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How lactate affects immune
strategies in lymphoma
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Tumor cells undergo metabolic reprogramming through shared pathways,
resulting in a hypoxic, acidic, and highly permeable internal tumor
microenvironment (TME). Lactate, once only regarded as a waste product of
glycolysis, has an inseparable dual role with tumor immunity. It can not only
provide a carbon source for immune cells to enhance immunity but also help
the immune escape through a variety of ways. Lymphoma also depends on
the proliferation signal of TME. This review focuses on the dynamic process of
lactate metabolism and immune function changes in lymphoma and aims to
comprehensively summarize and explore which genes, transcription factors,
and pathways affect the biological changes and functions of immune cells. To
deeply understand the complex and multifaceted role of lactate metabolism
and immunity in lymphoma, the combination of lactate targeted therapy
and classical immunotherapy will be a promising development direction in
the future.

KEYWORDS

lactate, lymphoma, immune cells, immune checkpoints, HIF-1α, MYC, MTOR signaling,
NF-κB signaling

1 Introduction

The terms “cancer metabolism” and “metabolic reprogramming” are frequently used
to describe a set of shared pathways observed in highly proliferating tumors or cancer
cells (Faubert et al., 2020). Tumor cells reprogram their metabolic pathways to meet
the bioenergetic, biosynthetic, and redox demands for rapid tumor cell proliferation,
resulting in hypoxia, nutrient deficiencies, and elevated levels of metabolic byproducts
in the tumor microenvironment (TME) (Sahai et al., 2020). The predominance of active
glycolysis over aerobic glucose metabolism in this case leads to elevated lactate, thus
becoming one of the most important reasons for the composition of the microenvironment.
Lactate has long been neglected in the exploration of human tumors, considered
only as a waste product produced by glycolysis, with only a role as a biomarker of
malignancy. Recently, in TME, lactate is no longer treated as a waste produced by
cellular metabolism, but as a powerful signaling molecule that influences the behavior
of tumor cells and surrounding cells (Brooks, 2009; Rabinowitz and Enerbäck, 2020).
The understanding of lactate has been gradually improved and enriched. First, lactate re-
establishes metabolic coupling either between cancer cells or between cancer and non-
malignant cells to power and sustain tumor growth. Second, in recent years, the study
of the effects of lactate on tumor cells has been extended to the field of epigenetics, and
the discovery that accumulated lactate is converted to lactyl coenzyme A via lactylation-
regulated genes has become a research hotspot in a single leap (Ippolito et al., 2019;
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Zhang et al., 2019). Finally, lactate can help tumor cells better adapt
to TMEand avoid immune attack by inhibiting immune surveillance
mediated by immune cells (Ngwa et al., 2019). A study reported
that lactate can serve as a carbon source for mammalian cells to
utilize (Brooks, 2009), and this report provides a new perspective
on lactate-mediated interactions between tumor cells and immune
cells: lactate has a dual role, not only promoting immune evasion, but
also seems able to provide a carbon source for immune cells to aid
tumor immunity. The latest report also emphasizes the viewpoint:
lactate related lactylation affects gene expression in tumor cells and
immune cells, leading to immune suppression, tumor progression,
and poor prognosis (Zhang et al., 2024).

The role of themicroenvironment in lymphomas has historically
been underestimated. However, recent studies have demonstrated
that, inmost cases, diffuse large B-cell lymphoma (DLBCL) depends
on the proliferative signals of TME to grow and achieve escape
from immune surveillance. Similar to other tumors, lymphoma
produces large amounts of lactate. Consequently, TME is not
only a significant factor in the pathogenesis and prognosis of
lymphoma but also the foundation of therapeutic strategies and drug
resistance (Cycon et al., 2009; Scott and Gascoyne, 2014). Lactate
metabolism can not only directly affect the immune cells to regulate
the immune function of lymphoma, but also indirectly affect the
immune cells by affecting genes and immune checkpoints, thus
making the lymphoma cells immune escape. Lactate metabolism
and immune escape in lymphoma are a dynamic process associated
with lymphoma initiation and progression. How lactate has affected
immunity in lymphoma is well worth exploring.

The latest advances in single-cell technology, such as single-
cell RNA sequencing (scRNA-Seq) and time-of-flight cytometry
(CyTOF), in the molecular subtype classification of myeloid
cells in Glioblastoma (GBM), macrophages are divided into
two clusters with different functional states: immunosuppressive
cells and proliferating macrophages. A new functional state
of macrophages and microglia has been identified in human
GBM tumors, where macrophages exhibit upregulation of
immunosuppressive cytokines and activate the tricarboxylic
acid cycle. Artificial intelligence accurately characterizes tumor-
associated macrophages (TAM) and identifies specific tumor
regulatory functions inGBM,which can promote the understanding
of TAM heterogeneity in GBM (Khan et al., 2023).

In this review, we review and describe the metabolic pivotal
role of lactate in lymphoma. In addition, we focused on exploring
the crosstalk between lactate and immune function in lymphoma.
The regulation of immune function includes the immune cells
in TME, immune checkpoints and dysregulation of lactate-related
transcription factors and signaling pathways such as mammalian
target of rapamycin (mTOR), and hypoxia-inducible factor (HIF).
We also discuss how we can influence the biological changes and
functions of lymphma and immune cells through specific genes,
transcription factors, and pathways, and consequently regulate
immune responses.

2 High lactate in lymphoma

Otto Heinrich Warburg first described the Warburg effect of
tumors in the early 1920s (Warburg, 1956). Even in sufficient

oxygen, tumor cells take up glucose about ten times faster than
normal tissues and metabolize large amounts of lactate over a given
period (Levine and Puzio-Kuter, 2010). Lymphoma cells also have
a Warburg effect, namely, “aerobic glycolysis”. Although glycolysis
can only produce two adenosine triphosphate (ATP) molecules
per glucose molecule, it also produces two lactic acids. Compared
with oxidative phosphorylation (OXPHOS), the latter produces
36 ATP molecules per glucose molecule. However, due to the
high metabolic rate of aerobic glycolysis and high glucose intake,
this process produces lactate far beyond normal tissues (Levine
and Puzio-Kuter, 2010). This high glucose uptake is associated
with a poor prognosis in DLBCL (Cho et al., 2015), and is one
of the characteristics of aggressive lymphomas. The preferential
production of lactate leads to the accumulation of lactate in the
TME, which in turn leads to lactic acidosis. Lactic acidosis is
pathophysiologically classified into type A and type B. Type B occurs
mainly in hematologicmalignancies, especially induced lymphomas
producing lactic acidosis. It is considered a tumor emergency, a
life-threatening emergency that leads to high mortality and poor
outcomes (Wang et al., 2022; Hamada et al., 2020; Duriseti et al.,
2021;McKay et al., 2017; Friedenberg et al., 2007; Sillos et al., 2001).
Case reports also confirm the view (Soleja et al., 2016). More
importantly, under normal conditions, when lactate accumulates
it can serve to drive appropriate physiological responses, but the
activity is reversed in the case of cancer, instead suppressing the
anti-cancer immune response and promoting immune escape from
the tumor (Rabinowitz and Enerbäck, 2020).

3 Two important proteins in lactate
metabolism

The production of lactate and its rapid transport depends
on several enzymes and proteins. In tumors, upregulation and
sustained activation of hypoxia-inducible factor-1α (HIF-1α) and
c-Myc lead to aberrant expression of several glycolytic enzymes
andmonocarboxylate transporter (MCT) proteins, including lactate
dehydrogenase A (LDHA), MCT1 and MCT4 (Gordan et al., 2007;
Masoud and Li, 2015). In lymphoma, there is evidence of the
activation of HIF-1α and c-Myc (Evens et al., 2010; Ott et al., 2013),
as well as the activation of LDHA, MCT1, and MCT4. These factors
not only are activated but also influence various functions and
prognostic markers in lymphomas (Zhao et al., 2023). Here, we will
focus on lactate dehydrogenase (LDH) andMCTproteins (Figure 1).

3.1 Lactate dehydrogenase

LDH is present in blood cells and lymphoid tissues. It is
not only often used as a biochemical indicator for diagnosis and
therapeutic monitoring of lymphoma, but for many years it has
been considered to correlate with a poor prognosis in lymphoma
patients. As an independent prognostic marker, it is one of the most
important prognostic determinants of the international prognostic
index (Project, 1993). LDH, consisting of the M and H protein
subunits encoded by the LDHA and LDHB genes, respectively, is
a tetrameric enzyme essential for lactate synthesis that reversibly
catalyzes the conversion of pyruvate to lactate or lactate to pyruvate.
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FIGURE 1
Two important proteins involved in lactate metabolism. (A) Classification and corresponding functions of LDH. (B) Classification and corresponding
functions of MCT.

It is assembled in a tissue-dependent manner in five different
heterotetramers or homotetramers to form five isozymes: LDH-1
(4H), LDH-2 (3H1M), LDH-3 (2H2M), LDH-4 (1H3M), and LDH-
5 (4M).The LDHA isoforms are predominantly expressed in skeletal
muscle, and LDH-5 (LDHA4) prevents pyruvate from entering the
mitochondrial tricarboxylic acid cycle (Markert et al., 1975) and
promotes the conversion of pyruvate to lactate. Whereas LDHB
isoforms are usually located in the heart and brain, LDH-1 (LDHB4)
plays the opposite role, preferentially converting lactate to pyruvate
(Ždralević et al., 2018; Feng et al., 2018). LDHA and its downstream
signals, as potential biomarkers, are positively correlated with
macrophage density, such as in glioblastoma. Recent studies have
shown that LDHA activates two transcriptional co-activators, yes-
related protein 1 (YAP1) and transcriptional activator 3 (STAT3), in

glioblastoma cells through a directed extracellular signal-regulated
kinase (ERK) pathway. They can coordinate the upregulation of C-
C motif chemokine ligand 2 (CCL2) and CCL7, thereby triggering
macrophage infiltration into the TME. Conversely, the recruited
macrophages produce extracellular vesicles that release LDHA.
LDHA inhibitors can not only regulate the inhibitory anti-tumor
immune function of macrophages but also inhibit the growth and
development of tumors (Khan et al., 2024).

Lactate production is inextricably linked to the regulation of
LDH. Elevated serum lactate in patients with lymphoma is largely
progressive (Ruan et al., 2021). Elevated LDH levels in patients
with aggressive lymphoma may be due to increased cell renewal
and hypermetabolism of the tumor. In malignant lymphomas, the
intracellular mitochondrial machinery is altered, and apoptosis
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is dysregulated, and tumor cells release intracellular enzymes
through damaged cell membranes (Jurisic et al., 2015). It suggests
that abnormally enhanced tumor metabolism and tumor cell
necrosis cause increased release of LDH into the blood. The rapid
proliferation of tumor cells results in a hypoxic environment as
well as mutations in certain oncogenes and oncostatin genes,
such as HIF-1α and c-Myc, which enhance pyruvate production
by accelerating the two rate-limiting steps in glycolysis involving
hexokinase 2 (HK2) and fructose-2,6-bisphosphate. They also
inhibit pyruvate dehydrogenase (PDH) phosphorylation by
inducing pyruvate dehydrogenase kinase 1 (PDK1), which in turn
inhibits its mediated mitochondrial metabolic activity of pyruvate.
Meanwhile, both can induce LDHA gene expression and inhibit
LDHB gene expression, further enhancing LDH-5 activity and
decreasing LDH-1 activity (Feng et al., 2018). It ultimately leads
to the conversion of pyruvate to lactate to promote the glycolytic
process, resulting in increased lactate production and conversion of
NADH to NAD+.

3.2 Monocarboxylate transporter

The characteristic glycolytic process described above leads to
the accumulation of lactate in the cytoplasmic lysate (Warburg,
1924; Warburg and Research, 1925). Consequently, to prevent
intracellular acidification, lactate and H exocytosis must be
transported to the extracellular space and also exchanged between
cell populations (Certo et al., 2021).

MCTs are plasma membrane transport proteins essential for
lactate shuttling. MCTs are highly expressed in stromal cells of
DLBCL. In addition to the high rate of glycolysis exhibited by
lymphoma cells that produce excess lactate, a large amount of
lactate produced by the cell must be transported out of lymphoma
cells through MCTs (Gooptu et al., 2017), mediating the secretion
and reuptake of lactate or pyruvate, thus preventing cell death
caused by acidosis. This process resulted in an increase in lactate
levels in TME. MCTs belong to a class of transporter proteins
encoded by a family of solute carrier proteins, which consists
of 14 members (Singh et al., 2023). The most common cytosolic-
localized proton-coupled transporter proteins of monocarboxylates
are c-Myc-mediated MCT1 and HIF-1α-mediated MCT4. MCTs
facilitate the transport of lactate and pyruvate in cancerous cells
(e.g., (Halestrap and Wilson, 2012; Halestrap, 2012)). They also
facilitate lactate shuttling between cancer cells and stromal cells
in the TME. MCT1 is the most widely expressed and has a
relatively high affinity for lactate. It acts as a transporter according
to local lactate concentration gradients. In contrast, MCT4 acts
as an efflux transporter, primarily in highly glycolytic tissues.
The transmembrane auxiliary protein CD147 ensures that MCTs
function as transporter proteins in the correct orientation at the
cell surface (Ippolito et al., 2019). Emerging evidence suggests that
proton-coupled lactate efflux from tumor cells or stromal cells
contributes to remodeling the TME tomaintain an acidic phenotype
and promotes tumor spreading, leading to angiogenesis and invasive
metastasis as well as immune escape (Kirk et al., 2000), which is
associated with poor prognosis (Parks and Pouysségur, 2017).

MCT1 and MCT4 are differentially overexpressed in solid
tumors in a variety of cancer types, such as lung, colon, and

renal cancers (Ruan et al., 2017; Nakayama et al., 2012; Kim et al.,
2015). Evidence also exists in hematologic malignancies such
as myeloma and lymphoma (Walters et al., 2013). The significant
differential expression of MCT in different lymphomas has been
demonstrated in multiple experiments. In NHL, adverse clinical
pathological features are significantly correlated with the expression
of MCT1 (Afonso et al., 2019). Studies have confirmed that in
DLBCL and Burkitt lymphoma, MCT1 is expressed at high levels
in the absence of significant expression of MCT4 (Noble et al.,
2017). Another study showed that in ALK (−) anaplastic large
cell lymphoma (ALCL) tumor cells as well as B cells, natural
killer/T cells, T cells, and classical Hodgkin lymphoma, only
MCT1 is widely expressed. The expression of MCT4 is mainly
localized to adjacent stromal cells. By comparison, only ALK (+)
ALCL cells have high expression of MCT1 on the tumor cell
membrane and widespread expression of MCT4 (Choi et al., 2022).
Similarly, in T-cell lymphoma tissue, both MCT1 and MCT4 are
overexpressed and associatedwith decreasedOS and PFS, indicating
poor prognosis (Zhao et al., 2023). Therefore, therapeutic strategies
that disrupt lactate transport may be promising approaches for
treating lymphoma (Le Floch et al., 2011; Parks et al., 2013; Doherty
andCleveland, 2013). AZD3965 (a first-of-its-kindMCT1 inhibitor)
has been used in phase I clinical trials for high MCT1/low MCT4
cancers targeting this target (Halford et al., 2023). Its therapeutic
effect may be related to inhibiting lipid biosynthesis and increasing
tumor immune cell infiltration involving dendritic and natural killer
(NK) cells (Beloueche-Babari et al., 2020).

4 Lymphoma pathogenic genes that
are important promote lactate
production

Dynamic regulation of lactate energy metabolism in cancer
can be traced to a “trinity” of transcription factors: c-MYC, HIF-
1, and p53 (Yeung et al., 2008).

4.1 HIF-1α

HIF-1 stimulates anaerobic glycolysis, which accumulates lactate
and acidifies the TME, affecting cellular subpopulations in the
TME including immune cells (Faubert et al., 2017).HIF-1α regulates
the expression of genes encoding enzymes necessary for aerobic
glycolysis (Darekar et al., 2012) and increases the production of
metabolite lactate. For example, in myc-driven cell lines, HIF-1α
and myc regulate the expression of HK2 and PDK1 (Mushtaq et al.,
2015). The Warburg effect regulated by HIF-1α is observed in
lymphoblastoid cells (Darekar et al., 2012; Mushtaq et al., 2015).
During lactate metabolism, HIF-1α induces the overexpression
of VEGF, which is involved in MCT protein 1-mediated lactate
transport and subsequent inhibition of prolyl hydroxylase (PHD)
(Horikawa et al., 2017; Rivera et al., 2015; Rivera and Bergers,
2015; Sonveaux et al., 2012). Inactivation of HIF PHDs will
initiate transcription of target genes such as glucose transporter
proteins, most glycolytic enzymes, MCT4, and VEGF (Semenza,
2003; Semenza, 2010). Finally, in solid tumors, HIF-1α-induced
lactate promotes ferroptosis resistance in a pH-dependent manner,
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suggesting a promising therapeutic strategy (Yang et al., 2023). In
the hypoxic microenvironment (HME) formed by malignant tumor
cells, HIF-1α is more stable under the low pH condition of lactate
formation and is not easy to be degraded, thus increasing its
accumulation in cells (Zhao et al., 2024). HIF-1α regulates a variety
of immune cells (such as T lymphocytes, macrophages, MDSCs)
to modulate tumor immunity. In addition, it can also mediate
the upregulation of PD-L1 and promote tumor immune escape
(Noman et al., 2019; Deng et al., 2021). HIF-1α protein expression
is also strongly dependent on some signaling pathways, such as
PI3K/Akt/mTOR signaling pathway (Rashid et al., 2021).

HIF-1α is the best-studied isoform of the heterodimeric
transcription factor HIF-1 and is normally expressed in human
cells (Liu et al., 2020). Its overexpression is strongly associated
with hematologic malignancies such as leukemia, lymphoma, and
multiplemyeloma (Zhao et al., 2024). Stabilization and upregulation
of HIF-1α were observed in lymph node biopsies from both DLBCL
and FL patients (Evens et al., 2008; Pangarsa et al., 2012). It can
lead to overall translational repression as well as mitochondrial
dysfunction during hypoxic stress in DLBCL and serves as one
of the prognostic factors in assessing the likelihood of survival
in DLBCL patients treated with R-CHOP (Evens et al., 2010).
Furthermore, MYC and PI3K/AKT/mTOR independently increase
HIF-1α expression (Pang et al., 2023). It has been demonstrated that
HIF-1α may promote the viability and migration of activated B cell-
like cells under hypoxia through the transcription of CXCR4 and
activation of the AKT/mTOR pathway (Jin et al., 2023).

The immunosuppressive effect produced byHIF-1α is associated
with the activation of several downstream effects. The HIF1α-
VEGF signaling pathway described above regulates macrophage
conversion to the M2 pro-angiogenic phenotype, thereby exerting
a function in signaling (Colegio et al., 2014a; Kes et al., 2020).
Moreover, lactate inhibits monocyte activation and dendritic cell
differentiation by increasing HIF-1α stability (Colegio et al., 2014a;
Gottfried et al., 2006; Nasi et al., 2013). As described above, lactate
produced by activated DCs and other immune cells plays a role
in regulating DCs by pathogenic autoimmune T cells through a
HIF-1α-mediated mechanism (Sanmarco et al., 2023). This gives us
new therapeutic ideas, but this mechanism remains to be further
investigated and confirmed in hematologic malignant diseases.

4.2 MYC

The MYC oncogene plays a crucial role in a wide range of
human solid tumors and various hematological malignancies,
including B-cell and T-cell malignancies, especially infiltrative
B-cell lymphomas such as DLBCLs and BLs (Pang et al., 2023;
Aukema et al., 2011; Slack and Gascoyne, 2011), and it is considered
to be a major regulator of cellular metabolism and proliferation
(Dang, 2012). In lymphomas, MYC activation occurs through
mutation, amplification, translocation, and various other molecular
processes (Ott et al., 2013; Ruzinova et al., 2010; Leucci et al.,
2008). MYC proteins, which are synergistic regulators of the
Warburg effect with HIF-1α (Gordan et al., 2007), upregulate lactate
production through multiple mechanisms. First, they enhance
pyruvate production by accelerating two of the three rate-limiting
steps of HK2 and pyruvate kinase (PK) as target genes for HK2

and fructose-2,6-bisphosphate in glycolysis. Second, they enhance
the Warburg effect by inducing PDK1. They also phosphorylate
and inactivate PDH, which reduces the conversion of pyruvate
to acetyl coenzyme A, thereby allowing more pyruvate to be
converted to lactate. Third, they activate LDH-5 and inhibit LDH-1,
promoting the conversion of pyruvate to lactate (Feng et al., 2018;
Dang et al., 2011; Clem et al., 2008).

Due to the increase of glycolysis rate, a large amount of lactate is
produced, which then promotes the lactylation of histone to support
the expression of c-myc (Pandkar et al., 2023).Myc regulates a series
of innate and adaptive immune cells and guides their proliferation,
maturation, activation and subsequent immune function events.
For example, it coordinates T cell metabolic reprogramming and
macrophage polarization (Wang et al., 2019; Gnanaprakasam et al.,
2017; Gnanaprakasam and Wang, 2017). During immunization, the
Treg-specific transcription factor, FOXP3, inhibits c-Myc signaling
to reprogram Treg cell metabolism. It diverts Tregs to OXPHOS
metabolism, thereby allowingTreg cells to remain active and become
more adaptive in low glucose and high lactate TME (Angelin et al.,
2017). In addition, Myc induces and regulates the expression of
immune checkpoints, including PD-L1 (Casey et al., 2017). In turn,
myc itself is regulated by other signaling pathways, such as theNF-κb
pathway in B cells. If it is damaged, the myc protein of B cells cannot
be upregulated aftermitotic stimulation, leading to the growth defect
of mature B cells (Grumont et al., 2002; Grumont et al., 2004).

5 Lactate affects immune cells in
lymphoma

The role of lactate in immune cells in lymphoma is multifaceted
and has a complex dual nature. The property of lactate allows it to
both promote immune escape from tumors by affecting the function
of immune cells. It also provides an energy source for certain
immune cells, maintaining their function and enhancing anti-tumor
immunity. In different immune cells, the effect of lactate on them is
specified below.

5.1 Immune cells in lymphoma

In the context of normal development, the malignant
transformation of mature B cells in the germinal center or more
differentiated B cells in the secondary lymphoid organs gives rise to
B cell lymphoma (Scott andGascoyne, 2014).The attack of immature
B cells by exogenous antigens occurs mainly in the germinal center,
a process that is tightly regulated by highly coordinated interactions
between immune cells and stromal cells. The microenvironmental
components of malignant B cells include a stromal component
(stromal cells, vasculature, and extracellularmatrix) and an immune
cell component (T cells, macrophages, dendritic cells (DCs),
and NK cells) (Scott and Gascoyne, 2014; Nicholas et al., 2016;
Basso and Dalla-Favera, 2015). The presence of these immune
cells was recently validated in a B-cell lymphoma study cohort.
First, the study identified CD4 or CD8 T cell subclusters. The
infiltrating T cells were classified as naïve T cells, cytotoxic T cells,
regulatory T cells (Tregs), or helper T cells. The helper T cells
were subsequently identified as follicular T cells (Tfh) or helper
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FIGURE 2
Microenvironment components of malignant B cells.

T cells 17 (Th17). In addition, six myeloid cell subclusters could be
identified, including three macrophage subclusters (MPs) (CD68,
CD14, and CSF1R), two conventional DC subclusters (cDCs)
(CLEC9A and LAMP3), and one plasma cell-like DC subcluster
(pDC) (CLEC4C) (Steen et al., 2021) (Figure 2). They affect tumor
growth and behavior through their interaction with tumor cells,
thereby affecting the survival rate of patients.Themicroenvironment
of T-cell lymphoma includesmultiple cell types, extracellularmatrix,
and soluble factors (Giudice, 1967).

5.2 T cells and NK cells

In the development and progression of lymphoma, the innate
and adaptive immune systems work in concert. The most important
effector cells are NK cells and T cells (Taylor and Gribben, 2015).
Available evidence suggests that due to the heterogeneity of the
immunological profile of TME, the composition of T-cell and NK-
cell specific genes that characterize T-cell phenotype can effectively
predict the prognosis of DLBCL patients (Autio et al., 2021).

5.2.1 NK cells
The accumulation of lactate in the lymphoma

microenvironment creates an acidic environment that is an
effective inhibitor of T and NK cell function and survival. Some
mouse studies have confirmed that tumors with reduced lactate
production develop significantly slower compared to control
tumors. The pathophysiological concentration of lactate prevents
the upregulation of nuclear factor of activated T cells (NFAT) in T
cells and NK cells, reduces the infiltration of IFN-γ-producing T
cells and NK cells (Brand et al., 2016), and diminishes the immune-
surveillance role of T cells andNK cells. In B-cell lymphomas, lactate
accumulation and decreased pH in the TME lead to a progressive
loss of IFN-γ production by NK cells. Transfer of cells to a normal
microenvironment or systemic alkalinization of lymphoma mice
with oral bicarbonate restores IFN-γ expression by lymphoma-
derived NK cells, and the number of NK cells in tumor-growing

lymphoid organs will increase. Reactivation of NK cell-dependent
IFN-γ expression can be achieved by reversing acidosis, significantly
delaying tumor growth (Pötzl et al., 2017). Secondly, lactate reduces
the intracellular pH of T cells, which can mechanistically affect the
transcription of glycolysis-related enzymes, interfere with the rate
of T cell glycolysis and proliferation, and thus reduce the activity
of basic cellular metabolic pathways (Uhl et al., 2020). Finally, the
NAD: NADH ratio is a key point in the metabolic control of T
cells. LDH reduces nicotinamide adenine dinucleotide (NAD+)
to NADH in the presence of sufficient lactate, thus generating
a low NAD: NADH ratio within the cell. Lactate is depleted of
the NAD-dependent enzymatic reactions of glyceraldehyde 3-
phosphate dehydrogenase GAPDH and glyceraldehyde 3-phosphate
dehydrogenase PGDH reactions and deprived of glucose-derived
serine by this reduction stress. Eventually, lactate will be unaffected
by microenvironmental acidification. It continues to impair T
cell proliferation and keeps T cells in an inhibited, pro-tolerant
state (Quinn et al., 2020). Metabolic profiles in EBV-infected B
lymphoma cells show reducedNAD+/NADHratios (Bonglack et al.,
2021). In a study of Burkitt lymphoma, it was demonstrated that
the use of LDH-specific inhibitors could result in a reduction in
MYC protein levels through NAD/NADH-dependent inhibition of
sirtuin-1, thereby depriving BL cells of the most important survival
signal (Vettraino et al., 2013). Consequently, in lymphoma, lactate
plays a pivotal role inmaintaining the optimal NAD/NADHbalance
within the cells. The above process is shown in Figure 3.

5.2.2 CD8+ T cells
For CD8 cytotoxic T cells, which play a central role in immune

monitoring, they are cytotoxic effector cells (CTLs) (Töpfer et al.,
2011). T cell receptors bind to antigenic peptides on major
histocompatibility complex-like molecules (MHC) to activate T
cells. Upon recognition by MHC class I molecules, activated CD8
cytotoxic T cells can efficiently destroy target cells usingmechanisms
such as perforin (van den Broek et al., 1996). Lymphoma employs
a variety of strategies to induce CD8+ T cell incompetence in
TME. Extracellular acidification inhibits the function of CD8+ T
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FIGURE 3
How does lactate affect the function of T cells and NK cells.

lymphocytes (Ippolito et al., 2019) (Figure 4). Mechanistically, lactic
acidosis inhibits the T cell receptor-triggered JNK/c-Jun and
P38 pathways. This pathway is essential for IFN-γ production,
and thereby impairing the function of CD8+ T lymphocytes
(Mendler et al., 2012). In addition to this, the anti-tumor immune
response of CD8+ T cells is influenced by altered pyruvate utilization
and succinate signaling. An experiment established an in vitro
system in which, under normal conditions, CD8+ T cells rely on
pyruvate carboxylase (PC) to convert pyruvate to mitochondrial
oxaloacetate to replenish TCA circulating intermediates. It also
shunts succinate from the TCA cycle to initiate autocrine signaling
via succinate receptor 1 (SUCNR1), a proinflammatory G-protein-
coupled receptor, which promotes the production of cytotoxic
molecules by T cells to facilitate tumor killing. However, lactate
restores the program to the traditional TCA cycle, whereby
pyruvate utilization is converted from PC to PDH and succinate
to fumarate (Elia et al., 2022).

However, as research continues, it has been found that
lactate reveals a dual role. Lactate has also shown unusual
immunoprotective effects in antitumor immunity. Lactate acts
as a physiological carbon source for activated CD8+ T cells, as
shown by in vitro and ex vivo mass spectrometry isotope tracer
analysis using customized cell culture media (Kaymak et al., 2022).
In addition to serving as a fuel for tumor-infiltrating CD8+ T
lymphocytes, lactate can also induce T cell stemness and reduce
apoptosis of CD8+ T cells during expansion through epigenetic
regulation of T cell factor 7 (Tcf7), a key transcriptional regulator
of T cell fate. Single-cell transcriptomic and flow cytometry
analyses and ex vivo cultures of CD8+ T cells derived from mouse
splenocytes and human PBMCs revealed that lactate inhibits histone
deacetylase inCD8+ T cells and leads to increasedTCF-1 expression.
This transforms them into potent anti-tumor immune cells, a
subpopulation of CD8+ T cells that express stem cell-like TCF-1
(Feng et al., 2022).

5.2.3 CD4+ T cells
CD4+ T cells function mainly as paracrine, cytotoxic and

regulatory agents in the immune microenvironment of lymphoma.
CD4+ T helper cells are involved in the co-stimulation of effector
lymphocytes and the activation of APCs after recognition of tumor
antigens presented onMHCclass 2molecules. It enhances the ability
of DCs to induce cytotoxic T lymphocyte responses, stimulates
clonal expansion of activated CTLs through IL-2 secretion, and
enhances macrophage and NK immune surveillance through IFN-γ
production (Vettraino et al., 2013). In addition, it may have cytolytic
activity itself. An animal model of B-cell lymphoma suggests that
the key to the establishment of anti-TME is CD4+ T cells and
that CD4+ T cells are able to predict patient prognosis (Ding et al.,
2012).

In CD4+ T cells, lactate promotes the differentiation of CD4+ T
cells towards regulatory Treg cells to maintain their suppressive
activity. It has been shown that one of the important mechanisms
by which CD4+ T cells utilize lactate to affect the Th17/Treg ratio
is an increase in the intracellular 2HG/α-KG ratio (Zhang et al.,
2023) (Figure 5). CD4 + T cells take up lactate via MCT1 and
accelerate the intracellular metabolism of lactate by inducing
increased expression of LDHB in the cytoplasm, which catalyzes
the dehydrogenation of lactate to generate pyruvate, accompanied
by the conversion of NAD + to NADH. The latter enters the
mitochondria and participates in the tricarboxylic acid cycle. In
addition, lactate significantly increased the mitochondrial LDHA
level in CD4+ T cells, promoting the conversion of NADH to NAD
+ as well as the conversion of α-KG to 2HG. Abnormally increased
2HG increases the proportion of Treg by inhibiting ATP5B-
mediated mTOR phosphorylation and HIF-1α synthesis, resulting
in insufficient ubiquitination and degradation together with Foxp3
(Zhang et al., 2023). Tregs have flexible metabolic patterns. Tregs
can use metabolites from TME (such as lactate) as alternative
energy substances to maintain their inhibitory ability in harsh
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FIGURE 4
How lactate affects the function of CD8+ T cells.

environments (Watson et al., 2021). In a low glucose environment
with high glycolysis in MYC amplified tumors, Tregs actively absorb
lactate through MCT1, promoting NFAT1 translocation into the
nucleus, thereby upregulating Programmed cell death-1 (PD-1)
expression, while PD-1 expression in effector T cells is inhibited
(Kumagai et al., 2022). In addition, in low glucose, lactate-rich
environment, the Treg transcription factor Foxp3 reprograms T cell
metabolism by inhibiting Myc and glycolysis, enhancing OXPHOS,
and nicotinamide adenine dinucleotide oxidation, giving Tregs a
metabolic advantage. The addition of lactate to Tregs resulted in
an increase in OCR and a decrease in ECAR, which once again
proves that lactate triggers stronger OXPHOS. This powerful ability
to oxidize exogenous lactate greatly improves the survival rate
of Tregs in TME (Angelin et al., 2017). Finally, the regulation of
Tregs production relies on the mechanism of lactate acetylation
through the Lys72 site in MOESIN. By transforming growth factors
(TGF) - β enhances TGF in Treg cells- β Signal transduction,
thereby improving their interaction with downstream SMAD3
signal transduction (Gu et al., 2022). Finally, lactate improved the
differentiation of Tregs and immature T cells through acetylation,
increased the expression of FOXP3, and enhanced the function of
Tregs inhibititory effect on T cell proliferation. Therefore, lactate
can be identified as an essential small molecule for Tregs to inhibit
tumor immunity.

5.2.4 Treg cells
Tregs are highly immunosuppressive CD4 T cells. Tregs

are a double-edged sword in regulating immunity, either
protecting immune homeostasis or suppressing immune responses
(Vignali et al., 2008). Higher levels of Tregs may be associated with
better outcomes in follicular lymphoma (FL), germinal center-
like DLBCL, and classical Hodgkin’s lymphoma, but they have

a negative prognostic impact in non-germinal center DLBCL
(Tzankov et al., 2008). In the early stages of immune escape of
lymphoma, Tregs can regulate the immune response, inhibit the
activation of other immune cells, and maintain the stability of the
immune system, which can potentially impact survival rate and
immunochemotherapy resistance (Töpfer et al., 2011; Nishikawa
and Sakaguchi, 2014). In B-cell non-Hodgkin’s lymphoma (FL
and DLBCL), the main subtype of tumor-associated Tregs is
activated Tregs. The distinguishing feature between them and
resting Tregs in peripheral blood is their strong immunosuppressive
ability and co-expression of checkpoint receptors (Spasevska et al.,
2023). The number of Tregs in peripheral blood and tumor
tissue of DLBCL patients significantly increased compared to
the normal control group, and the number of Tregs significantly
decreased after treatment. Tregs can enhance multiple inhibitory
functions of CD8+ CTLs, such as granule enzyme secretion and
degranulation (Su et al., 2022).

5.3 Macrophage

Tumor-infiltrating macrophages (also known as tumor-
associated macrophages, TAM) are usually the most abundant
immune cells in the TME in hematologic malignancies, including
lymphomas (Franklin et al., 2014; Cassetta and Pollard, 2018).
Macrophages are classified as M1/classically activated and
M2/alternately activated. Based on the M1 and M2 phenotypes
of TAM, M1 macrophages were found to have tumor cell killing
and anti-angiogenic effects. However, M2 macrophages are
preferentially located in the hypoxic zone of the tumor, which
has a strong inflammatory profile (Serna et al., 2023; Cai et al.,
2012), and they perform immunosuppression and promotes
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FIGURE 5
How lactate affects Th17/Treg ratio.

angiogenesis and metastasis through the expression of HIF-1α,
which induces the transcription of vascular endothelial growth
factor (VEGF), fibroblast growth factor (FGF), etc (Brigati et al.,
2002; Marinaccio et al., 2014). In tumors, TAM is mainly composed
of the M2 subtype (Mantovani et al., 2017). Various studies have
demonstrated that the pro-angiogenic M2 TAM found in DLBCL
(Shen et al., 2016), with increased numbers, is an independent
predictor of shorter overall survival (OS) and progression-
free survival (PFS) in lymphoma patients and is strongly
associated with poor prognosis (Wada et al., 2012; Nam et al., 2014;
Marchesi et al., 2015; Steidl et al., 2010). This depends specifically
on the macrophage phenotype, either M1 (CD68/HLA-DR) or M2
(CD68/CD163) (Riihijärvi et al., 2015). Their results showed that
higher CD68 expression of TAM in DLBCL patients was associated
with worse outcomes (Cai et al., 2012). In conclusion, TAM plays
an active role in enhancing angiogenesis in human lymphoma. It
not only promotes the generation, repair, and remodeling of blood
vessels and lymphatic vessels, and the growth and proliferation of
lymphoma tumor cells, but also inhibits adaptive immunity, worsens
patient prognosis, and enhances drug resistance (Xiong et al., 2022;
Ribatti et al., 2024).

A critical factor in maintaining the tumor-promoting activity
of TAM is elevated lactate levels. The mechanism by which
lactate induces TAM-promoting tumor expansion is primarily
through the production of VEGF and the promotion of TAM
polarization to an M2-like phenotypic tumor-promoting state
(Stockmann et al., 2008). In M1 TAM, lactate inhibits its
function by decreasing the expression of IL-6, iNOS, and CCL2
(Certo et al., 2021). For M2 TAM, the expression of 2 transcription
factors (HIF-1α and HIF-2α) is key (Pugh and Ratcliffe, 2003;
Murdoch et al., 2008). Lactate signaling induces HIF-1α-dependent
polarization of macrophages and activates the lactate/HIF-
1α/VEGF signaling axis, which upregulates the expression of the

arginine metabolizing enzyme arginase 1 (Arg 1) to provide a
substrate for cancer cell proliferation to support tumor growth
and upregulates VEGF to induce neovascularization to achieve
a tumor-promoting state (Chang et al., 2001; Qian and Pollard,
2010). In addition, this signaling axis also induces a variety of other
genes, including Fizz1, Mgl1, and Mgl2 (Colegio et al., 2014b).
Second, macrophages express G protein-coupled receptor 132
(GPR132) at high levels on their surface. When macrophages
sense extracellular lactate, it induces the expression of cyclic
adenosine monophosphate (cAMP) and the early inhibitory protein
(ICER), which upregulates ARG1, VEGF, and HIF-1α, and can
also lead to M2 macrophage polarization (Chen et al., 2017).
Finally, lactate actively downregulates Atp6v0d2 expression in TAM
through mTOR-dependent inhibition of TFEB, a transcriptional
regulator of lysosomal proteins. This inhibition mediates lysosomal
degradation of HIF-2α in macrophages, and maintenance of
HIF-2α leads to enhanced tumor vascularization and growth
(Liu et al., 2019).

Another recent study found that lactate can also be HIF1α-
independent under prolonged hypoxic conditions. NDRG3 is
spared from degradation in a PHD2/VHL-dependent manner by
binding to lactate, similar to HIF1α under normoxic conditions.
This leads to increased NDRG3 and activation of the RAF-ERK
pathway (Certo et al., 2021). Moreover, the B-cell junction of PI3K
(BCAP) exacerbates the above process by promoting the reparative
transformation of macrophages through histone lactonylation.
It controls the pathophysiological responses associated with
hypoxia, including inflammation and angiogenesis in turn
(Irizarry-Caro et al., 2020; Chen et al., 2021).

Lactate-derived histone lysine lactylation (Kla) has a regulatory
role in gene expression in macrophages. Kla levels are elevated
when increasing concentrations of lactate treat the model system of
bacterial-exposedM1macrophages.That is, in the aerobic glycolysis
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that occurs during polarization of M1-type macrophages, lactate
initiates a “lactate clock” by mediating the modification of the
lysine at position 18 of histone H3 (Zhang et al., 2019; Latham et al.,
2012). This modification drives the expression of M2-like genes
during the late phase of M1-type macrophage polarization. ARG1
expression is also supported at these later stages. In addition, histone
acetylation levels in the TME are associated with the production of
M2 macrophage-related cancer genes (Zhang et al., 2019).

5.4 Dendritic cells

DCs are activated after phagocytosis and processing of antigens
and are potent stimulators of the immune response against
foreign antigens (Austyn, 1998). They upregulate MHC, co-
stimulatory molecules, and adhesion molecules during effective
antigen presentation and can stimulate naïve T cells. However,
the role of DCs in lymphomagenesis is not clear, though their
presence is indispensable. DCs influence tumor growth through
interactions with tumor cells and T lymphocytes. Recent evidence
suggests that in malignant hematologic diseases, DC loads tumor-
specific antigens and generates specific anti-tumor T-cell responses
(Davison, 2010). One study found that in NHL, the expression of
CD62L and CCR7 (receptors essential for homing lymph nodes)
was significantly reduced, leading to phenotypic alterations reduced
numbers of DCs, and loss of tumor control (Fiore et al., 2006).

However, several studieshave foundthatDCsalsopromotes localT-
cell tolerance and an inflammatory environment. Higher ECOG scores
and poorer outcomes in lymphoma patients have been associated with
CD14+ DCs in tumor tissue (Gršković et al., 2022). Furthermore, in the
Eμ-Mycmodel, theC/EBPβ transcription factor controls the expression
of lymphoma-associated cytokines and leads to the suppression of
T-cell responses to lymphoma by DCs (Rehm et al., 2014). Another
study found that mice lacking the co-stimulatory receptor CD137,
which is involved in the crosstalk between DCs and germinal center B
cells, have a strong susceptibility to germinal center B-cell lymphomas
(Middendorp et al., 2009). Finally, in T-cell lymphocyte proliferation,
monocyte-derived cells fail to mature into DCs and protect tumor cells
by preventing their death due to tumor IL-10 secretion (Wilcox et al.,
2009). These findings demonstrate that the absence of DCs delays the
progression of lymphoma.

High concentrations of lactate in the TME have been
shown to contribute to the maturation and differentiation
of DCs, enhance co-stimulatory molecule expression, and
improve the uptake, processing, and presentation of antigens
(Vermeulen et al., 2004; Tong et al., 2011). In contrast to this positive
effect, most studies prefer an inhibitory effect.

First, lactic acidosis can both delay monocyte differentiation
into DCs (Certo et al., 2021), impeding DC maturation, and induce
monocyte differentiation into DCs with an immunosuppressive
phenotype during antigen-specific autologous T cell stimulation
(Nasi et al., 2013; Sutherland, 1988; Erra Díaz et al., 2020). In both
allogeneic and autologous experimental settings, it was observed
that lactate altered the antigen expression of DCs (immature/mature
DCs, Langerhans cells) and strongly inhibited antigen presentation.
In addition, a significant reduction in interleukin 12 (IL-12)
secretion by DCs was found in both TADCs in MCTS co-
cultures and controls supplemented with lactate during activation

(Gottfried et al., 2006). In mouse gliomas, the glycolysis inhibitor
diclofenac treated the inability of DCs to produce IL-12 in response
to Toll-like receptor stimulation in vitro (Chirasani et al., 2013).

Secondly, Brown et al. reported that lactate activates G protein-
coupled receptor 81 (GPR81, also known as hydroxycarboxylic
acid receptor 1 or HCAR1) in DCs, which inhibits cell-surface
presentation of MHCII, exerts a paracrine effect and prevents
the presentation of tumor-specific antigens to other immune cells
(Brown and Ganapathy, 2020). Raychaudhuri et al. found that
lactate mediates the production of IL-12 through the intracellular
GPR81 receptor on the surface of plasma cell-like dendritic cells
(pDC). Or, the activation of calmodulin phosphatase signaling
is triggered directly by cytoplasmic input from pDC via cell
surface MCT proteins. Ultimately, it leads to an increase in
free cytoplasmic calcium ions. It can inhibit pDC activation
and type I IFN production, and affect the cellular metabolism
required for effective pDC activation, leading to a tolerant
phenotype (Vignali et al., 2008).

Finally, lactate contributes to the induction of Foxp3+ CD4+

Tregs, the major immunosuppressive cell subset in the TME, by
enhancing the metabolism of tryptophan and the production of
kynurenine in pDC (Raychaudhuri et al., 2019). In conclusion, in
DC, excessive lactate levels in the TME impair induced monocyte
differentiation and inhibit DC activation, cytokine production, and
initiation of T cells.

5.5 Myeloid-derived suppressor cells

Myeloid-derived suppressor cells (MDSC) are a diverse group of
immature myeloid cells. In addition to Tregs, MDSCs are another cell
population that promotes an immunosuppressive microenvironment
(De Veirman et al., 2014; Rodriguez et al., 2010; Almand et al., 2000)
and plays a role in tumor induction and progression as well as
immune evasion. In different lymphoma subtypes, an increase in the
number of MDSCs leads to cancer progression and is associated with
poor clinical outcomes (Betsch et al., 2018). This immunosuppressive
effect was found to be associated with MDSC secretion of T-
promoting cytokines and chemokines in mouse lymphoma studies
(Schlecker et al., 2012). In addition, MDSC may play an important
role in tumor tolerance as T-specific tolerogenic antigen-presenting
cells (APCs) (Serafini et al., 2008).

Lactate in TME in the form of histone H3K18 lactylation
modification promotes the expression of RNA methyltransferase
METTL3 in tumor-infiltrating myeloid cells (TIMs). In addition,
the zinc finger structural domain of METTL3 is lactonated.
These effects promote mRNA methylation of Jak1 and enhance
activation of the JAK1-STAT3 signaling pathway by interacting
with YTHDF1 to increase translation efficiency. It promotes
the immunosuppressive function of TIMs and mediates tumor
immune escape (Xiong et al., 2022).

In NHL, MDSCs are regulated by NK cells. MDSCs express
NKG2D ligands and activates NK cells to produce large amounts
of IFN-γ (Sato et al., 2015; Nausch et al., 2008). This cell subset is
inversely proportional to the number of NK cells and increases
with NK cell depletion. Lactate inhibits NK cell function and
increasesMDSC,which can contribute even further to the inhibitory
microenvironment (Husain et al., 2013).
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6 Lactate affects immune checkpoints

6.1 PD-1

PD-1 is a surface inhibitory receptor expressed by macrophages,
DCs, and T cells (Freeman et al., 2000). PD-1 binds to PD-
L1 (expressed on the surface of APCs) and inhibits T-cell
cytokine production and cell-cycle progression (Keir et al.,
2008). The prevalence of PD-1 expression in DLBCL ranges
from 39.5% to 68.6% and is usually increased on tumor-
infiltrating T cells (Yamamoto et al., 2008), with higher levels
being associated with poorer prognosis (Zhang et al., 2015;
Zhang et al., 2016). PD-1 blockade has shown promise in phase
1 trials in DLBCL (Xu-Monette et al., 2018). Furthermore,
numerous experiments have shown that PD-L1 is similarly
highly expressed in lymphoma cells (Li et al., 2018). The DLBCL
subgroup with PD-L1 is associated with a poor prognosis
compared to the PD-1-negative subgroup (Laurent et al., 2015;
Kiyasu et al., 2015).

It has been shown that M2-like macrophages, Treg cells, and
certain inhibitory molecules (e.g., PD-L1) can be involved in
mediating HIF1α-VEGF signaling pathway activity, leading to more
active lactatemetabolism (De Saedeleer et al., 2012; Seth et al., 2017;
Vaupel and Multhoff, 2016). Conversely, lactate can also impact
PD-1 expression. Lactate regulates the active checkpoint of Treg
cell function in TME by upregulating PD-1 expression. As shown
previously, Treg cells acquire higher PD-1 expression than effector T
cells in highly glycolytic tumors. This mechanism means that lactate
can upregulate PD-1 expression to enhance Treg cell function in
TME and inhibit effector T cell activity, which promotes immune
escape from lymphoma (Kumagai et al., 2022). Similarly, Feng et al.
reported that tumor cell-derived lactatemediates the upregulation of
PD-L1 through activation of its receptor GPR81, which is dependent
on LDHA, and this in turn regulates macrophage polarization
and allows tumor cells to evade cytotoxic T-cell targeting
(Feng et al., 2017).

6.2 Cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4)

CTLA-4 is an inhibitory surface receptor with significantly
elevated expression in lymphoma tissues and is an indicator for the
early diagnosis and clinical treatment of lymphoma. It increases the
proportion of lymphoma stem cells and induces the proliferation
of Treg cells through the TGF-β pathway, which promotes the
growth of lymphoma and recruits more immunosuppressive cells.
CTLA-4 inhibits anti-tumor immune response and is closely
related to the malignancy of lymphoma (Chen et al., 2021).
Lactate promotes CTLA-4 expression in a Foxp3-dependent
manner and promotes ubiquitin-specific peptidase 39 (USP39)-
mediated RNA splicing in tumor-infiltrating Treg cells. This lactate-
Foxp3-USP39-CTLA-4 signaling axis mediates high expression
in tumor-infiltrating Treg cells in order to maintain Treg cell
immunosuppressive function (Ding et al., 2024).

6.3 V-domain ig suppressor of T-cell
activation (VISTA)

VISTA is a macrophage-negative immune checkpoint regulator
that is highly expressed in tumor-infiltrating myeloid cells. In T-cell
lymphomas, VISTA expression (88.1%) was found predominantly in
CD68+ macrophages, and it was much higher than the expression
of PD-L1 (68.7%) (He et al., 2021; Murga-Zamalloa et al., 2020).
In a study of B-cell lymphoma, VISTA was found on the surface
of monocytes from all patients. Its activation drove macrophages
towards an M2-like pro-tumorigenic phenotype and promoted
cancer cell phagocytosis. It also reduces the antigen-presenting
ability of T cells at acidic pH (Lin et al., 2024), and mediates
the binding of multiple histidine residues along the edge of the
extracellular structural domain of VISTA to the adhesion and
co-inhibitory receptor P-selectin glycoprotein ligand-1 (PSGL-1),
which selectively participates in the inhibition of T cell proliferation
and cytokine production. The development of acidic pH-selective
antibodies against VISTA or its receptor PSGL-1 has been shown
to reverse immunosuppression in vivo (Johnston et al., 2019).
Considering that lactate can influence the pH of TME (Volk et al.,
1993), it may affect the immune content associated with VISTA.

7 Important signaling pathways
involved in lactate mediated immune
regulation

7.1 mTOR signaling pathway

Activation of the PI3K/AKT/mTOR pathway occurs in
lymphoma and is associated with p53, HIF-1α, and MYC
(Sander et al., 2012; Argyriou et al., 2011; Wong et al., 2010;
Rasul et al., 2012). A study found that mice expressing active Akt in
lymphocytes progressively develop autoimmunity and lymphoma
(Rathmell et al., 2003).mTOR is a ubiquitously expressed and highly
conserved serine/threonine kinase downstream of PI3K/AKT.
Transcription of several metabolic genes requires the involvement
of mTOR complexes 1 and 2 (mTORC1 and 2) activation
(Inoki et al., 2005). Sustained activation of mTORC1 occurs
in a large number of hematopoietic and non-hematopoietic
malignancies (Sabatini, 2006). It controls of a range of metabolic
processes including glycolysis and mitochondrial metabolism
(Laplante and Sabatini, 2013; Guertin and Sabatini, 2007).Therefore,
aberrant activation of the PI3K/AKT/mTOR signaling pathway
leads to enhanced metabolic activity in NHL (Blachly and
Baiocchi, 2014). Lactate concentration can reflect the activation
of mTOR signaling pathway in B-cell lymphoma (Lee et al., 2013).
Increased lactate can result in reduced glucose consumption,
upregulation of mitochondrial respiratory genes, and inhibition
of mTORC1 activity (Erra Díaz et al., 2020). It promotes the
differentiation of monocyte-derived DCs.

Following lactate efflux, mTORC1 is inhibited, which inhibits
the production of pro-inflammatory cytokines and the cytotoxic
activity of T cells (Balgi et al., 2011). Extracellular acidosis inhibits
the mTOR signaling pathway and downregulates protein synthesis
(Balgi et al., 2011; Pouysségur et al., 1982) thereby impairing
immune cell function. For example, impaired NKT cell function
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leads to a reduction in effector factors (Xie andBai, 2016), interfering
with the antitumor effects of natural NK.

7.2 NF-κb signaling pathway

Changes in lactatemetabolismcanbe associatedwithdysregulation
ofNF-κB signaling (Kooshki et al., 2022). Lactate flows into endothelial
cells throughMCT1 to induce the activation of NF-κB and support the
drive of tumor angiogenesis (Scott and Gascoyne, 2014). The majority
of B-cell lymphomas are known to activate constitutive phenotypes
of the NF-κB pathway, which in turn promotes sustained lymphocyte
proliferation and survival. Recent studies have confirmed that NF-κB is
expressed inDLBCLandcorrelateswithpoorprognosis. It is considered
to be an important pathogenic factor and one of the major therapeutic
targets in lymphoma (Scott andGascoyne, 2014; Zhang et al., 2016; Jost
and Ruland, 2007; Davis et al., 2001; Yu et al., 2017; Ben-Neriah and
Karin, 2011).

NF-κB signaling pathway is involved in the regulation
of lactate on immune cells. Lactate can regulate macrophage
phenotype through its receptor GPR81-mediated AMPK/LATS
activation, which inhibits lipopolysaccharide (LPS)-stimulated
NF-κB (Yang et al., 2020). Furthermore, Puig-Kroger et al.
demonstrated that lactate impairs the maturation of MDDC
phenotype and function induced by LPS, which is mediated by
the inhibition of NF-κB activation. Furthermore, the pathway
has been demonstrated to reduce the production of inflammatory
cytokines (CCL2 and TNFα) in monocytes (Jost and Ruland, 2007;
Peter et al., 2015; Dietl et al., 2010).

8 Novel therapeutic approaches
targeting lactate metabolism

In the treatment of lymphoma, lactate metabolism-targeted
drugs, such as LDH inhibitors, are currently being developed.
Cancer cells are enthusiastic about converting excessive glucose into
lactate through LDH absorption. LDH inhibitors can effectively
block glycolysis and ATP production, directly affecting tumor
growth and progression and reducing tumor acidity. Inhibition
of LDHA activity reduces lactate production and helps reduce
lactate accumulation in the TME, thus potentially reducing the
acidic burden in the TME and improving immune cell function.
In the latest mouse experiment, it was found that inhibiting
LDH can effectively suppress aerobic glycolysis and reprogram
T-cell metabolism. Due to the permanent deficiency of LDHA,
the development of effector CD8+ T cells with strong anti-tumor
activity is hindered (Hermans et al., 2020). Inhibition of LDHA
by siRNA or by a small molecule inhibitor (FX11) was found in
one study to reduce ATP levels and induce significant oxidative
stress and cell death. When combined with the NAD synthesis
inhibitor FK866, FX11 induced lymphoma regression. Thus, LDHA
inhibition by FX11 represents a promising and tolerable treatment
for LDHA-dependent tumors (Le et al., 2010). The ubiquitin ligase
F-box and WD repeat domain contains 7 (Fbw7) targeting various
oncogenic proteins for protein hydrolysis. It may support future
ABC-DLBCL therapy by targeting LDHA-related inhibition, such as
aerobic glycolysis reprogramming, in DLBCL (Yao et al., 2022).

In addition, the expression of MCT promotes lactate export.
In one study, AZD3965-mediated disruption of MCT1 activity was
found to result in suppression of NHL cell viability and extracellular
lactate accumulation, along with increased apoptotic cell death. It
suggests that MCT1 could be a target for the treatment of non-
Hodgkin’s lymphoma (DLBCL) with high expression of MCT1/low
expression of MCT4 (Afonso et al., 2019).

However, lactate-targeted monotherapy has limited therapeutic
efficacy due to its off-target effect. Therefore, combining lactate
targeting with other therapies (e.g., mTOR inhibitors, anti-PD-
1/PD-L1 therapies, anti-CTLA-4 therapies) may be an alternative
treatment strategy.

Advanced cell therapy (ACT) using chimeric antigen receptor
(CAR)-engineered T cells is highly effective in the treatment of
refractory lymphoid malignancies (Chavez et al., 2019; Zhang et al.,
2020). However, only a minority of patients experience long-
term remission (Schuster et al., 2019; Neelapu et al., 2017). A major
obstacle to long-term cancer remission with CAR-T cell therapy is
the poor persistence of CAR-T cells (Byrne et al., 2019). Although
immune checkpoint inhibitor therapy has been proposed to restore
exhausted T cell function, such therapy has limitations (Balar and
Weber, 2017). Therefore, the combination of Car-T with targeted
lactate production (inhibition of LDH) or secretion (inhibition of
MCT) has great potential and value in cancer treatment. Activation
of CAR genetically engineered T cells occurs in a harsh tumor
environment with low pH immune suppression. There have been
proposals to limit lactate secretion through a combination of
targeted MCT therapy as a potential adjuvant for T cell adoptive
transfer. Diclofenac can selectively inhibit tumor cell metabolism
and proliferation by suppressing MCT4 (Moreno-Sánchez et al.,
1999), with little effect on T cell cytokine production (Renner et al.,
2019). The metabolic demands of tumor cells and activated T cells
result in the production of lactate. CAR T cells express high levels
of MCT1 and MCT4 upon activation. Expression of MCT proteins
promotes lactate output. Pharmacological blockade of MCT1 has
been shown to selectively impair B-cell tumor growth without
impeding the antitumor potential of CD19-specific CAR T cells.
This makes combining MCT inhibitors with CAR-T therapies a
possible treatment against B-cell malignancies (Lopez et al., 2023).
In addition, in adoptive immunotherapy, eliminating LDHA at the
germline level produces T-cell offspring with limited anti-tumor
function, and the temporal regulation of LDH activity is one of the
important factors to consider (Hermans et al., 2020). Finally, recent
studies have shown that myopeptides can act as a novel factor to
buffer TME and improve the quality of T cells amplified in vitro by
adoptive immunotherapy (Tu et al., 2021) (Figure 6).

9 Conclusion

Tumor cells and other cell types in the microenvironment
not only compete for nutrients but also simultaneously produce
immunosuppressive metabolites (e.g., lactate) that lead to
immune escape (Ngwa et al., 2019). Lactate is mainly produced
within the TME by cells that utilize aerobic glycolysis (Warburg
metabolism). Otto Warburg was one of the first scientists to identify
lactate as a characteristic product released by tumor cells. Tumor
tissues contain significantly higher levels of lactate than normal
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FIGURE 6
New treatments of lactate metabolism.

tissues: the immune response changes in response to significant
alterations in tissue metabolism. Immune cells can sense various
signaling changes in the TME and produce specific immune
functions in response to these stimuli. Meanwhile, higher lactate
levels are strongly associated with a poorer prognosis in cancer
patients. Increasing evidence suggests that lactate in the TME plays
an important role in the regulation of metabolic pathways, immune
responses, and cellular signaling, and severely affects tumor growth,
progression, drug resistance, and even epigenetics.

Due to its physiological background of activation, T cells may
be an important determinant of overall therapeutic efficacy. Tumor
cells and activated T cells produce lactate at a high rate, leading to
acidic and hypoxic TME and producing immunosuppressive effects.
More seriously, there is no bottleneck for lactate accumulation
in activated T cells. And research has found that MCT-1 is
involved in this process. In addition, the dynamic regulation of
MCT1 and MCT4 is inhibited in acidic environments. When the
MCT subtype is inactivated, H ions and lactate accumulate inside
the cell, ultimately inhibiting impaired glycolysis. Maintaining
an acidic state may trigger an increase in the threshold of
autoimmune response (Wu et al., 2020). Therefore, the combination
of CAR-T cell therapy and acidic immunosuppressive therapy in
TME has obvious advantages and deserves attention and further
discussion. However, one of the current challenges is that T cells and
tumor cells share many common metabolic characteristics, such as
compounds that inhibit MCT subtypes that may be shown to have
antagonistic effects on T cell-mediated responses. To improve the
limitations of its therapeutic effect, in addition to improving the
persistence of T cell effects after adoptive transfer, the enhancement
of anti-tumor function after infusion is also a topic that we need to
continue exploring.

In this context, the combination of targeted lactate metabolism
and immunotherapy represents a promising therapeutic approach
for lymphoma. Consequently, it is essential to elucidate the
regulation of lactate and its metabolism on the metabolic profile

of immune cell function in TME. This is not only important for
improving the prognosis of immunotherapy but also provides useful
evidence for the choice of therapeutic strategies. However, further
preclinical studies are still needed to explore the potential of lactate
metabolism as a therapeutic target, which is a future challenge for
lactate-targeted therapy.
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