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Introduction: Gestational Diabetes Mellitus (GDM) is a metabolic disorder
marked by Q10 hyperglycemia that can negatively affect both mothers and
newborns. The increasing prevalence of GDM and the limitations associated
with the standard diagnostic test highlight the urgent need for early screening
strategies that promote timely interventions.

Methods: This study aims to investigate the metabolic profile associated with
GDM through an untargeted metabolomic analysis using mass spectrometry
(MS)- based omics. Serum samples were collected from 40 pregnant women
at weeks 24–28 of gestation based on the 2-h 75-g oral glucose tolerance
test (OGTT); 50% were diagnosed with GDM (n = 20), and the remaining were
considered a control group.

Results and discussion: The results showed distinct metabolic differences
between women with GDM and those without, with 222 significantly
dysregulated metabolites, 120 up- and 102 downregulated in GDM compared
to the control group. Key metabolic pathways, such as tryptophan, inositol
phosphate, phenylalanine, and histidine metabolism, were notably dysregulated
in GDM. The study also found that specific metabolites, like N-Acetylproline
and Serylmethionine, with area under the curve (AUC) of 0.978 and 0.968,
respectively, showed high accuracy in distinguishing between GDM and non-
GDM women. This study would enhance our understanding of metabolic
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alterations in GDM and could contribute to early prediction and management
strategies.

KEYWORDS

gestational diabetes, pregnancy, untargeted metabolomics profiling, biomarkers,
diagnosis

1 Introduction

GDMarises fromhormonal changes during pregnancywhen the
placenta releases hormones that decrease the cell’s responsiveness to
insulin (Choudhury andDevi Rajeswari, 2021). It is characterized by
glucose intolerance, first recognized during pregnancy (Choudhury
and Devi Rajeswari, 2021; Wicklow and Retnakaran, 2023). It
poses significant risks to the mother and the developing fetus,
including neonatal hypoglycemia, macrosomia, and an increased
likelihood of metabolic complications later in life (Wicklow and
Retnakaran, 2023).

The diagnosis of GDM is based on the 24–28-week OGTT
(Lachmann et al., 2020). However, this test has limitations,
including expense, inconvenience (Lachmann et al., 2020), and
limited sensitivity in early pregnancy (Huhn et al., 2023). GDM
affects approximately 14% of pregnancies worldwide, with varying
prevalence rates depending on the population (Wang H. et al.,
2022). The increasing prevalence of GDM and the limitations
associated with the standard OGTT highlight the urgent need
for early screening strategies that promote timely interventions
that could potentially improve maternal and neonatal outcomes
(Bhattacharya et al., 2021; Razo-Azamar et al., 2023). Such
strategies include potential predictive biomarkers that are sensitive,
specific, and capable of detecting GDM early in pregnancy (Razo-
Azamar et al., 2023).

Metabolomics, an emerging analytical approach, offers a
sensitive and comprehensive method for identifying changes in the
levels of metabolites with a molecular weight of less than 1,500 Da
in a specific biological sample (Siddiqui et al., 2020). Our recent
review highlighted the crucial role of metabolomics in advancing
the understanding of the molecular mechanisms and metabolic
pathways implicated in Type 1 and Type 2 diabetes (Aleidi et al.,
2023). Metabolomics also holds promising potential as a screening
tool for GDM, though evidence on this issue is limited and needs
adequate assessment through randomized controlled trials (Razo-
Azamar et al., 2023). By analyzing the metabolic profile of biological
samples, such as plasma or urine, metabolomics offers a holistic
view of metabolic alterations associated with GDM pathogenesis
(Francis et al., 2023).

Previous metabolomic studies have identified candidate
biomarkers and revealed predictive models for the early diagnosis
of GDM. However, many of these studies are limited by employing
targeted metabolomic approaches, focusing on specific metabolites
rather than providing a comprehensive view of the metabolic
profile in GDM (Razo-Azamar et al., 2023; Juchnicka et al.,
2022; Mokkala et al., 2020). Furthermore, there is insufficient
validation of biomarkers across pregnant women with different
body mass indexes (BMI) (Mokkala et al., 2020). These limitations
highlight the need for more comprehensive studies to uncover
the metabolic alternations in GDM and improve clinical

outcomes for affected pregnant women. This study aims to
investigate the metabolic alterations associated with GDM in
pregnant women through an untargeted metabolomic analysis
using MS technology of serum samples collected from GDM
patients and matched controls. The results of this study would
provide a detailed view of the serum metabolome in GDM. In
addition, they would contribute to the growing body of evidence
implicating specific metabolic pathways in GDM pathophysiology
and identify novel biomarkers for early diagnosis and
intervention.

2 Methods

2.1 Study population and selection criteria

This cross-sectional study was conducted in the obstetrics
and gynecology outpatient clinic at a hospital in Jordan. Forty
pregnant women aged 18–40 years at weeks 24–28 of gestation
were included in this study. Twenty of them were diagnosed with
GDM (patient group) based on the 2-h 75-g (OGTT, and the
other twenty were non-GDM and considered a control group.
Diagnosis of GDM was considered according to the American
Diabetes Association (ADA) criteria, in which pregnant women
who have any of the following criteria (fasting blood glucose
(FBG) ≥92 mg/dL, 1-h ≥180 mg/dL or 2-h ≥153 mg/dL) were
diagnosed with GDM. All pregnant women included in this study
did not have pre-eclampsia and proteinuria, and this was confirmed
by considering patients’ history on blood pressure readings
and urinalysis retrospectively. Women who have prediabetes,
type 1 or 2 diabetes mellites, dyslipidemia, polycystic ovary
syndrome (PCOS), and renal impairment were excluded from
the study.

2.2 Sample collection, storage, and
preparation

Blood samples were collected from all participants and
centrifuged at 1,500×g for 10 min at 4°C. The obtained serum was
transferred into micro tubes and stored at − 08°C until the day of
analysis.Metabolite extractionwas conducted from serum following
an extraction protocol previously published (Dahabiyeh et al., 2023).
Coldmethanol and chloroformwere added to 35 μL serum followed
by water and shaking. Equal volumes of chloroform and water were
added before centrifugation at 10,000×g for 5 min. All samples were
dried using a vacuum centrifugal evaporator and stored at − 80°C
until further analysis.
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2.3 Metabolomic analysis

All dried extracted samples were reconstituted in 50% mobile
phase A (0.1% formic acid in deionized water) and mobile phase B
(0.1% formic acid in (1:1) (v/v) methanol and acetonitrile) for an
LC-MSmetabolomics analysis as previously reported (AlMalki et al.,
2023). Initially, 5 μL of the reconstituted sample was introduced
to the inlet technique, where the metabolites were separated in
a reversed-phase liquid chromatography with Waters ACQUITY
UPLC XSelect C18 (100 × 2.1 mm × 2.5 μm) column (Waters
Ltd., Elstree, United Kingdom). The mobile phase flow rate was
set to 300 μL/min, and the column was maintained at 55°C while
the sample was stored at 4°C in the autosampler. Mobile phases
A and B were pumped in a gradient mode as follows: 95%–5%
A (0–16 min), 5% A (16–19 min), 5%–95% A (19–20 min), and
5%–95% A (20–22 min). The eluted molecules from the column
were ionized in the electrospray ionization source (ESI) at positive
and negative modes. The gas phase ions were subjected to Xevo G2-
S QTOF mass spectrometer (Waters Ltd., Elstree, United Kingdom)
separation based on their m/z.TheMS source temperature was fixed
at 150°C, the desolvation temperature was set at 500°C, and the
capillary voltages were kept at 3.20 kV or 3 kV for ESI+ and ESI−
modes, respectively. The cone gas flow was 50 L/h, the desolvation
gas flow was 800 L/h, and the cone voltage was 40 V. The collision
energies for the low and high functions were set to off and 10–50 V,
respectively, in the MSE data-independent acquisition (DIA) mode.
As recommended by the vendor, the mass spectrometer was
calibrated with sodium formate (100–1,200 Da) in both ionization
modes. The lock spray mass compound, MS leucine-enkephaline
(an external reference to the ion m/z 556.2771 in positive mode
and 554.2615 in negative mode), was constantly injected, which
is responsible for switching between the sample and the reference
for every 45 and 60 s in both modes, scan time was 0.5 s, the flow
rate was 10 μL/min, and collision energy was 4 V and 30 V for the
cone, respectively. The DIA data were gathered in continuum mode
with Masslynx™ V4.1 Software (Waters Inc., Mil-ford, MA, United
States). Quality control samples (QCs) were performed by collecting
10 µL from each study sample and pooling them for extraction. After
that, they were introduced to the instrument randomly to validate
the system’s stability (AlMalki et al., 2023). After that, they were
analyzed following the routine protocol. The acceptance criteria
were to have all the QC samples separated from the other study
groups, clustered together, and use their Relative standard deviations
(RSD%) < 40%

2.4 Data and statistical analysis

The MS raw data were processed following a standard pipeline
starting from alignment based on the m/z value and the ion signals’
retention time, peak picking, and signal filtering based on the
peak quality using the Progenesis QI v.3.0 software from Waters
(Waters Technologies, Milford, MA., United States). Multivariate
statistical analysis was performed using MetaboAnalyst version 5.0
(McGill University, Montreal, Canada) (http://www.metaboanalyst.
ca, accessed on 10 March 2024) (Pang et al., 2021). The data sets
(Compounds’ names and their raw abundances) were median-
normalized, Pareto-scaled, and log-transformed to maintain their

normal distribution.The normalized datasets generated partial least
squares-discriminant analysis (PLS-DA) and orthogonal partial
least squares-discriminant analysis (OPLS-DA) models. OPLS-
DA models were evaluated using the fitness of model (R2Y) and
predictive ability (Q2) values using permutation validation of
100 samples (Worley and Powers, 2013). Univariate analysis was
performed using Mass Profiler Professional (MPP) v.15.0 software
(Agilent, Santa Clara, CA, United States). A volcano plot was
used to discover significantly changed mass features based on a
Moderated T-test, cut-off: FDR p < 0.05, fold change 2 compared
to controls (Gu et al., 2020). Heatmap analysis for altered features
was performed using Pearson distance measure according to the
Pearson similarity test. Pathway analysis, biomarkers linked with
GDM, and receiver operating characteristic (ROC) curves were
generated in the MetaboAnalyst (v.5.0) by Monte Carlo cross-
validation (MCCV) with balanced sub-sampling. During each
MCCV iteration, two-thirds (2/3) of the samples were designated
for assessing feature importance. The top-ranked features, as
determined by the Partial Least Squares Discriminant Analysis
(PLS-DA) algorithm, were subsequently employed to construct
classification models. These models were then validated on the
remaining one-third (1/3) of the samples. This procedure was
iteratively performed multiple times to ascertain each model’s
performance and confidence interval. The PLS-DA algorithm
was utilized for feature ranking with latent variables (LV) 2. The
value was only considered if the provided LV count was within
the number of features. Clinical characteristics and demographic
data were presented either as categorical data (frequency) or
continuous data (mean ± standard deviation (SD)). Data were
analyzed using SPSS Software version 24. To compare the
between the two groups of the study, chai square or independent
sample t-test were used, considering significant P values
less than 0.05.

2.5 Metabolites identification

All the statistically significant features between the study
groups were selected using Progenesis QI v.3.0 software (Waters
Technologies, Milford, MA, United States) for peak annotation
(Aleidi et al., 2021; Dahabiyeh et al., 2021). The precursor and
product ions were annotated based on accurate mass, fragmentation
pattern, and isotopic distributions in the Human Metabolome
Database (HMDB) with a 5-ppm mass error (Wishart et al.,
2022) and 5 ppm for METLIN MS/MS (https://metlin.scripps.
edu/) accessed 2 April 2024, using fragmentations filtered by in
silico or empirical, KEGG, Lipid map, and Lipid Blast. Exogenous
metabolites, such as food additives, pharmaceuticals, and exposome
molecules, were removed from the final list.

3 Results

3.1 The clinical characteristics and
demographic data of the study population

Table 1 presents the clinical characteristics and demographics of
the study population. The control and GDM groups were matched
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TABLE 1 The clinical characteristics and demographics of the study population (n = 40).

Parameter Control (n = 20) GDM (n = 20) P-value

Age (years) 32.3 ± 5.51 32 ± 6.38 0.87

Gestational age (week) 25.89 ± 2.62 25.25 ± 2.57 0.43

Gestational weight gain (kg) 7.85 ± 4.23 8.3 ± 5.96 0.79

BMI (based on current weight) (kg/m2) 31.56 ± 7.44 31.03 ± 5.13 0.80

FBG (mg/dL) 79.40 ± 6.20 92.53 ± 7.44 <0.001

1 h-PG (mg/dL) 122.15 ± 29.93 179.05 ± 40.55 <0.001

2 h-PG (mg/dL) 93.55 ± 20.79 131.35 ± 31.67 <0.001

Hemoglobin (Hb) (g/dL) 11.62 ± 1.49 11.58 ± 1.15 0.97

Hematocrit (Hct) (%) 34.37 ± 4.01 33.90 ± 6.52 0.78

Red blood cells (RBC) (103/µL) 5.71 ± 6.79 7.35 ± 9.47 0.52

White blood cells (WBC) (103/µL) 10.25 ± 4.25 10.69 ± 6.42 0.80

Platelet (103/µL) 261.42 ± 62.62 246.84 ± 79.89 0.51

Fetal gender
Male/Female undetermined

(8/9)
3

(15/3)
2

0.03

Mode of previous deliveries
Vaginal/C-sections

(11/9) (15/5) 0.14

in age, BMI, gestational weeks, and complete blood count (CBC)
tests. Based on the study design and group definitions, there was
a significant difference between control and GDM in the FBG and
both 1 h PG and 2 h PG.

3.2 The comprehensive metabolomic
analysis and contrasts among the study
groups

A total of 19,736 mass ion features were detected after
reviewing the signal quality with intensity >1,000 counts,
13,374 in positive and 6,362 in negative ionization modes
(Supplementary Table S1). The features used for analysis were
11,568 after excluding the missing values with a frequency of
80% of each study groups, which were statistically evaluated
between the study groups (GDM and controls). The metabolomics
profiles of study groups were analyzed using the PLS-DA model
(Figure 1A). This model was used to explore the clustering
and differentiation among the groups. Figure 1A illustrates a
separation in the metabolic profiles between the control and
GDM patients.

Furthermore, an OPLS-DA model was utilized to compare
GDMpatients and control groups, visualizing the plot’s classification
effect, clustering, and separation. The model demonstrated a
clear, evident, and significant separation between the two groups
(R2 = 0.976 and Q2 = 0.822, Figure 1B), indicating variations

in metabolite expression between women with GDM and the
control group.

3.3 Metabolomics profiling of GDM and
control groups

The metabolomics profiling of GDM and control groups was
statistically evaluated using volcano plot analysis considering
t-test moderated, FDR p < 0.05, and Fold Change (FC)
cut-off 2. The results revealed that 1,003 metabolites were
significantly dysregulated between the study groups, Figure 2A.
Among them, 607 and 396 were up- and downregulated in
GDM patients compared to the control group (Figure 2A,
Supplementary Table S2). Among the significantly dysregulated
(n = 1,003), 553 were annotated using HMDB, METLIN MS/MS,
LipiBlast, LipidMap, and KEGG (Supplementary Table S3).
After excluding exogenous metabolites, such as drugs, drug
metabolites, or environmental exposure-related metabolites,
222 were identified as human endogenous metabolites of
which 120 were up- and 102 were downregulated between
the two groups (Supplementary Table S4, human endogenous
metabolites). The main metabolites and lipids classes of the
dysregulated endogenous metabolites (n = 222) are presented
in Figure 2C. Moreover, metabolic pathway analysis revealed
that the most relevant metabolic pathways related to the
dysregulated metabolites included tryptophan metabolism, inositol
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FIGURE 1
Metabolomics profiling of GDM patients compared to controls. (A) PLS-DA displaying separation between groups. (B) OPLS-DA model shows evident
separation between GDM and Control. The robustness of the created models was evaluated by the fitness of the model (R2Y = 0.976) and predictive
ability (Q2 = 0.822) values in a larger dataset (n = 100).

phosphate metabolism, phenylalanine metabolism, and histidine
metabolism (Figure 2D).

3.4 Biomarker evaluation

Amultivariate exploratory ROC analysis based on the identified
significantly dysregulated human endogenous metabolites between
GDM patients and controls (n = 222) was generated using OPLS-
DA as a classification and feature ranking method. Combining the
top 10 metabolites in the exploratory ROC curves indicates the
maximum confidence of differentiation and detection ofmetabolites
in the GDM versus control group, with the AUC = 0.978, Figure 3A.
The significant features of the positively identified metabolites
are presented in Figure 3B. Furthermore, representative AUCs
for two dysregulated metabolites in GDM compared to controls
are shown in Figures 3C, D. These include N-Acetylproline, AUC
= 0.99, upregulated in GDM, and Serylmethionine, AUC = 0.968,
downregulated in GDM compared to controls.

4 Discussion

GDM, a prevalent metabolic disorder during pregnancy, is
characterized by glucose intolerance in the second and third
trimesters, leading to hyperglycemia (Wang et al., 2021). Indeed,
early diagnosis of GDM and managing blood glucose levels
are instrumental in significantly alleviating patient complications.
OGTT remains the gold-standard diagnostic tool for GDM

diagnosis. However, the recognition of more sensitive and accurate
approaches for earlier detection of this disorder is important.
Recent methods based on machine-learning algorithms seem
to discretely predict GDM development in the first trimester
even though the accuracy of the trained models may not be
elevated (Wang, Huang, 2024), thus increasing the risk of false
positives or negatives. Consequently, finding new early biomarkers is
imperative, and metabolomics approaches retain their full potential
for such goals (Santorelli et al., 2023).

Metabolomics research in GDM focuses on abnormalities
in small molecule metabolites such as carbohydrates, lipids,
amino acids, bile acids, sterol hormones, and altered
metabolic pathways (Wang et al., 2021). The current study applied
an untargeted MS-based metabolomics approach to investigate the
pregnancy metabolic fingerprint related to GDM. The detected
metabolic signature is mainly characterized by alterations in amino
acid metabolism, fatty acid, glycerolipids, and sphingolipids that
distinguish GDM from control women. These altered metabolites
could be used as potential biomarkers aiding in disease diagnosis,
monitoring, and discovering new therapeutic targets, providing new
insights into the pathophysiology of GDM.

By multivariate statistical analysis, including PLS-DA and
OPLS-DA, our results show a clear group separation and
sample clustering between GDM and control groups. Tryptophan
metabolism, inositol phosphate metabolism, phenylalanine
metabolism, and histidine metabolism are among the pathways
that have been significantly altered between GDM and controls. It is
well known that the high inflammatory state in GDM alters amino
acid metabolism, including tryptophan metabolism (Chatree et al.,
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FIGURE 2
Dysregulated metabolites between GDM patients and control and pathway analysis (A) Volcano plot shows significantly dysregulated metabolites in
GDM Patients compared to Control; shows 1,003 metabolites were significantly dysregulated, where 607 and 396 metabolites were up (red) and down
(blue)-regulated in GDM compared to Control, respectively. (B) Heat map showing the distribution of the dysregulated metabolites between GDM and
control groups. (C) Main metabolites and lipids classes of the significantly dysregulated human endogenous metabolites (n = 222). (D) Pathway analysis
of significantly dysregulated endogenous metabolites (n = 222) in GDM patients compared to controls.

2020). Inositol phosphate metabolism is directly connected
to insulin resistance and glucose homeostasis (Chatree et al.,
2020). Pregnant women with GDM exhibit much greater insulin
resistance than those with normal glucose tolerance. Ellerbrock
et al. found that one in every two women with GDM has severe
insulin resistance, compared to one in every five with normal
glucose management (Ellerbrock et al., 2022). The disturbances
in amino acid metabolism are closely linked to insulin resistance,

as demonstrated by the histidine and phenylalanine metabolism
pathways observed in this study.

Several omics-based studies have revealed that circulating
metabolites belonging to diverse chemical classes (e.g., lipids, fatty
acids, amino acids, acylcarnitines, etc.) are positively associated
with the incidence of GDM in either early or mid-pregnancy
(Wang et al., 2021; Alesi et al., 2021; Lin et al., 2021; Zhao et al., 2019;
Zhu et al., 2018), with either common identifications or contrasting
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FIGURE 3
Biomarker evaluation between GDM patients and controls. (A) A ROC curve was generated by the OPLS-DA model, with AUC values calculated from
the combination of 5,10, 15, 25,50, and 100 metabolites. (B) The frequency plot shows 15 positively identified significant dysregulated endogenous
metabolites between GDM patients and control. (C, D) Representative AUC for two significantly dysregulated endogenous metabolites. (C)
N-Acetylproline, AUC = 0.99, upregulated) and (D) Serylmethionine, AUC = 0.968, downregulated in GDM patients compared to controls.

findings. Our results show that with various differentially expressed
metabolites, most of the metabolites attributed to GDM were
dipeptides, amino acids, and their derivatives with branched
amino acids (BCAAs), such as the decrease of L-isoleucine, L-
histidine, 5-hydroxy-DL-tryptophan, and methionine-conjugated
molecules inGDM, being in linewith other publishedmetabolomics
studies (Burzynska-Pedziwiatr et al., 2020; Enquobahrie et al.,
2015; Meng et al., 2021). Previous studies have found a significant
association between levels of several amino acids and GDM
(Wang et al., 2021; Liu et al., 2021; Lu et al., 2021). Some studies
indicate that high plasma BCAA levels relate to an increased risk
of GDM (Lu et al., 2021). Indeed, BCAA metabolism is involved
in pathways that sustain the energetic metabolism (Costanzo et al.,
2024) and modulate insulin resistance, thus affecting insulin
secretion (Newgard, 2012). Our present study showed a significant
decrease in L-isoleucine levels inGDM; a possible explanationmight

be increased consumption of amino acids such as isoleucine by the
placenta and fetus in GDM (Wang X. et al., 2022).

Our findings indicate that histidine is downregulated in GDM.
Histidine is an essential amino acid involved in protein synthesis
and the function of enzymes (Ingle, 2011). Spanou et al. reported
that histidine levels were significantly reduced in women with
GDM compared to controls (Spanou et al., 2022). This reduction
might be attributed to changes inGDM-specificmetabolic pathways,
which could be linked to impaired glucose metabolism and insulin
resistance in these individuals (Spanou et al., 2022).

In addition, our analysis enriched the tryptophan metabolism
as the most significant pathway involved in GDM, and we found
out that the level of the amino acid 5-hydroxytryptophan was
dysregulated. 5-hydroxytryptophan is the upstream precursor of
serotonin can increase serotonin levels (Paulmann et al., 2009).
Serotonin may regulate insulin secretion from pancreatic β-cells
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by a mechanism of protein serotonylation (Paulmann et al., 2009).
Since the 5-hydroxy-DL-tryptophan is downregulated in our GDM
cohort, serotonin synthesismay not be promoted, thus not providing
full protection from high glucose levels. Monitoring amino acid
levels over timemay represent a useful follow-up approach, given the
evidence that such molecules might efficiently predict the transition
from GDM to type 2 diabetes (Allalou et al., 2016).

Besidesaminoacids, lipiddysregulationshavelongbeenassociated
with glucose tolerance and insulin resistance (Ahmed et al., 2021;
Giacco et al., 2019; Polsky and Ellis, 2015). Indeed, we found that
many lipid molecules, including glycerolipids, glycerophospholipids,
glycerophosphocholine, sphingolipids, steroids, fatty acyls, and their
derivatives, were differentially represented in the GDM group
as compared to the control one. Wang et al. reviewed that the
major lipid classes subjected to quantitative alteration in GDM
individuals are related to fatty acids, phospholipids, glycerolipids,
glycerophospholipids, and sphingolipids (Wang et al., 2021). The
quantitative dysregulation of fatty acids is almost considered a
biochemical signature of GDM development, as such analytes
are commonly associated with different components of insulin
resistance and glucose metabolism in several studies (Bukowiecka-
Matusiak et al., 2018; Ebbesson et al., 2010; Min et al., 2004).

Following our findings that highlighted the differential regulation
of many lipid classes, other studies on GDM revealed that
glycerolipids, glycerophospholipids, sterols, and sphingomyelins
measured in plasma around the 10–14 weeks of gestation were
correlated with increased GDM risk (Rahman et al., 2021). Even
in the preconception phase, a metabolic signature identified a set
of phosphatidylethanolamines (PE), a glycerophospholipids subclass
built in the endoplasmic reticulum through the cytidine diphosphate-
diacylglycerol-ethanolamine pathway, able to differentiateGDM from
controls (Li et al., 2023). Mounting evidence has shown the active
function of PE in the insulin signaling pathway, suggesting that
the increased phosphatidylcholine (PC)/PE ratio can be correlated
to reduced (Funai et al., 2016) or elevated (Newsom et al., 2016)
insulin sensitivity amongpatientswith type 2 diabetes. Recently, it was
demonstrated that targeting phospholipid pathways improves insulin
resistance in diabetic mice (Tian et al., 2023).

In such context, Anderson et al. discovered that multiple defects
in lipid regulation (precisely including the significant changes in 4
phospholipids, 3 acylcarnitines, 3 fatty acids, and 4 diglycerides)may
be identified in a pre-hyperglycemic phase before the occurrence
of diabetes (Anderson et al., 2014). Another lipidomics study
identified 10 dysregulated lipids in the serum of pregnant women
that were significantly associatedwith impaired glucose tolerance; in
particular, specific Triglycerides (TG), PC, and PCae were validated
in an independent cohort as GDM predictor factors, independently
on the maternal age or BMI (Lu et al., 2016).

More importantly, in our study, we identified a set of
10 metabolites, namely N-acetylproline, serylmethionine,
sulfolithocholic acid, aminoadipic acid, hydroxyphenylacetylglycine,
MG (0:0/16:1/0:0), deoxyadenosine monophosphate,
dodecanoylcarnitine, indoxyl glucuronide, and 2-aminomuconic
acid semialdehyde, whose combination showed high diagnostic
value.With a high AUC of 0.978 (CI 0.898–1), this set of metabolites
may represent a novel panel of biomarkers that can be tested to
perform diagnosis of GDM with higher specificity than OGTT.
We verified in our GDM cohort the diagnostic efficacy of the first

two molecules (N-acetylproline, serylmethionine) with the highest
frequency in the model we generated using ROC curves.

N-acetylproline (HMDB0094701) can be classified as a
proteinogenic alpha amino acid L-proline derivative. Protein N-
acetylation is a conserved post-translational modification that shields
intracellular proteins from proteolysis, and N-acetyl amino acids
can be obtained through either the direct synthesis by specific
N-acetyltransferases or the proteolytic degradation of N-acetylated
proteinsby specifichydrolases (Perrier et al., 2005). Ithasbeenrecently
recognized that acetyltransferases might impact the development of
early vascular and endothelial dysfunctions, prompting inflammation
and oxidative stress (Di Pietrantonio et al., 2023). Currently, specific
acetyltransferasesare targets for therapy(Guoetal., 2021)orassociated
with the risk of diabetes (Al-Shaqha et al., 2015). Additionally,
N-acetylation of many amino acids, including free proline, might
produce uremic toxins when these molecules highly accumulate
in serum or plasma (Tanaka et al., 2015; Toyohara et al., 2010).
If not accurately filtered by kidneys, uremic toxins can lead to
kidney insufficiency, cardiovascular affections, and neurological
damage (Wang et al., 2021; Vanholder et al., 2008). Furthermore,
N-acetylproline may be metabolically connected with the N-acetyl-
seryl-aspartyl-lysyl-proline, an endogenous tetrapeptide with anti-
fibrotic effects and clinical significance to combat kidney fibrosis in
diabetes (Kanasaki, 2020). Given that N-acetylproline is significantly
increased in GDM patients, our findings may be useful for the
prediction of such complications in diabetes, especially during
pregnancy (Wang et al., 2021).

Serylmethionine (HMDB0029045) is a dipeptide classified as
a secondary metabolite. Based on the literature review, very few
articles cite serylmethionine in their research. For example, it was
employed as a substrate to investigate the function of peptidase
enzymes, which show intense activity toward this metabolite during
the first 2 weeks of life in rats (Vaeth and Henning, 1982). Up to
the time of writing this manuscript, no studies have been published
relating to the possible role of this molecule in the pathogenesis or
the metabolism of GDM.

Despite the interesting findings of this study, recruiting a
small number of patients from a single hospital would limit the
generalizability of the findings and may appear to be a limitation.
To assess the efficacy of the examined potential biomarkers in
GDM diagnosis, varied cohorts with larger sample sizes and based
on ethnic disparities should be considered. The metabolome is
impactedbyintrinsic (geneticmutationsandepigenetics)andextrinsic
(environment, diet, and stress) variables. As a result, intra-individual
variances are magnified, significantly impacting the metabolomic
profile. In future work, the potential of observed metabolic
disturbances to predict adverse clinical outcomes of GDM should be
studied. Furthermore, investigating metabolite-gene interactions will
provide valuable insights into a better understanding of GDM.

5 Conclusion

This study provides valuable insights into the metabolic
alterations associated with GDM by identifying significant
differences in the metabolic profiles of pregnant women with
and without GDM. The study identified 222 human endogenous
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metabolites significantly dysregulated in women with GDM. In
addition, it highlights the dysregulation of key metabolic pathways,
such as tryptophan, inositol phosphate, phenylalanine, and histidine
metabolism, indicating specific pathways that could be targeted for
early screening and intervention.

The study’s findings, particularly identifying key metabolites
likeN-Acetylproline and Serylmethionine, underscore the feasibility
of using metabolic profiling as a diagnostic tool. This research
contributes significantly to the growing knowledge of GDM,
offering a promising avenue for early prediction and more effective
management of the disorder.
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