mutation analysis
of the JMD has demonstrated that the p120-catenin-E-cadherin
interaction is necessary for increased cell adhesions (Ferber et al.,
2002; Hartsock and Nelson, 2008). Several studies have indicated
that loss of p120 could destabilize adherens junctions and affect
intercellular adhesion. The function of p120 in the intestine is
vital to epithelial homeostasis and survival, and intestinal-specific
p120 ablation in mice could cause cell-cell adhesion defects
and reduce the levels of E-cadherin and β-catenin, leading to
epithelial barrier defects (Smalley-Freed et al., 2010). In addition,
p120 ablation in the skin epidermis of mice contributes to decreased
levels of cadherins and catenins at sites of intercellular contacts
(Perez-Moreno et al., 2006). Leptospira interrogans could disrupt
epithelial adherens junctions and spread in vivo by inducing p120
degradation (Tokumon et al., 2023).

Microtubules are known to interact with the cell-cell adhesion
machinery, and p120 in the cytoplasm can be directly or indirectly
linked to the microtubule network (Kourtidis et al., 2013). In
addition, p120 facilitates the stabilization, bundling, and tethering
of microtubules to the connection points of the cell-cell adhesions
through a binding partner called PLEKHA7 (Franz andRidley, 2004;
Yanagisawa et al., 2004; Ichii and Takeichi, 2007; Meng et al., 2008;
Pulimeno et al., 2010). Studies have shown that phosphorylation
of p120 participate in cell-cell adhesion, and the serine/threonine
phosphorylation of p120 at the plasma membrane could influence
the dynamics of E-cadherin in cell-cell junctions, playing a critical
role in regulating cadherin activation and adhesion strengthening
(Ozawa and Ohkubo, 2001; Fukumoto et al., 2008; Petrova et al.,
2012). The Rho GTPases RhoA, Rac1 and Cdc42 can modulate
cadherin-mediated adhesion and cell-cell junction formation by
manipulating the actin cytoskeleton, and p120 may modulate the
activity of RhoA to regulate cell adhesion, which is thought to be

required for an earlier step in the junction formation (Anastasiadis,
2007; Gama and Schmitt, 2012; Menke and Giehl, 2012).

In addition, p120 has other vital physiological functions. Mouse
tissue-specific deletion of p120 suggests that p120 is critical for
the normal morphogenesis, and it has been reported that p120
is necessary to mammary morphogenesis and terminal end bud
function in mice, and that reduction of p120 in the developing
mammary gland defers ductal outgrowth (Kurley et al., 2012).
Conditional p120 ablation in mice affects the acinar differentiation
of the salivary glands, and there are obvious defects in cell-cell
adhesion and epithelial morphology in these mice (Davis and
Reynolds, 2006). p120 is essential for early tubular and glomerular
morphogenesis, and loss of p120 in the renal mesenchyme
contributes to hypoplastic kidneys and abnormal tubular structural
morphology. (Marciano et al., 2011). Conditional knockdown of
p120 in the mouse epidermis not only leads to increased epidermal
proliferation, but also leads to decreased epidermal differentiation
and impaired permeability barrier function, suggesting that p120
is necessary to inhibit epidermal proliferation, promote epidermal
differentiation and maintain permeability barrier function of the
epidermis (Xie et al., 2018). p120 is also required for regulating
mammalian vascular development, and mice lacking endothelial
p120 could result in a decrease in endothelial cadherins and
defects in cell proliferation, affect microvascular morphogenesis
and vascular integrity, and lead to embryonic lethality beginning
around E12.5 (Oas et al., 2010). Moreover, p120 can regulate
the germ layer differentiation, and the absence of p120 in
mouse embryos can lead to embryonic arrest at midgestation
(Hernández-Martínez et al., 2019). Non-coding RNAs can affect
the expression of adhesion molecules in a post-transcriptional
manner, playing a crucial role in endothelial function and vascular
barrier integrity (Maucher et al., 2021). A new study have shown
that miR-194-3p directly targets p120-catenin and regulates its
expression, thereby altering the expression of β-catenin, which
has a key impact on the epithelial-mesenchymal transition process
in the embryonic epicardial cells through the cell adhesion
mechanism (Xiong et al., 2024).

Furthermore, p120 binds to E-cadherin to regulate the
differentiation of mouse stem cells into the primitive endoderm
and maintain endodermal cell polarity (Pieters et al., 2016).
In bleomycin (BLM)-induced pulmonary fibrosis mouse, p120
plays a vital role in regulating the process of pulmonary
fibrosis via the SMAD and NF-κB pathways, and the absence
of p120 can alleviate pulmonary fibrosis and lung fibroblast
differentiation in mouse (Zhang et al., 2019).

3 p120-catenin and diseases

3.1 p120-catenin in cancer

Normal cells inhibit growth and migration by adhering to each
other, and these properties are gradually lost in tumor cells, resulting
in increased cell proliferation and mobility (Kourtidis et al., 2013).
E-cadherin plays an essential role in homeostasis and normal
development, it is also a tumor suppressor, absence of human E-
cadherin is thought to be related to poor prognosis in a variety
of cancers (Dai et al., 2017; Xie et al., 2017; Yazdani et al., 2018).
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p120 is required for cadherin stability, which can stabilize E-
cadherin on the plasma membrane by suppressing endocytosis
and proteasome disruption (Ireton et al., 2002; Davis et al., 2003;
Miyashita and Ozawa, 2007). E-cadherin dimerization on the
plasma membrane requires p120-catenin binding to the JMD, and
knockdown of p120 results in the absence of junctional E-cadherin
(Vu et al., 2021). A recent study suggests that p120 is extremely
susceptible to glutathionylation at C692, resulting in its separation
from E-cadherin and distribution to the cytoplasm, followed by
E-cadherin ubiquitination and degradation in the proteasome,
thereby increasing cellmigration and invasion under oxidative stress
(Kukulage et al., 2023). Because of its ability tomodulate E-cadherin
function, p120 can exert an inhibitory effect on tumor progression
by inhibiting proliferation and invasion (Stairs et al., 2011).

As a tumor marker, p120 is lower expressed in many cancers,
such as tumors of the colon, stomach, breast, lung and pancreas
(Bremnes et al., 2002; Thoreson and Reynolds, 2002; Wang et al.,
2006). Moreover, p120 is a clinically useful diagnostic biomarker,
such as for the diagnosis of breast lobular tumors and milk ductal
tumors, and the differentiation of plasmacytoid and sarcomatoid
variants from conventional urothelial carcinoma (Dabbs et al.,
2007; Li et al., 2014; Acosta et al., 2021). Among the 47 clinical
cases of oral cancer, 36% showed low expression of E-cadherin,
34% showed low expression of p120, and 80.8% of cases found
abnormal cytoplasmic localization of p120 (Salam et al., 2023).
Loss of p120 also correlates with cancer poor prognosis, as
tumors with decreased expression of p120 have a higher chance
of metastasizing and poor survival rate. The altered membrane
expression level of p120 acted as an independent prognostic factor
for esophageal squamous cell carcinoma patient survival and for
the migration and invasive behavior of the disease (Chen et al.,
2015). Reduced expression of p120 is closely related with the
survival of patients and the aberrant expression of p120 is an
independent prognostic factor for intrahepatic cholangiocarcinoma
(Zhai et al., 2008). Absence of p120 expression with decreased
survival in bladder cancer (Shimazui et al., 1996), and altered p120
expression may be associated with poor prognosis of colorectal
cancer (Gold et al., 1998). Reduction or absence of p120 in primary
invasive ductal breast cancer is significantly associated with a worse
prognosis (Kurley et al., 2020).

Several studies have demonstrated that absence of p120
contributes to pro-tumorigenesis events. In a conditional mouse
model of noninvasive breast cancer, deletion of p120 could lead
to the formation of stromal-dense tumors and metastasize to the
lungs and lymph nodes (Schackmann et al., 2013). In tamoxifen-
inducible mouse model, limited p120 knockout in the intestine
could contribute to the formation of adenoma through an indirect
effect caused by p120 deletion rather than cellular autonomy
(Smalley-Freed et al., 2011). The deletion of p120 in the salivary
glands of mice showed that acinar differentiation was entirely
blocked, leading to a gland composed fully of ducts and severe
defects in adhesion, cell polarity and epithelial morphology,
which was similar to high-grade intraepithelial neoplasia (Davis
and Reynolds, 2006). Knockout of p120 in oral squamous cell
carcinoma stimulated epidermal growth factor-induced nuclear
phospholipase C-γ1 signaling, resulting in cell proliferation and
poor cell differentiation in vivo (Li et al., 2020). Conditional deletion
of p120 have displayed pretumor and tumor lesions in the oral

cavity, esophagus and squamous forestomach of mice, leading to
invasive squamous cell cancer (Stairs et al., 2011). In a study of p120
expression in oral squamous cell carcinoma and apparently normal
mucosa adjacent to oral squamous cell carcinoma, p120 expression
in oral squamous cell carcinoma was reduced and mislocalized,
shifting from membrane to cytoplasmic expression (Rajeev et al.,
2024). Furthermore, p120 downregulation may lead to tumor
progression and metastasis by reducing β-catenin and E-cadherin
expression, and altering the activities of Cdc42, Rac1 and RhoA
(Liu et al., 2009). The above results demonstrate that p120 can exert
tumor suppressive function, and the absence of p120 results in the
development of neoplastic lesions (Figure 1).

Surprisingly, a range of evidence suggests that p120 also has
tumor-promoting effects and crucial role in the migration and
invasion of tumors. The expression of p120 isoform 1 is regulated
by desmocollin-1, and downregulation of desmocollin-1 leads to
increased expression of p120 isoform 1 in epithelial cells and
alteration of cellular location, thereby increasing cell migration
and invasion (Bartolomé et al., 2024). By regulating intracellular
calcium ion levels and participating in microtubule formation, p120
can promote the process of glioma cell invasion and proliferation
(Wang et al., 2024). It has been reported that p120 increases the
migration and invasion ability of the epidermal growth factor
receptor 2-induced breast cancer cells through inducing Rac1
and Cdc42 activity (Johnson et al., 2010). p120 can facilitate the
transformed growth of human breast cancer cells through Rac1
activation and Rac1-mediated MAPK signaling, and modulate
the invasion and migration of GnRH-induced human ovarian
cancer cells through modulating Rac1 and Cdc42 (Soto et al., 2008;
Cheung et al., 2010). It has also been reported that p120 binds to
mesenchymal cadherins to activate Rac1 and increase the motility
and invasiveness of the E-cadherin–deficient breast cancer cells
(Yanagisawa and Anastasiadis, 2006). In addition, p120 is essential
for anchorage-independent growth of tumor cells via regulating
ROCK pathway, ablation of p120 completely blocked Rac1– and
Src–mediated anchorage-independent growth (Dohn et al., 2009).
In conclusion, p120 can bind to Rho to exert the effect of RhoGDI
to inhibit Rho or activate Rac and cdc42 to promote tumor invasion
and migration.

A number of studies have demonstrated that p120 can be
phosphorylated in multiple serine, threonine and tyrosine residues,
thereby affecting activation of cadherin (Mariner et al., 2001;
Xia et al., 2003; Castaño et al., 2007; Fukumoto et al., 2008). More
importantly, phosphorylation of p120 plays an important role
in mediating cell adhesion, cell metastasis, and cell proliferation
(Mendonsa et al., 2020). The level of phosphorylation of p120 was
positively correlated with tumor aggressiveness in glioblastoma
multiforme (Huveldt et al., 2013). Studies have demonstrated that
tyrosine and threonine phosphorylation of p120 is elevated in renal
and breast tumor tissue samples, and tyrosine phosphorylation is
necessary for its pro-tumorigenic potential (Kourtidis et al., 2015).
Overexpression of receptor-type tyrosine-protein phosphatase zeta
regulated the phosphorylation of p120/β-catenin to enhance oral
submucous fibrosis malignancy (Ma et al., 2022). In potentially
malignant oral lesions, high levels of phosphorylated p120
expression on cell membranes increase the incidence of oral
squamous cell carcinoma and promote invasion (Ma et al., 2012).
In addition, p120-catenin isoform 3 regulates the nuclear export
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FIGURE 1
The dual function of p120 in tumor suppression and promotion.

of Kaiso and increases invasion in lung cancer cells via a
phosphorylation-dependent mechanism, and the phosphorylation
of serine and threonine in p120 could augment the invasion ability
of the lung cancer cells (Zhang et al., 2011).

Non-coding RNAs play a comprehensive regulatory role in
various biological processes (Omran et al., 2024;Mohamed et al., 2022;
Nemeth et al., 2024), and by targeting p120, non-coding RNAs play
different roles in tumorigenesis and development (Figure 2). circβ-
catenin is a novel oncogene in colorectal cancer that can be used
as a poor prognostic marker in colorectal cancer patients. circβ-
catenin directly binds to miR-197-3p, and then inhibits the target
p120, which ultimately promotes the proliferation and metastasis of
colorectal cancer (Deng et al., 2024). miR-223 directly targets p120
to downregulate the expression of p120 thereby reducing cell-cell
adhesion, enhancing RhoA activity, and activating β-catenin signaling
to promote colon cancer cell invasion and metastasis (Liu et al.,
2017). miR-103 secreted by hepatocellular carcinoma cells can increase
vascular permeability and inhibit the expression of p120 in vascular
endothelial cells, thereby promoting tumor metastasis (Fang et al.,
2018). circMAST1 promotes the expression of p120 by directly binding

to miR-1299, thereby maintaining hepatocellular carcinoma invasion
andproliferation (Yu H. et al., 2020).miR-197 can target and reduce the
endogenous p120 expression to promote the migration and invasion
of pancreatic cancer cells (Hamada et al., 2013). lncMER52A can
promote the progression of hepatocellular carcinoma cells by blocking
p120 ubiquitination–proteasome degradation and stabilizing p120 to
activate Rac1 and Cdc42 (Wu et al., 2020). In addition, miR-409-
3p directly targets and inhibits the expression of p120 to suppress
the metastasis and invasion of osteosarcoma (Wu et al., 2016). miR-
145 inhibits cytoplasmic expression of p120 and rescues membrane
localization of E-cadherin and p120 by downregulating N-cadherin,
thereby inhibiting the invasion of gastric cancer cells (Xing et al.,
2015). miR-1271-5p exerts anti-cancer effects by directly targeting
and downregulating p120 in regulating the proliferation, migration,
apoptosis and invasion of endometrial carcinoma (Wei et al., 2021).
miR-96-5p inhibits p120 expression andp120-mediatedWnt/β-catenin
signaling after transcription, thereby inhibiting in vitro metastasis of
breast cancer cells (Gao et al., 2020). Overall, non-coding RNAs play
a promoting and inhibitory role in tumorigenesis and development,
mainly through targeted regulation to reduce the expression of p120.

Frontiers in Molecular Biosciences 04 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1486576
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Jin et al. 10.3389/fmolb.2024.1486576

FIGURE 2
Non-coding RNAs affect tumorigenesis through the regulation of p120.

3.2 p120-catenin in inflammation and
immunity

Inflammation is the basis of various physiological and pathological
processes. An increasing number of research has manifested that
p120 plays a critical role in the inflammatory response of many
tissues and organs. NF-κB is an essential transcription factor

associated with inflammation and various diseases, and various
stimuli can activate NF-κB and produce transcriptional activity,
which modulate the expression of proinflammatory genes including
chemokines, cytokines, and adhesion molecules (Barnabei et al., 2021;
Yu X et al., 2020; Lawrence, 2009).

There has been evidence that NF-κB activity is increased inmice
with p120 skin-specific deficiency, and loss of p120 also increased
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FIGURE 3
Mechanisms of p120 mediated regulation of the TLR4 signaling pathway and the RhoA/ROCK signaling pathway.

the number of epidermal inflammatory cells by activating NF-κB
signaling, thereby inducing pro-inflammatory cytokine production
(Perez-Moreno et al., 2006; Perez-Moreno et al., 2008). In addition,
p120 could prevent the production of intermittent cyclicmechanical
tension-induced inflammatory mediators and attenuates the
inflammatory responses of the human bronchial epithelial cells
by inhibiting the NF-κB signaling pathway (Zhang et al., 2016;
Xu et al., 2017). p120 plays a regulatory role in E-cadherin in
chronic rhinosinusitis, thereby attenuating the disruption of nasal
mucosal epithelial barrier by inflammatory mediators (Li et al.,
2022). Furthermore, p120 could protect human brainmicrovascular
endothelial cells (HBMECs) and improve blood-brain barrier
dysfunction by inactivating NF-κB to inhibit the LPS-induced
inflammatory response
(Liu et al., 2015).

NLRP3 inflammasome is closely related to the regulation of
inflammation and antiviral responses (Zhao and Zhao, 2020),
while mitochondrial reactive oxygen species (ROS) can lead to
the activation of NLRP3 inflammasome (Dan Dunn et al., 2015).
Recent findings have displayed that p120 plays a critical role in the
regulation of the NLRP3 inflammasome in inflammatory response
and polymicrobial sepsis (Kanmani et al., 2023). p120 is involved in
the inhibition of NLRP3 inflammasome activation and can suppress

the release of IL-1β and IL-18 and the expression of active Caspase-
1 by blocking mitochondrial ROS generation, whereas absence of
p120 could enhance the activation of NLRP3 inflammasome in
macrophages and significantly increase the secretion of IL-18 and
IL-1β in mouse lungs (Kanmani et al., 2023). Another study showed
that the depletion of p120 in murine alveolar epithelial cells during
mechanical stretching significantly increased the expression of
caspase-1 and the activation of NLRP3, aggravating mitochondrial
dysfunction, and the results suggest that p120 prohibited the
activation of NLRP3 to protect the structure and function of
mitochondria by suppressing TLR4 pathway and ROS production in
ventilator-induced lung injury in mice (Liu et al., 2019).

Studies have found that p120 has an important positive
modulatory role in innate antiviral immunity. It has been
reported that the production of IFN-I is vital for the host to
eliminate the invading viruses, and the ectopic expression of
p120 enhances the production of IFN-I, greatly reducing viral
replication; mice knock out of p120 aremore susceptible to vesicular
stomatitis virus infection, less IFN-I production and greater
infiltration of immune cells (Wu et al., 2023). Mechanistically,
p120 stabilizes the Serine/threonine-protein kinase 1-interferon
regulatory factor 3 complex and increases interferon regulatory
factor 3 activation to promote host antiviral responses (Wu et al.,
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2023). p120 also plays an important role in regulating innate
immune function in the lungs. Mice with knockout of p120
in alveolar epithelial type II cells exhibit pulmonary epithelial
barrier defects and severe lung inflammation manifested by an
marked infiltration of inflammatory cells and activation of NF-
κB, as well as increased expression of macrophage inflammatory
protein-2, intercellular adhesion molecule 1 (ICAM-1) and TLR4
(Chignalia et al., 2015).Mouse lung endothelial cell p120 can reduce
the inflammatory response of the lungs to endotoxins by inhibiting
TLR4 signaling and regulate the innate immune function of the
lungs, knockdown of p120 increased the expression of ICAM-
1, neutrophil recruitment and production of pro-inflammatory
cytokine (Wang et al., 2011). In addition, p120 is expressed in
epithelial cells of diseased glomeruli and, together with β-catenin, is
involved in the pathogenesis of cellular crescents or microadhesions
in lupus-associated glomerulonephritis (Nakopoulou et al., 2002;
Usui et al., 2003). Through the mechanism of signaling kinases
of intercellular adhesion molecules, phosphorylation of p120
can affect IgG autoantibody production in patients with the
immunoblistering skin disease pemphigus vulgaris to induce
keratolysis dyshesion (Chernyavsky et al., 2008). p120 is highly
expressed in the seminiferous epithelial cells of rats, and the loss
of spermatogenic cells observed in orchitis rats is associated with
early alterations in the expression and function of adherens junction
molecules (Pérez et al., 2011). These findings suggest the essential
regulatory role of p120 in innate immunity.

Deficiency of p120 was closely associated with increased pro-
inflammatory activity in multiple tissues. The experimentally-
induced loss of p120 expression increased pro-inflammatory
adhesion molecules such as ICAM-1, VCAM-1, E-selectin and
P-selectin at the transcriptional level, thereby promoting pro-
inflammatory activity in human pulmonary artery endothelial cells
(O’Donnell et al., 2011). As previously described, p120 was vital
for epithelial homeostasis and survival, and absence of p120 in
mouse intestinal epithelial cells could cause mucosal damage and
inflammation, resulting in massive intestinal bleeding and death
within the first 3weeks of life (Smalley-Freed et al., 2010). Decreased
expression of p120 at the edge of the ulcermucosa has been reported
in 100% of cases of active ulcerative colitis and 75% of cases of active
Crohn’s disease (Karayiannakis et al., 1998).

4 The relationship between
p120-catenin and inflammatory
signaling pathways

4.1 Functions of p120-catenin in TLR4
signaling pathway

Toll-like receptor 4 (TLR4) is amember of the Toll-like receptors
(TLRs) family that recognizes lipopolysaccharides (LPS) or bacterial
endotoxins to mediate inflammatory responses and participate
in innate immunity. Endogenous molecules or exogenous
substances could activate TLR4 to induce a cascade of immune
and inflammatory responses that were vital to innate immune
responses against bacterial and viral infections (Kuzmich et al.,
2017; Zhang et al., 2022). MyD88 is one of the Toll/IL-1 receptor
(TIR) domain-containing adaptors, which regulates the TLR

signaling pathway and is essential for the induction of inflammatory
cytokines triggered by all TLRs (Takeda and Akira, 2004). TLR4
could increase the induction of pro-inflammatory cytokines through
the MyD88-dependent pathway and could also use TIR domain-
containing adaptor to induce TRIF but not MyD88 to enhance
IRF3-induced IFN-I expression in the endosome (Duan et al., 2022).

Studies have demonstrated that p120 selectively modulates
LPS-induced TLR4 signaling in macrophages, promotes TLR4
internalization under LPS stimulation, thereby inhibiting MyD88-
mediated TLR4 signaling and the release of pro-inflammatory
cytokines (Yang et al., 2014). In addition, p120 upregulates TRIF-
mediated TLR4 signaling and IFN-β production by enhancing the
endocytosis of TLR4 (Yang et al., 2014). Similar studies have shown
that overexpression of p120 in lung endothelia of mice inhibits the
TLR4-MyD88 interaction, while loss of p120 enhances LPS-induced
binding between TLR4 and MyD88, which in turn regulates TLR4
signaling through the MyD88-dependent pathway, contributing
to NF-κB activation and pro-inflammatory cytokine production;
furthermore, p120 could prevent LPS-induced IL-1R–associated
kinase-4 activation in mouse lung endothelial cells, which has
been shown to enhance TLR4 signaling (Wang et al., 2011). These
findings manifest that p120 plays an essential role in modulating
TLR4 signaling by the MyD88-dependent pathway.

4.2 Functions of p120-catenin in
RhoA/ROCK signaling pathway

Various signal transduction pathways in all eukaryotic cells
are regulated by Rho GTPases, which play an important role in
regulating actin cytoskeleton, microtubule dynamics, cell polarity,
membrane transport pathways and transcription factor activity,
and RhoA is the most well researched member of Rho GTPases
(Etienne-Manneville and Hall, 2002). Rho kinase (ROCK) is a
serine/threonine kinase that is an essential downstream effector of
RhoA, and the RhoA/Rho-kinase pathway plays a crucial role in
many cellular functions (Shimokawa et al., 2016).

Several studies have shown that RhoA/ROCK is also involved
in the regulation of inflammatory responses. In human bronchial
epithelial cell airway inflammation, p120-mediated NF-κB signaling
activation was dependent on RhoA/ROCK axis, and exposure
to cigarette smoke extract resulted in downregulation of p120
expression which in turn activates the NF-κB signaling pathway
with increased levels of pro-inflammatory cytokines (Zhang et al.,
2016). p120 also activates the NF-κB signaling pathway partially via
RhoA in LPS-treated human bronchial epithelial cells (Qin et al.,
2014). In addition, it has been shown that p120 was markedly
reduced in human bronchial epithelial cells after scratching, while
the reduction of p120 leads to an increase in IL-8 induced by the
activation of NF-κB and IκBα phosphorylation; furthermore, the
anti-inflammatory effects of p120 in human bronchial epithelial
cells rely on the RhoA/ROCK axis to regulate NF-κB (Qin et al.,
2015). p120-deficient epidermal cells could activate transcription
factor NF-κB, triggering a series of pro-inflammatory NF-κB targets
partly by regulating RhoA (Perez-Moreno et al., 2006). In summary,
p120 and RhoA/ROCK have been displayed to be associated
with inflammation, and p120 can participate in modulating the
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inflammatory response by regulating the RhoA/ROCK pathway to
inhibit NF-κB signaling.

5 Conclusion and perspectives

An increasing number of research has expanded the
understanding of the function of p120-catenin, which is involved in
a plethora of physiological processes. p120 participates in epidermal
proliferation, epidermal differentiation, embryonic development
and signal transduction. p120 is indispensable for the regulation
of the occurrence and development of tumors, which can not only
inhibit tumor progression, but also promote tumor development.
The decrease in p120 expression is strongly associated with tumor
prognosis, aggressiveness, and metastasis. By altering the activity
of Cdc42, Rac1, and RhoA, and stabilizing E-cadherin, p120 plays
a different role in tumor progression. As an important modulator
of inflammation and immunity, p120 exerts anti-inflammatory and
antiviral effects through different pathways. p120 can regulate the
inflammatory response by modulating TLR4 signaling pathway
and RhoA/ROCK signaling pathway (Figure 3). Moreover, p120
is also an important endogenous anti-inflammatory mediator.
Many studies of conditioned knockout mice have shown that p120
deficiency is strongly associated with increased pro-inflammatory
activity in a variety of tissues, manifested by the production of pro-
inflammatory cytokine and increased inflammatory cell infiltration.
The data from clinical trials is crucial to the study of p120, which
allows us to better understand the physiological function of p120
and the pathogenesis of the disease. Although there are no clear
reports on the interaction between tumor and immunity, it is
believed that with the development of CRISPR-Cas9, single-cell
sequencing, spatial transcriptomics and other technologies, p120
research can make breakthroughs in tumor-immune interactions,
and the mechanism and function of p120 gene in physiology and
disease can be detected faster and more accurately in the future.
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