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Nicotinamide phosphoribosyl transferase (NAMPT) is a rate-limiting enzyme in
the mammalian nicotinamide adenine dinucleotide (NAD) salvage pathway, and
plays a vital role in the regulation of cell metabolic activity, reprogramming,
aging and apoptosis. NAMPT synthesizes nicotinamide mononucleotide (NMN)
through enzymatic action, which is a key protein involved in host defense
mechanism and plays an important role in metabolic homeostasis and cell
survival. NAMPT is involved in NAD metabolism and maintains intracellular NAD
levels. Sirtuins (SIRTs) are a family of nicotinamide adenine dinucleotide (NAD)-
dependent histone deacetylases (HDACs), the members are capable of sensing
cellular NAD+ levels. NAMPT-NAD and SIRT constitute a powerful anti-stress
defense system. In this paper, the structure, biological function and correlation
with diseases of NAMPT are introduced, aiming to provide new ideas for the
targeted therapy of related diseases.
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1 Introduction

In 1957, Preiss and Handler the first reported that the identification of NAMPT as
an enzyme involved in the biosynthesis of NAD (Garten et al., 2015; Wang and Miao,
2015; Preiss and Handler, 1957). In 1994, the NAMPT coding gene was screened from the
cDNA genebank of human peripheral blood lymphocytes for the first time (Samal et al.,
1994), and was named as the pre-B-cell colony enhancing factor (PBEF) (Sun et al.,
2013). In 2005, it was discovered that NAMPT is highly expressed in visceral adipose
tissue, with the NAMPT level of plasma was significantly correlated with the prognosis
of obese patients. Consequently, NAMPT has been considered as an adipokine and
renamed visfatin (Chang et al., 2011). Although NAMPT, PBEF, and visfatin have been
used in the literature, NAMPT is the official name for the protein and gene, approved
by the HUGO Gene Nomenclature Committee and the Mouse Genomic Nomenclature
Committee (Fukuhara et al., 2005).

NAMPT is widely expressed in human marrow, liver, muscle, and various other
organs and tissues. It is also expressed in immune cells, cardiomyocytes, fibroblasts, and
neurons, among other cells (Yang et al., 2006). This widespread expression underscores the
critical role of NAMPT in both physiological and pathological states (Friebe et al., 2011).
NAMPT exists in two distinct forms: extracellular NAMPT (eNAMPT) and intracellular
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NAMPT (iNAMPT). iNAMPT, a pleiotropic protein, is
predominantly localized in the cytoplasm, nucleus, and
mitochondria, especially in neurons of the hippocampus and
cerebral cortex (Garten et al., 2015). iNAMPT expression is elevated
in brown adipose tissue (BAT), liver and kidney; moderate in white
adipose tissue (WAT), lung, spleen, testes and skeletal muscle;
and undetectable in the brain and pancreas. In the rate-limiting
process of NAD, iNAMPT can be used as a key enzyme to catalyze
biosynthesis pathway and participate in various biological processes
such as energy metabolism, antioxidant reaction, cell proliferation
and apoptosis (Chen X. et al., 2015; Liu et al., 2021). eNAMPT
performs its role as a growth factor, enzyme and cytokine. NAMPT
is an active protein in the extracellular space that promotes the
formation of pre-B cell clones and facilitates the maturation of B
cells, which is originally called PBEF. Current research indicates
that eNAMPT is essential for maintaining tissue homeostasis,
enhancing NAD levels, SIRT1 activity, and neural activation in
the hypothalamus. It is also a pivotal regulator of inflammatory
networks, promoting the release of inflammatory cytokines
(Yoshida et al., 2019; Quijada et al., 2021). eNAMPT, believed to be
derived from post-translational modification of iNAMPT, primarily
released into the plasma from adipose tissue, where it catalyzes the
synthesis of NMN. The biological activities of NAMPT have been
tested both in vitro and in vivo (Audrito et al., 2020). The biological
functions of NAMPT as a regulator of NAD have been extensively
studied in vitro (Yang et al., 2006). By regulating the biosynthetic
activity of NAD, NAMPT mediates the activity of NAD-dependent
enzymes such as acetylase (Garten et al., 2009; Koltai et al., 2010;
Pavlová et al., 2015; Chen et al., 2016; Wang and Miao, 2019),
poly (ADP ribose) polymerase (Henning et al., 2018), and CD38
(a transmembrane enzyme) (Lee and Aarhus, 1991), thereby
influencing cell metabolism, mitochondrial biogenesis, and the
adaptive responses to inflammation and oxidative stress (Chen et al.,
2016; Galli et al., 2013; Garten et al., 2015). The interplay between
NAMPT and SIRT signaling constitutes a robust defensemechanism
against various stressors (Wang and Miao, 2015). SIRTs, a family of
NAD-dependent histone deacetylases, the activation of which delays
the onset of neurodegenerative diseases, have garnered significant
attention in the neurological disorders. Previous studies have
demonstrated that NAMPT delays aging by enhancing resistance
to oxidative stress (Wang et al., 2016).

2 The crystal structure of
nicotinamide
phosphoribosyltransferase (NAMPT)

The gene that encodes NAMPT locates on human chromosome
seven between 7q22.1 and 7q31.33 with a total length of 34.7
kilobases (kb), and contains 11 exons and 10 introns with a total
nucleotide sequence length of 2,357 base pairs (bp) (Wen et al.,
2024; Sun et al., 2013). The NAMPT protein is composed of 491
amino acids and has a molecular weight of 52 kDa (kDa) (Figure 1)
(Wen et al., 2024). The protein’s structure includes 19 β-chains
and 13 α-helices, which are arranged into two distinct domains
(Murphy and Bloom, 2006). The NAMPT structure is similar to the
nicotinate phosphoribosyltransferase (NAPRTase) and quinolinate
phosphoribosyl transferase (QAPRTase) of the hyperthermophilic

archaea (Wang et al., 2006). The X-ray crystal structure shows that
NAMPT is a homodimeric protein that belongs to a dimer class
of type II phosphoribosyltransferase, and the crystal structure of
NAMPT in complex with various ligands have been elucidated.
These structures typically contain a NAMPT homodimer (Murphy
and Bloom, 2006) with two analogous active sites at the dimer
interface, where two NMN molecules bind (Murphy and Bloom,
2006). NAMPT inhibitors typically occupy the NAM-binding active
site, as well as a typical tunnel-like cavity extending from the NAM-
binding site. Notably, many NAMPT inhibitors are unique in that
they rely on the cellular efficacy of nitrogenous heterocyclicmoieties.
When the NAMPT inhibitor binds to the NAMPT protein, the
heterocycle components extend into the NAM-binding site and
simulate the covalent interaction of the natural substrate with 5-
phosphoribosyl-1-pyrophosphate (PRPP) (Khan et al., 2006).

3 Biological functions of nicotinamide
phosphoribosyltransferase (NAMPT)

In 1957, Preiss and Handler reported that NAMPT can catalyze
the synthesis of NMN (Preiss and Handler, 1957). As is well-known,
NAMPT participates in the NAD+ metabolism and maintains
the levels of intracellular NAD. By regulating the biosynthetic
activity of NAD, NAMPT influences the activity of NAD-dependent
enzymes, including poly ADP-ribose polymerase (PARP), CD38,
and SIRTs. The NAMPT-NAD and SIRTs constitute a powerful
anti-stress defense system (Garten et al., 2015). Therefore, NAMPT
is implicated in the regulation of various cellular processes,
including cell metabolism, mitosis, inflammation, and oxidation
stress (Garten et al., 2015). NAMPT can regulate the circadian
rhythm of metabolism by mediating SIRT1’s circadian regulators
(clock circadian regulator (CLOCK) and brain and muscle arnt-like
1 (BMAL1)) (Galli et al., 2013). The regulatory effect of NAMPT on
SIRT has been widely concerned (Ramsey et al., 2009).

In addition to the intracellular functions, the extracellular
functions of NAMPT have garnered attention. The expression
of NAMPT is induced by pathogen-derived lipopolysaccharide
(LPS) and host-derived inflammatory cytokines, such as tumor
necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-
6 (IL-6), modulating inflammatory responses (Busso et al., 2008;
Audrito et al., 2020; Wang et al., 2021). NAMPT influences the
immune response and inhibits apoptosis of immune cells such
as neutrophils and macrophages (Travelli et al., 2018). Although
the extracellular functional mechanisms of NAMPT have not
been definitively elucidated (Carbone et al., 2017), its potential as
a therapeutic target has been underscored due to its important
physiological functions (Figure 2).

4 Nicotinamide adenine dinucleotide
(NAD+) metabolism

Nicotinamide adenine dinucleotide (NAD+) is a pivotal
metabolite and coenzyme in a variety of metabolic pathways
and cellular processes, and present in every known form of life
(Mori et al., 2014). NAD+ serves as a crucial cofactor for non-
redox NAD+ dependent enzymes, including deacetylase, CD38 and
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FIGURE 1
Primary structure of NAMPT. Amino acid sequence of Homo sapiens’s NAMPT.

FIGURE 2
Biological functions of NAMPT.

poly (ADP-ribose) polymerase (Garavaglia et al., 2012; Grozio et al.,
2013; Wilk et al., 2020). NAD+ can directly and indirectly influence
numerous key cellular functions, including DNA repair, chromatin
remodeling and epigenetics, cell division, immune response and
inflammation, mitochondrial function and circadian rhythms,
which are critical for maintaining tissue, metabolic homeostasis
and healthy aging (Figure 3) (Rajman et al., 2018). Notably, in
a variety of model organisms, including rodents and humans,

aging is accompanied by a gradual decline in tissues and cellular
NAD+ levels (McReynolds et al., 2020). The decline in NAD+ levels
is causally linked to many age-related diseases, including cognitive
decline, cancer, metabolic disorders, sarcopenia, and frailty. These
aging-related diseases can be slowed down or even reversed by
restoring NAD+ levels. Therefore, targeting NAD+ metabolism
has emerged as a potential therapeutic approach to ameliorate
age-related diseases and extend healthy lifespan in humans.
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FIGURE 3
Cellular processes regulated by or dependent on NAD+.

NAD+ is essential for maintaining cellular energy balance
and redox state. NAD+ is continuously converted by three types
of NAD+ -consuming enzymes: NAD+ hydrolases, also known
as the NAD+ enzymes (including CD38, CD157 (also known
as bone marrow stromal cell antigen1, BST-1), and sterile alpha
and TIR motif containing 1 (SARM1)), sirtuins (Revollo et al.,
2004; Yang et al., 2007; Bowlby et al., 2012; Bruzzone et al., 2009;
Van Gool et al., 2009; Koltai et al., 2010) and the poly (ADP-
ribose) polymerases (PARPs) (Pillai et al., 2005). Metabolites of
the NAD pathway play an important roles in signaling, post-
translational modifications, epigenetic changes, and the regulation
of RNA stability (Rodgers et al., 2008; Van der Horst et al., 2004;
Bordone et al., 2006; Luo and Kraus, 2012). These enzymes utilize
NAD+ as a substrate or cofactor and niacinamide (NAM) as a
by-product. To maintain NAD+ levels, NAM can recycled NAD+
via the NAM salvage pathway. Additionally, some cells, mainly in
the liver, can synthesize NAD+ dietary sources from peptides de
novo. As a result, NAD+ is continuously synthesized, catabolized
and circulated in the cell to maintain the stability of intracellular
NAD+ levels (Figure 3).

As shown in Figure 4, NAD+ can be synthesized from NAM,
tryptophan or nicotinic acid (NA) through three distinct NAD
biosynthesis pathways: the de novo pathway (also known as
the Kynerunine pathway), the Preiss-Handler pathway, and the
Salvage pathway (Chiarugi et al., 2012; Verdin, 2015). Different
tissues follow the given pathways based on the availability of
precursors (Canto et al., 2015; Shats et al., 2020; Liu et al., 2018).
The de novo pathway initiates with tryptophan and goes through
a series of enzymatic reactions to produce quinolinic acid (QA),
which is converted into nicotinic acid mononucleotide (NAMN)
by quinolinic phosphate ribosyl transferase (QAPRT/QPRT)
(Bogan and Brenner, 2008). In the Preiss-Handler pathway, the
phosphoribosyl group is transferred to nicotinic acid (NA) by
nicotinic acid phosphoribosyltransferase (NAPRT), resulting in

the production of NAMN. Therefore, NA is considered to be a
precursor unit for NAD synthesis in the Preiss-Handler pathway
(Preiss and Handler, 1958a; Preiss and Handler, 1958b). In the final
step of the Preiss-Handler pathway, NAD synthetase (NADSYN)
uses glutamine as a nitrogen donor to catalyze nicotinic acid
adenine dinucleotide (NAAD) to NAD. In the Salvage pathway,
NAD is produced from NAM, which is the final product of
NAD-consuming enzymes. NAMPT is the rate-limiting enzyme
in this pathway, catalyzing the conversion of NAM to NMN. In
addition, mononucleotides NMN and NAMN can be produced
by the phosphorylation of nicotinamide nucleoside (NR) and
nicotinate nucleoside (NAR) by nicotinamide riboside kinase
(NMRK1/2) (Bieganowski and Brenner, 2004; Tempel et al., 2007).
NAMN and NMN are converted to the corresponding nicotinic
acid adenine dinucleotide (NAAD) and NAD by the nicotinic acid
mononucleotide adensine transferase (NMNAT 1-3) (Berger et al.,
2005; Lau et al., 2009). The Salvage and Preiss-Handler pathways
share the NMNAT 1-3 enzymes, which catalyze the final critical
step in NAD synthesis. There are three subtypes of NMNAT:
NMNAT 1, which is found in the nucleus; NMNAT two exists in the
cytoplasm and Golgi apparatus; and NMNAT three is expressed in
the mitochondria and cytoplasm (Figure 4).

NAM is derived from the diet (Bogan and Brenner, 2008;
Trammell et al., 2016), and can be produced through the activity
of various NAD hydrolases (including sirtuins, PARPs and CD38,
etc.), which were tightly coupled with the Salvage pathway and
play a role in the inflammation, cell growth, and bioenergetics
(Magni et al., 2004), degrading NAD and producing the byproducts
of NAM (Sauve, 2007; Quarona et al., 2013). Sirtuins have received
widespread attention for their regulation of keymetabolic pathways,
stress responses, and the biology of aging. The sirtuin family
comprises seven genes and proteins with unique subcellular
localizations, enzymatic activities, and downstream targets,
which affecting organel-specific functions and cellular metabolism.
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FIGURE 4
NAD+ biosynthetic pathways.

The human PARP family consists of 17 members. Of all PARPs, only
PARP1, PARP2, and PARP3 are localized in the nucleus, where they
respond to early DNAdamage and play a key role in the DNA repair.
CD38 and CD157 are multifunctional ectonucleotide enzymes
with both glycohydrolase and ADP-ribosyl cyclase activities
(Houtkooper et al., 2010; Chiarugi et al., 2012; Verdin, 2015).

5 SIRTs and NAD+

Sirtuins (SIRTs) are a family of nicotinamide adenine
dinucleotide (NAD) -dependent histone deacetylases (HDACs),
a group of evolutionally-conserved enzymes involved in post-
translational modifications of proteins, including deacetylation,
polyADP ribosylation, depropionylation, and lipoamidination.
SIRTs are found in many cells and various organisms, and they
has been discovered and explored in mammals over the past
2 decades (Chen B. et al., 2015). So far, seven members of this
family have been identified in mammals: SIRT1-7, each member
contains a conserved NAD-binding and catalytic domain (their
N-terminus and C-terminus are distinct), known as the sirtuin
core domain, which leads to distinct catalytic functions, subcellular
localizations and substrate specificities. Meanwhile, sirtuin family
members are capable of sensing cellular NAD+ levels (Bonkowski
and Sinclair, 2016).

SIRT1 is the founding member of the mammalian sirtuin
family, primarily found in the cell nucleus and a small fraction
present in the cytoplasm (Figure 5). It has been shown to play
crucial roles in the process of development, cellular aging and cell
death processes (Bai and Zhang, 2016; Wilking et al., 2014; Yu and

Auwerx, 2010). Notably, NAMPT activates SIRT1 by increasing
NAD+ levels and decreasing NAM levels (Menssen et al., 2012).
SIRT1 exerts anti-aging effects and functions as a deacetylase that
inhibits HIF-1α, a factor essential for activating the Warburg effect
(Liberti and Locasale, 2016). Beyond hypoxia inducible factor-1α
(HIF-1α), SIRT1 regulates other factors such as protein 53 (p53),
myelocytomatosis viral oncogene homolog (c-Myc), forkhead box
O3 (FOXO3), BCL2-associated X protein (BAX) and nuclear factor
kappa-B (NF-κB). p53 plays a critical role in tumor suppression by
inducing cell cycle and apoptosis (Behrouzfar et al., 2017). c-Myc is
an oncogene that regulates genes involved in metabolic pathways
like glycolysis, lactate production, glutamine metabolism and fatty
acid synthesis, and regulates SIRT1 activity by inducing NAMPT
expression and inhibiting deleted in breast cancer 1 (DBC1).
SIRT1 regulates deacetylation activation of c-Myc through positive
feedback (Menssen et al., 2012). In addition, SIRT1 deacetylates and
activates FOXO3, which participates in oxidative stress resistance
by upregating antioxidant proteins (Kennedy et al., 2016; Zhao et al.,
2014). These data confirm that the carcinogenic effects of SIRT1 are
largely depends on NAD+ and NAMPT activity.

SIRT2 is mainly located in the cytoplasm but also found in the
nucleus, where it deacetylates H4K16, and involved in regulating
the cell cycle. As a major consumer of intracellular NAD+, SIRT2
inhibits the peroxidase activity of Peroxiredoxin-1 (Prdx-1) through
deacetylation, sensitizing breast tumor cells to increased reactive
oxygen species (ROS) levels (Fiskus et al., 2016). Another target
of SIRT2 is HIF-1α in the cytoplasm, promoting hydroxylation
and degradation of HIF-1α, and inhibiting hypoxia-induced tumor
growth (Seo et al., 2015). Studies indicate that SIRT2’s targets play
roles in ROS-mediated pathways, including metabolic enzymes like
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FIGURE 5
Subcellular localization and catalytic capacity of mammalian sirtuins.

glucose-6-phosphate dehydrogenase (G6PD), phosphoglycerate
mutase 2 (PGAM2) and NF-κB (Gomes et al., 2015). Under
oxidative stress conditions, SIRT2 has been shown to deacetylate and
activate G6PD, a critical enzyme in the pentose phosphate pathway
that produces nicotinamide adenine dinucleotide phosphate
(NADPH) in the cytoplasm (Wang et al., 2014). Similarly, oxidative
stress conditions cause PGAM2 to be deacetylated and activated
by SIRT2, facilitating cellular responses to stress (Xu et al., 2014).
Furthermore, SIRT2 activates NF-κB, which plays a pivotal role in
regulating ROS in cells (Pais et al., 2013). NF-κB plays a dual role in
regulating ROS by targeting enzymes that promote ROS production,
such as NADPH oxidase, xanthine oxidoreductase, induced-nitric
oxide synthase, cyclooxygenase-2, and cytochrome p450 enzymes.
In summary, SIRT2 plays a crucial role in regulating oxidative stress
responses, influencing various metabolic and signaling pathways
through its deacetylase activity and interaction with key cellular
regulators. Under conditions of excess nutrition, SIRT2 activity is
decreased, increasing PKM2 acetylation and enzymatic activity. It
is conducive to the production of lactic acid, while reducing the
accumulation of pyruvate, forming a metabolic state similar to the
Warburg effect. Conversely, in the absence of adequate nutrition,
SIRT2 and other sirtuins are activated, leading to deacetylation
of multiple downstream targets, including PKM2. This activates
PKM2 and facilitates the accumulation of pyruvate, which provides
nutrients for substrates used in the Krebs cycle and oxidative
phosphorylation. Therefore, SIRT2 plays a key role in glucose
metabolism (Park et al., 2016).

SIRT3 is mainly located in mitochondria, but also located
in the nucleus, translocating to mitochondria during DNA
damage to facilitate derepression of mitochondria-related genes
(Ozden et al., 2014). SIRT3 inhibits cell apoptosis, promotes cell

growth, increases glycolytic metabolism, promotes mitochondrial
DNA repair, and increases cell resistance to environmental stress
(Yang et al., 2020; Yang et al., 2016; Torrens-Mas et al., 2017a;
Torrens-Mas et al., 2017b). Recent studies have shown that SIRT3
regulates mitochondrial metabolism and its collaborative effect
with SIRT1 in extending lifespan in experimental animals. Notably,
SIRT3 is the only member of the sirtuin family with direct evidence
suggesting it can extend human lifespan. It has been found that
loss of SIRT3 increases the production of ROS and stabilizes the
expression of the transcription factor HIF-1α. SIRT3 also influences
ROS production by modulating enzymes involved in mitochondrial
oxidative phosphorylation (OXPHOS) pathway, thereby directly
impacting cellular health (Haigis et al., 2012). Furthermore, SIRT3
plays a crucial role in repairing mitochondrial DNA and protecting
mitochondrial integrity. It also regulates mitochondrial function
through NAD+ levels, which can help protect liver and kidney from
diseases and injuries (Morigi et al., 2015).

SIRT4 is a mitochondrial sirtuin, functioning as an NAD+
-dependent ADP-ribosyltransferase, highly expressed in the
heart, kidney, liver and brain (Anderson et al., 2017). In
glutamine catabolism, SIRT4 is the first target of glutamate
dehydrogenase (GDH), which controls amino acid-stimulated
insulin secretion by regulating the oxidative metabolism of
glutamine and glutamate (Haigis et al., 2006). Apart from
glutamine metabolism, SIRT4 inhibits β-oxidation of fatty acids,
unlike SIRT3 and SIRT5. Through deacetylation of malonyl-
coA decarboxylase (MCD), SIRT4 suppresses and catalyzes the
conversion of malonyl-CoA to acetyl-CoA, essential for fatty
acid oxidation.

SIRT5 is primarily located inmitochondria, with a small fraction
found in the cytoplasm andnucleus. Unlike SIRT3 and SIRT4, SIRT5
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exhibits weaker deacetylase activity (Du et al., 2011). Recent studies
indicate that SIRT5 catalyzes desuccinylation, deglutarylation, and
demalonylation of mitochondrial enzymes that are involved in
various metabolic pathways such as glycolysis, fatty acid oxidation
and the urea cycle. SIRT5 is highly expressed in tissues like the brain,
heart, liver and lymphocytes. Lin et al. demonstrated that SIRT5
binds to superoxide dismutase 1 (SOD1) and desuccinylates SOD1,
increasing SOD1 activity. Studies have found that cells transfected
with SIRT5 have reduced ROS levels, indicating that SIRT5 inhibits
oxidative stress in cells (Liang et al., 2017). Quantitative proteomic
analysis has identified SIRT5’s interaction with enzymes primarily
associated with glycolysis and gluconeogenesis, particularly
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), through
desuccinylation. Experimental evidence indicates that loss of
SIRT5 reduces glycolytic flux (Nishida et al., 2015). However,
SIRT5 has also been reported to inhibit glycolysis by desuccinic
pyruvate kinase M2 (PKM2), an enzyme involved in the final
step of glycolysis, which protects tumor cells from oxidative stress
(Wang et al., 2017; Ye et al., 2017). Furthermore, the function of
SIRT5 in metabolic control is dependent on the environment, as
it can either promote or inhibit specific metabolic processes based
on cell type and nutrient availability. In summary, SIRT5’s diverse
enzymatic activities contribute significantly to metabolic regulation,
impacting cellular metabolism under both physiological and stress
conditions.

SIRT6 primarily resides in the nucleus and exerts its effects
through NAD+ -dependent deacetylation of H3K9 and H3K56.
By inhibiting PKM2, SIRT6 suppresses the Warburg effect,
thereby regulating glucose metabolism and homeostasis (Bhardwaj
and Das, 2016). Although SIRT6 was originally described as a
unique ADP-ribosyltransferase (Liszt et al., 2005), recent findings
that histones, DNA repair enzymes and DNA polymerase β
(polβ) were deacetylated in vitro, influencing the efficiency of
DNA repair (Mostoslavsky et al., 2006). These functions highlight
SIRT6’s critical roles in cell metabolism, gene expression regulation
and DNA repair.

SIRT7 is primarily located in the nucleus, specifically in
the nucleolus, where it interacts with RNA Pol I and histones,
actively regulating the transcription of ribosomal DNA (rDNA),
which constitutes approximately 60% of total transcription
in metabolically active mammalian cells (Grabowska et al.,
2017). It has been found that SIRT7 mRNA expression is
different in all tissues, and higher expression in tissues with
higher metabolic activity. Overexpression of SIRT7 enhances
RNA Polymerase I (RNA Pol I) mediated transcription in a
NAD+ -dependent manner, while knockdown or inhibition
of SIRT7 decreases this transcriptional (Ford et al., 2006).
This suggests that SIRT7 may regulate rDNA transcription
by sensing cellular NAD+ levels, linking cellular energy
status to rRNA synthesis and ribosome production. Research
has found that SIRT7 regulates mitochondrial homeostasis
through deacetylation of GA binding protein transcription
factor beta subunit 1 (GABPβ1), a subunit of the complex
that regulates several key mitochondrial genes (Ryu et al., 2014).
Furthermore, the absence of SIRT7 inhibits cell proliferation and
induces apoptosis, indicating its potential role in aging and/or
age-related diseases.

6 The role of NAMPT in disease

6.1 The role of NAMPT in inflammatory
diseases

NAMPT has been identified as a universal biomarker for
chronic inflammation. Chronic inflammatory diseases such as
rheumatoid arthritis (RA), lung injury, inflammatory bowel disease
(IBD), psoriasis and atopic dermatitis (AD). NAMPT acts as
a growth factor and stimulates the proliferation of pre-B-cells
(Samal et al., 1994). Jia et al. (2004), it was demonstrated for the
first time that NAMPT plays a role as a cytokine, whose expression
is upregulated in a variety of acute and chronic inflammatory
diseases. Studies have shown that IL-1β induces the expression
of NAMPT in human neutrophils and NAMPT can prevent
the apoptosis of neutrophils under the inflammatory stimulation.
However, inhibition of NAMPT enzyme activity impimped NLRP3-
dependent and independent inflammatory responses (TNF-α and
IL-6), and protein phosphorylation downstream of the TLR4
signaling pathway (Yang et al., 2019).

It has been found that NAMPT induce the expression of IL-
6, matrix metalloproteinase 1 (MMP-1) and MMP-3 in synovial
fibroblasts of rheumatoid arthritis (Nowell et al., 2006). Experiments
in mouse models showed that IL-6 deficiency impairs inflammatory
infiltration andNAMPT expression. In acute lung injury, NAMPT is
upregulated atmRNA and protein levels (Ye et al., 2005; Camp et al.,
2015). In animal models of ischemia/reperfusion-induced lung
injury, NAMPT has shown protective anti-inflammatory effects
(Wu et al., 2017). At the same time, high levels of NAMPT have
been found in the serum, colonic tissue, and leukocytes of IBD
(Moschen et al., 2007; Neubauer et al., 2019). The main source of
NAMPT in the colon and visceral adipose tissue of IBD patients
is located in macrophages in submucosal adipocytes, dendritic
cells, and epithelial cells (Moschen et al., 2007). Inhibition of
NAMPT expression reduced cytokine production in IBD-derived
immune cells (Gerner et al., 2018).

Psoriasis is a non-infectious chronic inflammatory skin disease
with a global prevalence of 0.1%–3%, characterized by recurrent
episodes that seriously affect the mental and physical health of
patients. The cytokines and chemokines produced in the lesions
reach the blood, so the patient may suffer from comorbidities,
especially IL-1β and TNF-α causing cardiovascular complications,
metabolic syndromes (such as obesity, dyslipidemia, atherosclerosis,
and type 2 diabetes), and autoimmune diseases. It has been
reported in the literature thatNAMPT is overexpressed in peripheral
blood mononuclear cell (PBMC) of psoriasis patients, but it
has returned to normal during the cure period (Koczan et al.,
2005). Comparing gene expression in skin samples of normal and
psoriasis patients (lesions and non-lesions), NAMPToverexpression
appeared in lesions skin (Xie et al., 2014). A meta-analysis found
that the levels of eNAMPT was no significant difference in the
serum of psoriasis patients and controls (Bai et al., 2018), but its
levels positively correlated with psoriasis area and severity index
(PASI) scores (Chyl-Surdacka et al., 2020) and duration (Ismail
and Mohamed, 2012). In contrast, patients with psoriatic arthritis
had high serum levels of NAMPT, but their levels were not
associated with disease activity (Dikbas et al., 2016). Keratinocytes,
neutrophils, dendritic cells, and T cells play a critical role in
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the dermal and epidermal pathology of psoriasis (Boehncke and
Schön, 2015). eNAMPT has been shown to mediate the production
of cathelicidin antimicrobial peptides (CAMP), β-defensin-2, β-
defensin-3, and S100A7 in human keratinocytes and imiquimote-
induced mouse models of psoriasis (Hau et al., 2013). eNAMPT has
also been shown to stimulate angiogenesis, migration, proliferation,
invasion, and capillary tube formation in human umbilical vein
endothelial cells (HUVECs) and human microvascular endothelial
cells (HMECs) in vitro, as well as in rat and mouse angiogenic
models (Boehncke and Schön, 2015; Bae et al., 2009; Kim et al.,
2007; Kim et al., 2012; Lovren et al., 2009). Serum levels of eNAMPT
are elevated in patients with AD.

6.2 The role of NAMPT in cardiovascular
disease

Dahl et al. identified the relationship between NAMPT
and cardiovascular disease, and found that the expression of
NAMPT was enhanced in lipid macrophages in atherosclerotic
lesions in patients with myocardial infarction (Dahl et al., 2007).
Experiments in animal models exposed to a high-fat diet (HFD)
suggested that NAMPT overexpression leads to worsening of
atherosclerotic lesions and inflammation (Kong et al., 2019).
Interestingly, NAMPT heterozygous knockdown prevented
cardiac hypertrophy, but genetically modified mice with heart-
specific NAMPT overexpression spontaneously developed
cardiac hypertrophy (Byun et al., 2019; Pillai et al., 2013). It
has been reported that eNAMPT triggers the Toll-like receptor
4/NOD-like receptor thermal protein domain associated protein
three/interleukin 1β (TLR4/NLRP3/IL-1β) axis in the literature
(Romacho et al., 2020), both NAMPT and SIRT1 protect the
heart from ischemia/reperfusion. The analysis found that serum
concentrations of NAMPT were much higher in patients with
cardiovascular disease than in healthy individuals (Yu et al., 2019).
High eNAMPT serum levels were also found in peripheral blood of
patients with acute coronary syndrome.

6.3 The role of NAMPT in metabolic
diseases

Studies have demonstrated a high expression of NAMPT in
visceral adipose tissue, classifying as an adipokine (Fukuhara et al.,
2005). Consequently, the role of NAMPT in obesity and related
diseases has draw people’s attention. Various adipocyte models,
including preadipocyte lines such as 3T3-L1 and SGBS, along with
human primary adipocytes, have been shown to secrete NAMPT
into the supernatant via non-classical pathway (Tanaka et al.,
2007). This identifies adipose tissue as one of the primary
sources of extracellular NAMPT (eNAMPT). The study found
increased expression levels of several metabolic factors in obese
individuals, which have been shown to affect the expression levels
of NAMPT. During adipogenesis, the expression level of NAMPT
mRNA is increased and stimulated by insulin resistence-inducing
factors such as IL-6, and TNF-α. The expression of NAMPT
in adipocytes was also upregulated under hypoxic conditions

(Garten et al., 2015; Kralisch et al., 2005; Kim et al., 2014). The pro-
inflammatory effects of eNAMPT on different cell types have
been reported in the literature, including induction of nitric
oxide synthase (Romacho et al., 2009), activation of extracellular
signal-regulated protein kinase 1/2 (ERK1/2) (Kim et al., 2007),
nuclear factor NF-κB (Romacho et al., 2009; Moschen et al., 2010),
and cytokines such as TNF-α, IL-6, IL-1β (Moschen et al., 2010;
Hector et al., 2007), trans forms growth factor β (Song et al., 2008),
and monocyte chemotactic protein 1 (Sommer et al., 2010). In
addition, eNAMPT increased the expression of peroxide-activating
receptors in lipoprotein lipase and preadipocytes and fatty acid
synthetase in differentially differentiated adipocytes, suggesting that
eNAMPT is a regulator of lipid metabolism (Yang et al., 2010).
The TNF-α stimulated mouse adipocytes and human hepatocytes
with high levels of pro-inflammatory cytokine production showed
insulin resistance induced by eNAMPT (Gouranton et al., 2014;
Heo et al., 2019). In addition, neutrophils are thought to be
the main source of NAMPT release in the blood (Martínez-
Morcillo et al., 2021; Friebe et al., 2011).

6.4 The role of NAMPT in
neurodegenerative diseases

Typical neurodegenerative diseases include Alzheimer’s disease
(AD), Parkinson’s disease (PD), Huntington’s disease (HD),
and amyotrophic lateral sclerosis (ALS). Neurodegenerative
diseases are mainly related to mitochondrial dysfunction,
inflammation and oxidative stress. Among them, oxidative stress
is considered to be an important pathogenic factor in inducing
cell proliferation, mitochondrial dysfunction, self-renewal and
hypodifferentiation, and downregulation of NAD and NAMPT
levels in neurodegenerative diseases. NAD is an essential coenzyme
involved in energy production and redoxic metabolism, which can
be generated de novo from tryptophan or recovered from NAM
throughNAMPT-dependent salvage pathways, and is closely related
to mitochondrial energy metabolism. NAMPT-mediated NAD
salvage pathway is the main synthetic pathway of NAD, and defects
in the biosynthesis of NAD lead to the decline of NAD. Therefore,
NAMPT is essential for maintaining NAD balance in the body.

Alzheimer’s disease (AD) is the most common
neurodegenerative disease. The prevalence of AD increases
significantly with age, primarily affecting older adults. Studies have
shown that cytokines involved in mitosis, such as NRF1, NRF2,
and TFAM, are associated with neurodegenerative diseases such as
AD. Therefore, promoting mitosis may be an effective treatment for
AD. Recent studies have shown that overactivation of the immune
proteasome (IP) can trigger neuroinflammation and neuronal
death (Sonninen et al., 2020). Neuroinflammation and oxidative
stress can induce neurodegeneration (Kwon and Koh, 2020). By
inhibiting inflammatory responses and oxidative stress, iNAMPT is
functionally involved in neurodegenerative diseases.

Parkinson’s disease (PD) is the second common
neurodegenerative disease in the world, severely affecting the
normal life of middle-aged and elderly patients (Jankovic and
Tan, 2020). It is generally believed that oxidative stress, chronic
inflammation, and mitochondrial dysfunction are the main causes
of PD (Pajares et al., 2020). Research has found that mitochondrial
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dysfunction is a key driver of Parkinson’s disease. iNAMPT can
maintain cell metabolism, which in turn affects mitochondrial
function. Increasing NAD through nicotinamide riboside, a
precursor of NAD, improves mitochondrial function of patients’
neurons. iNAMPT can synthesize NAD fromNADprecursors using
the NAD biosynthetase NR kinase 1 (NRK1) (Schöndorf et al.,
2018). There is increasing evidence that NSCs undergo cellular
senescence under various stress conditions (Zeng et al., 2021).
iNAMPT is particularly important for self-renewal, differentiation,
and proliferation of NSPCs. Therefore, targeting iNAMPT will
become a new research direction for PD therapy.

Amyotrophic lateral sclerosis (ALS) is a hereditary
neurodegenerative disease in which the main symptoms
include muscle spasms and weakness, contraction and atrophy
of muscle bundles (Hardiman et al., 2017). At present, the
complex pathogenesis of ALS has not been fully elucidated.
Mitochondrial dysfunction, oxidative stress, metabolic disorders
and neuroinflammation have been identified as potential
pathological factors (Hardiman et al., 2017). Human superoxide
dismutase 1 (hSOD1) is isolated from primary astrocytes in
mice and can induce motor neuron death (Harlan et al., 2016;
Obrador et al., 2021). Elevated levels of astrocyte mitochondrial
NAD in ALS patients enhance resistance to oxidative stress and
reverse the toxicity of co-cultured motor neurons (Obrador et al.,
2021). iNAMPT is a rate-limiting enzyme in the NAD salvage
pathway, and its overexpression upregates the mitochondrial level
of NAD in astrocytes. Therefore, iNAMPT may be a potential
therapeutic target for preventing astroglia-mediated motor neuron
death in ALS patients.

7 NAMPT inhibitors

Due to abnormal proliferation and higher energy demand,
tumor cells are more dependent on NAD+ than normal cells.
NAMPT is an enzyme that plays a key role in the NAD+
biosynthesis pathway, and its inhibitors have shown potential in
cancer therapy. In recent years, an increasing number of NAMPT
inhibitors have been reported. FK866, is the earliest discovered
NAMPT inhibitor, which selectively inhibits NAMPT, resulting
in a decrease in NAD+ levels, and then inhibiting the growth
of tumor cells (Hasmann and Schemainda, 2003). CHS828 is an
effective NAMPT inhibitor that has been used in clinical trials
for cancer treatment, but further development was halted due to
toxicity and poor effectiveness (Olesen et al., 2008). GMX1777,
a prodrug of CHS828, was designed to address solubility and
pharmacokinetic issues, showing potent inhibitory activity in vivo
(Binderup et al., 2005). OT-82, a novel NAMPT inhibitor that is
currently in clinical trials, inducing cell apoptosis through NAD
and ATP depletion (Korotchkina et al., 2020). GNE617 is a NAMPT
inhibitor that is structurally different from FK866 and acts by
binding to the active site of NAMPT (Zheng et al., 2013b). KPT-
9274, a dual inhibitor that simultaneously inhibits both NAMPT
and PAK4, has shown strong effects against a variety of solid tumors
and hematological malignancies in clinical trials (Abu Aboud et al.,
2016). Several studies are developing dual-target inhibitors that
can simultaneously inhibit NAMPT and other targets (such as

HDAC), which may provide more effective therapeutic effect. STF-
31 not only inhibits NAMPT, but also inhibits GLUT1, showing
an inhibitory effect on tumor cells (Kraus et al., 2018). Antibody-
drug conjugates (ADCs) are a strategy for directly delivering potent
drugs to tumor tissue, potentially improving the therapeutic index
of NAMPT inhibitors (Neumann et al., 2018).The development and
research of these inhibitors provide new strategies and methods
for cancer treatment. Unfortunately, only a few small molecule
inhibitors ofNAMPThave progressed to clinical studies, and the rest
are still in the preclinical stage due to obvious adverse reactions or
insufficient in vivo experimental data, indicating that further studies
are needed to improve their efficacy and safety.

8 Conclusion

In recent years, the research on the biological function of
NAMPT, particularly its extracellular roles, have made great
progress. The NAMPT-NAD-SIRT cascade has been identified as
a powerful intrinsic defense system against energy expenditure
and neuronal death in neurodegenerative diseases. During various
metabolic disorders and aging, the expression level of NAD are
decreased. The salvage pathways, primarily dependent on the rate-
limiting enzyme NAMPT, are crucial for maintaining human NAD.
NAMPT supplies substrates for NAD-dependent enzymes involved
in regulating cellular energy metabolism. NAMPT is released by
different cell types in response to cellular stress and inflammatory
signals, such as hypoxia, starvation, hyperglycemia and pro-
inflammatory cytokines. Given that visceral fat is the primary tissue
forNAMPT release, extracellularNAMPTmayplay a significant role
in chronic inflammatory diseases and their complications, including
obesity, metabolic syndrome, cardiovascular diseases and diabetes.
Extracellular NAMPT not only acts as a systemic pro-inflammatory
cytokine, but also increases the level of NAD+ expression when it
reaches the inflammatory tissue, thus significantly enhancing the
activity of PARPs and SIRT. Although studies in animal models
suggest that NAMPT may be a promising therapeutic target for
clinical intervention in chronic inflammatory diseases, its relevance
needs to be further clarified.
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