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Background: Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder with no effective treatments available. There is growing evidence
that cuproptosis contributes to the pathogenesis of this disease. This study
developed a novelmolecular clustering based on cuproptosis-related genes and
constructed a signature for AD patients.

Methods:The differentially expressed cuproptosis-related genes (DECRGs)were
identified using the DESeq2 R package. The GSEA, PPI network, GO, KEGG,
and correlation analysis were conducted to explore the biological functions of
DECRGs.Molecular clusterswere performed using unsupervised cluster analysis.
Differences in biological processes between clusters were evaluated by GSVA
and immune infiltration analysis. The optimalmodel was constructed byWGCNA
and machine learning techniques. Decision curve analysis, calibration curves,
receiver operating characteristic (ROC) curves, and two additional datasets were
employed to confirm the prediction results. Finally, immunofluorescence (IF)
staining in ADmicemodels was used to verify the expression levels of risk genes.

Results: GSEA and CIBERSORT showed higher levels of resting NK cells,
M2 macrophages, naïve CD4+ T cells, neutrophils, monocytes, and plasma
cells in AD samples compared to controls. We classified 310 AD patients
into two molecular clusters with distinct expression profiles and different
immunological characteristics. The C1 subtype showed higher abundance
of cuproptosis-related genes, with higher proportions of regulatory T cells,
CD8+T cells, and resting dendritic cells. We subsequently constructed a
diagnostic model which was confirmed by nomogram, calibration, and
decision curve analysis. The values of area under the curves (AUC) were
0.738 and 0.931 for the external datasets, respectively. The expression
levels of risk genes were further validated in mouse brain samples.
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Conclusion: Our study provided potential targets for AD treatment, developed
a promising gene signature, and offered novel insights for exploring the
pathogenesis of AD.
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Introduction

Dementia is a syndrome characterized by cognitive
decline, manifested by abnormalities in memory function,
mental, behavioral, and personality. Alzheimer’s disease
(AD), the most common dementia, impacts more than
42 million people worldwide and imposes a considerable
burden on society (Ruthirakuhan et al., 2022). Early
treatment and diagnosis are essential for AD. Nonetheless,
the diagnosis of AD relies primarily on invasive and
instrumental tests, and effective diagnostic biomarkers
are lacking (Scheltens et al., 2016). Since the exact
mechanism of AD is not precise, no effective strategies
are available to retard the development of this disease
(Khan et al., 2020).

Neuroinflammation is now considered an essential factor in
the development of AD (Leng and Edison, 2021). Phenotypes
targeting immune cells and crosstalk with specific cytokines in
the brain may effectively attenuate the inflammatory response
in AD (Liddelow et al., 2017). Previous studies have shown that
many distinct cell death mechanisms mediate AD progression,
for example, necroptosis, pyroptosis, ferroptosis, and apoptosis
(Calvo-Rodriguez and Bacskai, 2021). In 2022, Tsvetkov et al.
discovered a new copper-dependent cell death called cuproptosis
(Tsvetkov et al., 2022). It is a non-apoptotic form of cell death
dependent on cellular resorption and mitochondrial stress.
It is marked by the absence of Fe-S cluster proteins and
the accumulation of lipoylated proteins. Several studies have
shown that mitochondrial malfunction plays a crucial role
in AD (Ashleigh et al., 2023; Perez Ortiz and Swerdlow, 2019;
Sharma et al., 2021). Therefore, we may infer that cuproptosis is
closely related to AD progression. Nevertheless, the underlying
mechanisms are not well understood. Meanwhile, increasing
evidence suggests that cuproptosis plays a part in regulating
the immune micro-environment in neurodegenerative diseases
(Nie et al., 2023; Caetano-Silva et al., 2021; Ban et al., 2024).
This study provided the first integrated analysis of cuproptosis-
related genes (CRGs) between AD samples and normal controls.
Potential targeted compounds for AD and transcription factors
binding hub genes were identified. Unsupervised clustering
and machine learning algorithms were employed to detect hub
genes to predict the risk of Alzheimer’s disease. This gene
signature was verified using calibration curves, nomograms,
decision curve analysis, receiver operating characteristic
(ROC) curves, and in vitro experiments. Furthermore, the
associations between CRGs and infiltrating immune cells were
investigated.

Materials and methods

Extraction of data

The mRNA representation profiles of AD and normal
samples were downloaded from the Gene Expression Omnibus
(GEO) database (Narayanan et al., 2014; McKay et al., 2019;
Sood et al., 2015; Patel et al., 2019). The details of the datasets
used are listed in Supplementary Table S1. The GSE33000 dataset
contained expression profiles of 624 brain tissues, including 157
controls and 310 AD samples (Table 1). When multiple probes
refer to a single gene, we take their average as the expression
values. The “sva” R package was designed to eliminate batch
effects and unwarranted variations. After removing the batch
effects, these raw gene expression files were normalized and
processed via the “affy” package. According to previous published
literature, we obtained 19 cuproptosis-related genes (ATP7A,
ATP7B, CDKN2A, DBT, DLD, DLAT, DLST, FDX1, GLS, GCSH,
LIAS, LIPT1, LIPT2, MTF1, NLRP3, NFE2L2, PDHA1, PDHB
and SLC31A1) (Tsvetkov et al., 2022).

Analysis of differentially expressed CRGs
(DECRGs)

DECRGs between normal controls and AD samples in
GSE33000 were screened out using the “limma” R package, with the
criteria at |log2 fold change (FC)| > 1 and Bonferroni-p value <0.05.
In addition, we also compared the gender differences of DECRGs
in AD patients. The visualizations of results were accomplished
using “pheatmap” and “ggplot2” packages. The Kyoto Encyclopedia

TABLE 1 GSE33000 dataset clinical information.

Parameter Subclass Patients

Samples Control 157

AD 310

Age >60 449

≤60 175

Gender Female 283

Male 341
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of Genes and Genomes (KEGG) and Gene Ontology (GO)
analyses of the DECRGs were performed using the “clusterProfiler”
package and the Benjamini–Hochberg (BH) p-adjust Method.
The following parameters were: q-value <0.05, p-value <0.05. The
protein–protein interaction (PPI) network was structured with the
linear STRING repository (https://string-db.org/), and 0.900 (the
highest confidence) was set as the minimum required interaction
score.

Immune characteristics

CIBERSORT is a tool for accurately assessing the relative
ratios of different cell subsets in tissues from the data provided.
In recent years, different immune-ecological niches have
been identified in the brain from which innate and adaptive
immune cells can regulate brain function and perform repair
(Castellani et al., 2023). The proportion of 22 immune-infiltrating
cells in each sample was estimated from the GSE33000
dataset with the CIBERSORT algorithm. The total fraction
of immune cells per sample is equal to 1. The empirically
defined p-value of each piece for deconvolution was then
determined. Samples with a p-value <0.05 were determined to
be significant (Newman et al., 2015). A single-sample gene set
enrichment analysis (ssGSEA) was conducted with the “GSVA”
package to assess the composition of enriched immunity-related
functions in each sample. The fractions of immune cells between
normal controls and AD samples were visualized using a boxplot
and heatmap.

Correlation analysis

In addition, we explored the correlations and correlation
coefficients between DECRGs using the “corrplot” and “circlize”
packages. Spearman correlation analysis of DECRGs and
immune infiltration was conducted with the “ggcorrplot”
package. According to the correlation coefficients, interactions
with a p-value less than 0.05 were assumed to be
significant.

Clustering of DECRGs, gene set variation
analysis (GSVA)

Next, we conducted the unsupervised cluster analysis of
310 AD patients into clusters based on the gene expression
profiles of the DECRGs by the “ConsensusClusterPlus” R
package. Furthermore, we conducted principal component
analysis (PCA) to assess the performance of clustering. GSVA
was performed using the “GSVA” and “GSEABase” packages to
investigate differences in the sets of enriched genes between
different DECRG clusters (Haenzelmann et al., 2013). The referred
sets were “c5. go.symbols”, “c2. cp.kegg.symbols”, and “c7.
immunesigdb.v2023.1. Hs.symbols” obtained from the MSigDB
database. Differences were considered significant when the absolute
t-values were >2.

Weighted gene co-expression network
analysis (WGCNA)

Using the WGCNA software package, we performed
two separate analyses for normal and AD patients based
on the cuproptosis clustering and gene expression profiles
in GSE33000 (Wan et al., 2018). First, we constructed an adjacency
matrix using the topological overlap matrix (TOM) and soft
threshold 7. The genes characterized by the model were then
calculated, as well as the associations between themodel and clinical
phenotypes. Finally, the most relevant gene models were screened.
Module significance (MS) indicated the relationship between
modules and disease states. Gene significance (GS) was depicted
as the relevance between genes and clinical traits. Module eigengene
referred to the overall gene expression profile of each module.

Construction of the diagnostic signature

Based on the results of WGCNA, we chose the intersected genes
for further analysis with the “VennDiagram” package (version 1.7.2).
The random forest (RF) algorithms, eXtreme Gradient Boosting
(XGB), generalized linear models (GLM), and support vector
machine (SVM) were employed to identify the most significant hub
genes for AD risk. The RF algorithms were integrated with machine
learningmethods for determining the optimum amount of variables
using multiple separate decision treaties (Rigatti, 2017). The SVM
was used to locate the optimum variables by finding the minimum
matching points of cross-validation errors. We performed the above
machine learning techniques using the “caret”, “randomForest”,
“kernlab”, “xgboost”, and “e1071″packages. We then evaluated the
diagnostic performance of the above methods by root mean square
errors (RMSE), boxplots of residuals, and ROC curves. Hence, the
optimum model was identified and the top 5 significant genes were
used as key diagnosticmarkers for AD risk. Finally, a nomogramwas
developed through multi-factor logistic regression for the five genes
using the “rms” software package. Each gene was given a matching
“Point” and the “Total Points” denoted the aggregate of the above
gene points. The prediction capacity was evaluated using decision
curve analysis (DCA), calibration, and ROC curves.

Clinical correlation analysis

GSE118553, containing 100 controls and 301 AD brain tissues,
was selected as the externally analyzed dataset. We explored the
associations between these five predictive genes and clinical features,
including gender (female n = 166, male n = 235) and age (>60 yrs n
= 368, ≤60 yrs n = 33) (Table 2).

CeRNA networks and immune correlations

A combination of miRanda, miRDB, miRTarBase, and
TargetScan databases were employed to predict the targeted
microRNAs. The SpongeScan database was used to predict the
matching lncRNAs. We finally constructed a ceRNA network based
on the five genes using Cytoscape software (version 3.8.2). The
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TABLE 2 The clinical information of GSE118553 dataset.

Parameter Subclass Patients

Samples Control 100

AD 301

Age >60 368

≤60 33

Gender Female 166

Male 235

“linkET” package was used to further explore the relationship
between 22 immune cells and between these risk genes and the
immune cells mentioned above.

Prediction of interacting genes,
transcription factors, and drugs

Gene interactions were predicted using the online GeneMANIA
database. JASPAR is a publicly available multi-species repository
of transcription factors (TF) (Rigden and Fernández, 2023).
NetworkAnalyst is an extensive online portal for conducting
analyses of gene expression data (Zhou et al., 2019). We identified
topologically plausible TFs that tend to combine with these hub
genes using the National Center for Biotechnology Information
(NCBI) database and JASPAR on the NetworkAnalyst database.
The relative profile score threshold was set at 80%. Moreover, we
utilized the DGIdb database to predict compounds that might target
these hub genes and presented the results with Cytoscape software
(version 3.8.2).

AD mouse model

The mice were purchased from GENEANDPEACE (Jiangsu,
China). Male App/PS1 mice (AD groups) and wild-type mice
(control groups) (10–12°weeks old) were caged (6 mice per cage) in
air-conditioned chambers with a temperature of ∼26°C and received
a light/dark cycle of 12 h for 7 days before the research. No drug
tests were conducted. All mice were raised until 9 months of age in
the animal facilities of Xiamen University. The animal experiment
programswere performed in accordancewith theAnimal Protection
Committee of Sun Yat-sen University and NIH Guide for the Care
and Use of Laboratory Animals.

Antibodies and immunofluorescence (IF)

The primary antibodies were CAMK4 (Proteintech, 13263-
1-AP), GPI (Proteintech, 15171-1-AP), ITPKB (Proteintech,
12816-1-AP), CKMT1A (Proteintech, 15346-1-AP), and PCSK2
(Proteintech, 10553-1-AP).Thefluorophore-labeled antibodies used

were goat anti-mouse Alexa Fluor 549 (1:500; Abbkine) and goat
anti-rabbit Alexa Fluor 488 (1:500; Abbkine). Brain tissues from
wild-type and App mice were fixated with 4% paraformaldehyde,
buried in paraffin, and sliced into four μm-sized sections using a
microtome (MicromHm325, Thermo Scientific). The tissue slices
were deparaffinized with dimethylbenzene, dehydrated with graded
alcohol, and then heated in citrate buffer (pH 6.0). Following
this, permeabilization with 0.4% Triton X-100 was performed for
30 min and closed with goat serum working solution (Wuhan,
China) for two h after antigen repair. The slices were incubated
overnight with the above primary antibodies at 4 °C and rinsed with
PBS. Lastly, the sections were assayed in the dark with secondary
antibodies for 1 hour at room temperature. The slices were mounted
with 4′, 6 diamidino-2-phenylindole for nuclear staining. The
images were captured using a confocal microscope (Nikon A1 +
R, Tokyo, Japan) and analyzed with Image-Pro Plus 5.1 software.
The percentage of positive cells and staining intensity were assessed
semi-quantitatively by the pathologists.

Ethics declarations

Theauthors confirm that all methods reported in this study were
performed in accordance with relevant guidelines and regulations,
including the ARRIVE guidelines (Percie du Sert et al., 2020).

Statistics

We used the above packages in R software (version 4.3.1) for
bioinformatics analyses and GraphPad Prism 9.5 software for in
vitro experimental data analysis. Experimental results and data
were expressed as mean ± standard deviation for a minimum
of three independent experiments. The correlation was identified
by Spearman correlation analysis. When making comparisons,
the Wilcoxon rank-sum test applied to non-normally distributed
variants, while the Student’s t-test worked for normally distributed
variants. Two-tailed p-values less than 0.05 were considered
significant.

Results

DECRGs in AD

Therewere 16 differentially expressed cuproptosis-related genes,
including ten downregulated and six upregulated genes. The
heatmap of DECRGs is displayed in Figure 1A. NFE2L2, ATP7B,
LIPT1, CDKN2A, MTF1, and DLST were upregulated in AD, while
the other genes were downregulated. Additionally, we analyzed
the expression levels of CRGs between female and male AD
patients. Only ATP7B and LIAS were identified as differentially
expressed genes regarding gender (Figure 1B). The correlations
between the 16DECRGs are shown in Figures 1C, D.The expression
levels of LIAS were associated with the levels of all the other 15
DECRGs. Functional enrichment analyses were then performed.
We found that cellular energy metabolic processes, such as lipoic
acid metabolism and amino acid catabolic process, were remarkably
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FIGURE 1
Expression characteristics of cuproptosis-related differentially-expressed genes in AD. (A) The heatmap exhibited the expression landscapes of 16
DECRGs between AD and normal controls. (B) The boxplot of DECRGs between female and male AD patients. (C) Correlation analysis of the
16DECRGs. The area of the pie diagram indicated the correlation coefficient. Red and green colors represented positive and negative correlations,
respectively. (D) Gene relationship network circle diagram of 16 DECRGs. Green and red colors represented negative and positive correlations,
respectively. The thickness of the line represents the closeness of the relationship (for all figures,∗ , p < 0.05,∗ ∗ , p < 0.01,∗ ∗ ∗ , p < 0.001).

enriched (Figures 2A, B). Furthermore, some glycolysis-related
processes were enriched, such as the acetyl-CoA metabolic process,
TCA cycle, and 2-Oxocarboxylic acid metabolism (Figures 2C, D;
Supplementary Tables S2, S3). These results revealed that DECRGs
were strongly associatedwith the processes ofmitochondrial aerobic
respiration inAD. Finally, the PPI network identified eight hub genes
from the DECRGs (Figure 2E).

Immune infiltration and clustering analyses

Figure 3A shows the immune cell infiltration in both AD
and control samples. The results of ssGSEA showed that the
abundance of restingNK cells, naïve CD4+ T cells,M2macrophages,
resting CD4+ memory T cells, neutrophils, and monocytes was
remarkably increased in AD patients (Figure 3B). We speculated
that changes in the immune microenvironment might be essential
to AD development. Moreover, correlation analysis showed that
all DECRGs were significantly associated with infiltrating immune
cells (Figure 3C). Consensus clustering analysis showed the optimal
stability of clusters with k = 2 (Figures 3D–F). Based on these results,

we finally categorized the 310 AD patients into two subgroups:
Cluster 1 and Cluster 2. PCA reduced the sample dimensions of the
two clusters quite well (Figure 3G). To investigate the associations
between cuproptosis and the twoAD clusters, the expression profiles
of 16 DECRGs between Clusters 1 and 2 were compared. The
abundance of DECRGs was significantly different between the
two subtypes (Figure 3H). Moreover, we explored the variations
in immune infiltrating cells between the two subgroups. The bar
plots showed the infiltrating levels of immune cells in the two
clusters (Figure 3I). The results showed that activated NK cells,
regulatory T cells, CD8+T cells, and resting dendritic cells were
remarkably increased in Cluster 1. In contrast, M0 macrophages,
M1 macrophages, and resting NK cells were significantly decreased
compared to Cluster 2 (Figure 3J).

Functional annotations

GSVA analysis was employed to explore the differences in
biological processes and functions between the two clusters
(Figures 4A, B). The results indicated that response to misfolded
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FIGURE 2
Functional enrichment analysis of 16 differentially-expressed cuproptosis-related genes. (A) A network of enriched terms. (B) Histogram of biological
pathways based on p values. (C) The circle diagram of KEGG pathway analysis. (D) The circle diagram of GO enrichment analysis. (E) PPI network
analysis with interaction scores setting >0.900.

protein, mitochondrial tricarboxylic acid cycle enzyme complexes
and developmental cell growth, were upregulated in Cluster 2.
These biological processes were consistent with the findings of
previous studies in AD (Heneka et al., 2015; Oliver et al., 2020;
Shoshan-Barmatz et al., 2018). Meanwhile, the non-ribosomal
peptide biosynthetic process, toxin metabolic process, and
ceramide transport were reinforced in Cluster 1, which were
also closely linked to AD (Crivelli et al., 2021; Pugazhenthi et al.,
2017; Zhao et al., 2020). KEGG terms showed that long-term
potentiation, RNA polymerase and non-homologous end joining
were enriched in Cluster 2, whereas ether lipid metabolism and
TGF-β signaling pathway were significantly involved in Cluster
1. All of these pathways were markedly associated with AD
progression (Reddy et al., 2018; Lourenco et al., 2019; Bai et al.,
2020). Additionally, we performed GSVA analysis using “c7.
immunesigdb.v2023.1. Hs.symbols set” to explore differences
in immune-related processes between the clusters. In Cluster
1, colitis γδT cells from the colon, epithelial cells, and IL-10
STIM macrophage were activated. While in Cluster 2, incubation
monocytes from tumor-bearing and IFN-γ Pam3Cys were
more active (Figure 4C).

Screening of gene modules

The WGCNA algorithm was utilized to build co-expression
patterns and networks for identifying critical gene modules
associated with AD and cuproptosis clusters. We calculated the
gene expression variations in GSE33000 and chose the top 25%
of genes with the largest variances for additional analysis. We

determined R2 = 0.9 and β = 16, 7 as the most appropriate
soft threshold arguments for constructing the scale-free model
networks (Figures 5A, B). Interestingly, a total of 22 modules
(11 on both occasions) with different colors were defined as
important, and the topological overlap matrix (TOM) of relevant
genes was depicted in the heatmaps (Figures 5C–F). These genes
in the 22 modules were then selected to explore the relevance
and importance of module co-expression with clinical traits
(Figures 5G, H). The two turquoise modules presented the most
significant association with AD risk and cuproptosis clusters.
They contained 759 hub genes and 297 hub genes, respectively
(Supplementary Tables S4, S5). Moreover, the turquoise modules
were positively correlated with module-related genes (cor = 0.73
and 0.96) (Figures 5I, J). |Gene Significance (GS)| > 0.5 and
|Module Membership (MM)| > 0.8 were the standards for selecting
hub genes.

Construction of gene signature

In total, 272 genes were detected by analyzing the intersections
of WGCNA analyses (Figure 6A; Supplementary Table S6). To
further determine genes with the highest values for diagnosis,
we developed four machine-learning models: Generalized Linear
model (GLM), eXtreme Gradient Boosting (XGB), Random Forest
model (RF), and Support Vector Machine model (SVM) based
on the expression profiles of 272 hub genes. We randomized the
data into a test cohort (30%) and a training cohort (70%). The
results showed that XGB and SVM machine models exhibited
relatively lower residuals (Figures 6B, C). We then assessed the
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FIGURE 3
Immune characteristics and cuproptosis-related clusters in AD. (A) Relative abundance of the 22 immune cells in AD versus normal controls. (B) Box
plot showing the difference in immune infiltration between AD and normal controls.∗p < 0.05,∗ ∗p < 0.01,∗ ∗ ∗p < 0.001. (C) Correlation analysis of
the 16 DECRGs with immune infiltrating cells. (D) The consensus clustering matrix at k = 2. (E) Typical cumulative distribution function (CDF) curves at k
= 2–9. (F) CDF delta area curves. (G) Principal component analysis (PCA) of the two clusters. Blue dots represent samples of Cluster 1, and red dots
represent samples of Cluster 2. (H) The expression patterns of 16 key DECRGs between the two molecular clusters were shown in the heatmap. (I)
Relative abundance of the 22 immune-infiltrated cells between the two molecular clusters. (J) Variations in immune infiltration between the two
molecular clusters were shown in the boxplots.∗p < 0.05,∗ ∗p < 0.01∗ ∗ ∗p < 0.001.

four algorithms’ performance in the test cohort by computing
receiver operating characteristic (ROC) profiles. The XGB machine
model showed the most significant area under the ROC curves
(AUC = 0.965) (Figure 6D). Finally, each model’s top 10 important
genes were ranked according to root mean square error (RMSE)
(Figure 6E). The top 5 most significant genes (CAMK4, GPI,
ITPKB, CKMT1A, and PCSK2) in the XGB model were selected
as predicted variables for AD. The locations of the genes on
the human chromosomes are displayed in Figure 6F. We then
constructed a nomogram to calculate the specific scores for
each gene (Figure 6G). The calibration curves and decision curve
analysis (DCA) were utilized to assess the performance of the
nomogram model. The margin of error between the ideal risk
and the actual risk for the AD cluster is small according
to the calibration curve (Figure 6H). The DCA indicated that
our model had high accuracy and could be used to inform
clinical decisions (Figure 6I). We then evaluated the expression
levels of five genes in the GSE33000 dataset. The results were

consistent with the risk tendencies in the nomogram model
(Supplementary Figure S1).

Clinical correlations and external datasets

We validated the prediction model using ROC curves on
two external brain cortex datasets. The results revealed that our
predictionmodel performed satisfactorily, with AUC values of 0.738
for the GSE122063 dataset and 0.931 for the GSE118553 dataset
(Figures 7A, B). This suggests that our model is equally effective
in distinguishing between AD patients and normal individuals.
Moreover, we enrolled the five hub genes and an external dataset
(GSE118553) to investigate the associations between our model
and clinical traits, such as age and gender. The results revealed
no significant relationships between the clinical characteristics
and gene expression levels (Figures 7C–L). Finally, we used the
external dataset GSE118553 to verify the expression levels of our
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FIGURE 4
Biological differences between the two Clusters sorted by t-values and intersections of significant modules. (A) Differences in GO biological functions
between the two Clusters. (B) Variations in KEGG pathways between the two Clusters. (C) Differences in cell states and perturbations within the
immune system between the two Clusters.

predictive genes.The findings suggested thatCAMK4 andCKMT1A
were significantly upregulated in the control groups, while ITPKB,
GPI, and PCSK2 were remarkably upregulated in the AD groups,
consistent with our previous findings (Figures 7M–Q).

Analysis of ceRNA networks and immune
correlations

We used the miRanda, miRDB, miRTarBase, and TargetScan
databases to jointly screen potential miRNAs interacting with
hub genes, then predicted the corresponding lncRNAs using
the SpongeScan database, and finally constructed a ceRNA
network using the Cytoscape software (version 3.8.2, Figure 8A).
As shown in Figure 8B, PCSK2 was significantly negatively
correlated with M1 macrophages. CKMT1A was positively
associated with CD8 T cells and negatively correlated with M1
macrophages. ITPKBwas strongly negatively correlated with resting
dendritic cells, activated dendritic cells, follicular helper T cells,
and CD8 T cells, but positively correlated with CD4 naïve T cells,
resting NK cells, and monocytes. CAMK4 demonstrated close
associations with M1 macrophages and activated dendritic cells.

GPI showed significant positive relationship with resting dendritic
cells.

Networks of candidate drugs, interactive
genes, and transcription factors

The predicted three-dimensional structures and sequences
of these five genes are shown in Supplementary Figure S2. To
investigate potential interactions with the five hub genes, we used
GeneMANIA to identify 20 candidate genes that may interact
with them (Figure 9A). Interactions of drugs and TF regulators
with hub genes are shown in Figures 9B, C. We identified 5 TF
regulatory features. The five TFs were: AR (androgen receptor),
PAX5 (paired box 5), RUNX1 (RUNX family transcription factor 1),
TBXT (T-box transcription factor T), and TFAP2A (transcription
factor AP-2 alpha). Surprisingly, all of these TFs could regulate the
transcription process of each of the five hub genes, suggesting close
correlations between the signatures of this model. Candidate drugs
associated with hub genes were selected based on interaction scores
and available literature (Table 3) (Zhou et al., 2014; He et al., 2014;
Beatty et al., 2018).
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FIGURE 5
Screening significant gene modules by the WGCNA algorithm. Selecting the soft threshold powers in AD-traits (A) and cluster-traits (B). Clusters of
module eigengenes in the AD-related WGCNA (C) and cluster-related WGCNA (D). (E, F) Representative heatmaps of correlations between the 11
blocks. (G) Correlation analysis of clinical condition and model eigengenes. Each column stands for a clinical condition, and each row for a module.
(H) Relationships between the molecular clusters and model eigengenes. Each column stands for a cluster, and each row for a module. (I) A scatter
plot between the significance of AD genes and module membership in the turquoise module. (J) A scatter plot between the significance of
cluster-related genes and module membership in the turquoise module.

Validation of expression levels in AD mouse
models

We confirmed the five genes using immunofluorescence (IF)
staining to validate our results. The expressions of GPI, ITPKB,
and PCSK2 were significantly increased in the cerebral cortex
of AD groups compared to the control group (Figures 10A–C),
which were consistent with our predictions. In contrast to our
analyses, the expressions of CKMT1A and CAMK4 were also
upregulated in the AD group and the differences were not
significant (Supplementary Figure S3). All IF staining results are
displayed in Supplementary Figures S4–S8.

Discussion

Growing evidence suggests that cuproptosis, a novel
nonapoptotic, copper-dependent programmed cell death, plays
a crucial role in neurodegenerative diseases (Mangalmurti and
Lukens, 2022; Amtage et al., 2014). Nevertheless, its regulatory

role has not been established, particularly in AD. In recent
years, increasing advances have been applied in the treatment
of AD, and the traditional histology-based classification has led
to frequent drug resistance (Schneider et al., 2007; Dubois et al.,
2021). In this research, we sought to explore the specific roles
of CRGs in AD phenotypes and their relationship with the AD
immune microenvironment, identify the hub genes, and probe the
corresponding regulatory TFs and targeted drugs (Figure 11).

Our findings are expected to be applied in the clinical
diagnosis and treatment of AD. The identification of CRGs and
the subsequent classification of AD patients into two distinct
molecular clusters provide valuable information for understanding
the heterogeneity of AD. Functional analyses showed DECRGs
were significantly enriched in the mitochondrial redox regulation
metabolisms. This discovery aligns partially with the research of
Tsvetkov et al. (Tsvetkov et al., 2022).

The etiology of AD is complex and involves many factors,
and recent findings have suggested a critical role for immunity
in its pathogenesis (Si et al., 2023; Wightman et al., 2021).
AD samples contained elevated infiltration levels of resting
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FIGURE 6
Construction of the prediction signature using machine learning techniques. (A) The intersections of disease-related WGCNA and cuproptosis
cluster-related WGCNA. (B) Reverse cumulative residual distributions for the XGB, SVM, RF, and GLM models. (C) The residuals for each
machine-learning model were shown in the boxplots. Red dots indicate the root mean square (RMSE). (D) The ROC analysis of machine learning
models based on 5-fold cross-validations in the test queue. (E) The top 10 most important features in each machine learning model. (F) The locations
of the five hub genes on 23 chromosomes. (G) Nomogram of the five hub genes. (H) Calibration curves revealing that the model may be an ideal
predictive signature for AD. (I) DCA showing the predictive efficiency of the model.

NK cells, naïve CD4+ T cells, resting CD4+ memory T cells,
M2 macrophages, neutrophils, and monocytes, consistent
with previous studies (Saresella et al., 2011; Zhao et al., 2022;
Khan et al., 2021; Borkowski et al., 2021). These findings suggest
that dysregulation of infiltration in the immune microenvironment
plays a critical role in AD.

Moreover, previous studies revealed the involvement of
cuproptosis in the pathogenesis of AD neuroinflammation
(Mangalmurti and Lukens, 2022). Therefore, we systematically
evaluated the correlations between the 16 DECRGs and 22 immune
infiltrating cells in AD. PDHB and DLST were significantly
associated with most of the immune infiltrating cells.

Compared with Cluster 2, the abundance of DLST, PDHB,
NLRP3, DLAT, PDHA1, MTF1, FDX1, DLD, and GLS was
significantly elevated in Cluster 1. Cluster 1 presented a higher
level of immune infiltration and was relatively dominant in
neuroinflammation. GSVA results suggested that Cluster 1 was

mainly involved in the immune-associated pathways, such as
antigen processing and presentation, TGF-β signaling pathway,
and leukocyte trans-endothelial migration. In contrast, Cluster 2
was primarily characterized by RNA polymerase and long-term
potentiation. TGF-β signaling pathway has been found to be
essential for the activation and differentiation of T and B cells, while
neuroinflammation has been implicated as a critical factor in the
pathogenesis of AD (possibly in its early stages) (Du et al., 2021;
Lee, 2020; Ni and Lynch, 2020). Taken together, we hypothesize
that Cluster 1 may harbor more activated B cells and T cells
that contribute to the development of AD and, therefore, have a
worse outcome than Cluster 2. These findings suggest that immune
modulationmay play a critical role in the progression ofAD, offering
new avenues for targeted therapeutic interventions.

Recently, an increasing number of studies have
used machine-learning models to predict morbidity
(Alatrany et al., 2021; Singhania et al., 2021), and these studies
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FIGURE 7
External validations and clinical correlation analysis of the model. (A, B) ROC analysis values in GSE122063 and GSE118553 datasets. (C–G) Correlation
analysis between CAMK4, CKMT1A, GPI, ITPKB, PCSK2, and gender in AD patients. (H–L) Correlations between CAMK4, CKMT1A, GPI, ITPKB, PCSK2
and age. (M–Q) Relative expression levels of CAMK4, CKMT1A, GPI, ITPKB, and PCSK2 in AD and controls.∗p < 0.05,∗ ∗p < 0.01,∗ ∗ ∗p < 0.001.

FIGURE 8
Prediction of ceRNA networks and immune correlations of the hub genes. (A) Prediction of ceRNA networks associated with hub genes. (B) Matrix
diagram displaying the correlations between immune cells and hub genes.

suggested that multivariate analyses assessed the relationships
between variables and provided more reliable results with lower
error rates than univariate analyses. We investigated the predictive
properties of machine learning models (SVM, RF, XGB, and GLM)
and constructed an XGB prediction model with the highest fidelity

in the test cohort (AUC = 0.965). We then selected the five most
significant variables (CAMK4, GPI, ITPKB, CKMT1A, and PCSK2)
to establish a 5-gene nomogram. Immunofluorescence staining was
conducted to validate our findings, which were consistent with
previous analyses. These five genes were assigned different points.
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FIGURE 9
Prediction of interacting genes, transcription factors, and gene-targeted drugs. (A) Predicting interacting genes associated with hub genes. (B) The TF
network based on marker genes. Yellow ellipse nodes denote transcription factors. (C) Interactions of genes and drugs. Green diamond nodes
represent targeted drugs. Light blue V-shaped nodes for downregulated mRNAs, Dark blue V-shaped nodes for upregulated mRNAs.

The points were added together to give the total points. The AD risk
is less than 0.1 if the total points do not exceed 120, and greater than
0.99 if the total points exceed 180.

Hyperphosphorylated tau proteins are the primary component
of neurogenic fiber tangles in the brains of AD patients. Yet, the
mechanism is incompletely understood. Wei et al. concluded that
intracellular accumulation of phosphorylated tau triggered nuclear
Ca2+/CAMK4 signaling, exacerbating tau hyperphosphorylation

(Wei et al., 2018). In contrast, Yin et al. found that Ca2+/CAMK4
was inhibited when human wild-type full-length tau (hTau)
accumulated intracellularly (Yin et al., 2016). Calcium -dependent
protein kinase IV (CAMK4) is a multifunctional enzyme engaged in
regulatingmultiple cellular processes, includingmemory formation,
neuronal health, and calcium signaling (Bito and Takemoto-
Kimura, 2003). Specifically, CAMK4 is essential for regulating
synaptic plasticity, especially long-term potentiation (LTP), which
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TABLE 3 The candidate drugs interacted with hub genes.

Drug Gene Regulatory approval Indication Interaction score

6-Aminonicotinamide GPI Not Approved — 7.864

Fluorodeoxyglucose F18 GPI Approved — 6.553

Recombinant Heregulin GPI Not Approved — 5.617

Gemcitabine CAMK4 Approved Antineoplastic agent 0.324

Estradiol 3-Benzoate CAMK4 Not Approved — 5.898

FIGURE 10
Validation of hub genes using immunofluorescence staining in mice brain tissues. (A–C) The representative images and qualifications of IF staining for
GPI, ITPKB, and PCSK2 were shown (∗ , p < 0.05;∗ ∗ ∗ , p < 0.001). GPI/ITPKB/PCSK2 (red), Nucleus (blue); Scale bar, 50um, (n = 3 per group).

is critical for memory and learning. Studies have shown that
CAMK4 may protect neurons by regulating the expression of
genes that support neuronal survival. In AD, the neuroprotective
effects of CAMK4 might be impaired, resulting in neurons being
more susceptible to mitochondrial dysfunction, oxidative stress,

and neuroinflammation (Bell et al., 2013). Similarly, ITPKB is
an enzyme involved in the regulation of intracellular calcium
(Ca2⁺) signaling, which is severely disrupted in AD (Schienle
and Scharmüller, 2013). By regulating calcium release through
modulation of IP3, ITPKB influences memory processes, cell
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FIGURE 11
Flowchart of this study.

survival, and synaptic plasticity (Sun et al., 2017). Dysregulation
of ITPKB may exacerbate calcium imbalances induced by amyloid-
β pathology, leading to neurodegeneration, neuroinflammation,
and synaptic dysfunction in AD (Kalinec et al., 2017). Previous
studies have also found that ITPKB was an essential regulator
of neuronal apoptosis and tau phosphorylation in Alzheimer’s
disease, suggesting that ITPKB may be a novel target for
mitigating pathological changes in AD (Stygelbout et al., 2014;
Salta et al., 2016).

Glycolysis is found to be the most significant overexpression
of gene onto-biological processes associated with altered protein
aggregation between AD and control patients. Glucose-6 phosphate
isomerase (GPI) is the predominant insoluble protein identified
by proteomics and increased in all insoluble fractions of AD
brain samples as verified by Western blotting. (Kepchia et al.,
2020). Moreover, GPI-anchored proteins perform important
roles in synaptic plasticity, neuronal signaling, and protection
against AD-associated toxicity. Disruption of GPI biosynthesis
or function might contribute to the psychophysiology of AD,
rendering this pathway an emerging area of interest for potential

therapeutic interventions (Liu et al., 2022). Understanding how
GPI proteins interact with AD pathology could provide new
insights into novel therapeutic strategies and mechanisms of
disease progression. CKMT1A is a mitochondrial creatine kinase
involved in multiple gene expression regulation and signaling
pathways (Gobinath et al., 2017). Its dysfunction is closely linked
to mitochondrial abnormalities observed in AD. CKMT1A
helps neurons meet their high energy demands by regulating
the creatine-phosphocreatine shuttle (Frederiksen et al., 2018).
However, in AD, oxidative stress, Aβ toxicity, and mitochondrial
dysfunction impair the ability of CKMT1A to maintain energy
homeostasis, leading to cognitive decline, neurodegeneration, and
synaptic failure (Cha et al., 2019). Treatment strategies that support
CKMT1A function may offer potential approaches to slow AD
progression.

PCSK2 is a member of the proprotein convertase family
involved in key processes associated with AD, particularly
neuroinflammatory regulation and processing of amyloid
precursor proteins (Mukherjee et al., 2017). By affecting
synaptic function and Aβ production, PCSK2 may play an
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important role in the pathogenesis of AD. Interestingly,
in AD patients, levels of PCSK2 were inversely correlated
with levels of neurodegeneration markers (Barranco et al.,
2021). Further studies are required to elucidate its exact
mechanism and explore its potential as a therapeutic target
for AD.

The accuracy of this model was well validated in two external
datasets (AUC = 0.931 and 0.738), suggesting that it could be used
as a non-invasive biomarker for early detection of AD. This genetic
signature could be used to complement existing diagnostic tools,
reducing the need for invasive procedures such as lumbar puncture
or advanced imaging techniques. Clinicians could use this genetic
signature in a clinical setting to better stratify patients, monitor
disease progression and develop personalized treatment strategies
based on AD molecular subtypes. Moreover, the expression levels of
five genes were again verified in GSE33000 and GSE118553 datasets.
We also investigated the associations between the five hub genes
and clinical characteristics. The TF regulatory network and gene-
drug interactions provided novel insights into AD pathogenesis and
drug mining.

In addition, the immune-related pathways identified
in our study, such as the TGF-β signaling pathway and
immune cell regulation, are already being explored in other
neurodegenerative diseases. Thus, our findings may support
the repurposing of existing immunomodulatory therapies for
AD patients, particularly those in Cluster 1, who may benefit
from treatments targeting immune regulation. However, further
clinical trials are needed to validate these potential therapeutic
applications and determine their efficacy in different AD
subgroups.

Still, there are some limitations to our study. First, the data
sources were from online databases, and input mistakes couldn't be
estimated. Secondly, though we included 19 generally recognized
cuproptosis-related genes, there is still a need to include more newly
identified CRGs. Although the mouse experiments confirmed the
results to some extent, we are currently unable to obtain sufficient
clinical AD samples for large-scale validation. Finally, further
basic experiments are necessary to explore the exact mechanisms
underlying the involvement of these genes in cuproptosis
related to AD.

Conclusion

In summary, this study revealed close associations
between infiltrating immune cells and CRGs, emphasizing the
heterogeneous nature of AD molecular clusters and immune
responses. This model highlights the potential therapeutic
implications of targeting cuproptosis and immune pathways
in AD, providing a foundation for personalized treatment
strategies.
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