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Cuproptosis is a new pattern of Cu-dependent cell death distinct from
classic cell death pathways and characterized by aberrant lipoylated protein
aggregation in TCA cycle, Fe-S cluster protein loss, HSP70 elevation, proteotoxic
and oxidative stress aggravation. Previous studies on Cu homeostasis and Cu-
induced cell death provide a great basis for the discovery of cuproptosis.
It has gradually gathered enormous research interests and large progress
has been achieved in revealing the metabolic pathways and key targets of
cuproptosis, due to its role in mediating some genetic, neurodegenerative,
cardiovascular and tumoral diseases. In terms of the key targets in cuproptosis
metabolic pathways, they can be categorized into three types: oxidative
stress, mitochondrial respiration, ubiquitin-proteasome system. And strategies
for developing cuproptosis inducers and inhibitors involved in these targets
have been continuously improved. Briefly, based on the essential cuproptosis
targets and metabolic pathways, this paper classifies some relevant inducers
and inhibitors including small molecule compounds, transcription factors and
ncRNAs with the overview of principle, scientific and medical application, in
order to provide reference for the cuproptosis study and target therapy in
the future.
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1 Introduction

Copper (Cu) is an indispensable co-factor of various crucial metabolic enzymes in a
great deal of physiological processes, they will flow into metabolic disorders with aberrant
Cu homeostasis (Xie et al., 2023). Thus the Cu level in human body must be maintained
within a balanced range to ensure the normal cellular activities. Shellfish and organ
meats tend to be the most abundant food sources for human absorbing Cu, and the
intake of Cu mainly occurs in small intestine epitheliums, which should be recommended
0.8–2.4 mg/day for adult to maintain Cu homeostasis (Bost et al., 2016; Xie et al., 2023).
The intracellular Cu level is regulated by a complex network of cuproenzymes, membrane
transporters and Cu chaperones, which together coordinate the transport, reservation and
intracellular metabolism of Cu, thereby keeping intracellular Cu level within a balanced
range to prevent the damages of Cu overload and deficiency. With the assistance of specific
Cu chaperones, intracellular Cu(I) are transported to the specific metabolic processes in
cytoplasm and nucleus through activating the target enzymes: antioxidant-1 (ATOX1)
carries Cu(I) to nucleus (gene regulation) and Golgi apparatus (protein folding), copper
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FIGURE 1
Overview on the intracellular metabolic pathways of Cu homeostasis. Extracellularly, Cu(II) are reduced to Cu(I) by metal reductase; intracellular Cu(I)
are transported to nucleus, Golgi apparatus, SOD, mitochondria with the assistance of ATOX1, CCS, COX17 to participate in the metabolic process of
gene regulation, protein folding, redox homeostasis and mitochondrial respiration through activating the target enzymes. ATOX1, antioxidant-1; CCS,
Cu chaperone for superoxide dismutase; COX, cytochrome c oxidase; ETC, electron transport chain complexes; GSH, glutathione; SLC31A1, solute
carrier family 31 member 1; SOD, superoxide dismutase.

chaperone for superoxide dismutase (CCS) carries Cu(I) to
superoxide dismutase (SOD) (redox homeostasis), and cytochrome
c oxidase 17 (COX17) carries Cu(I) tomitochondria (mitochondrial
respiration) (Figure 1) (Chen et al., 2022).

Cu-dependent cell death found in 2022 is a novel non-apoptotic
programmed cell death, which accelerates the development
of field of Cu homeostasis imbalance. There are few known
mammalian lipoylated proteins and most of them are concentrated
in tricarboxylic acid (TCA) cycle, while cells with active
mitochondrial respiration show elevated lipoylated proteins
(Tsvetkov et al., 2022; Chen et al., 2022; Xie et al., 2023).
Excess Cu ions aggravate the insoluble aggregation of lipoylated
proteins, reduce Fe-S cluster protein, cause proteotoxic stress,
elevate heat shock protein 70 (HSP70) and reactive oxygen
species (ROS), ultimately leading to cell death effects, named
cuproptosis. The discovery of cuproptosis is inseparable from
the progress of previous studies on Cu homeostasis and Cu-
induced cell death, involving Cu-mediated diseases [Wilson disease
(Wilson, 1934), Menkes disease (Danks et al., 1972)], membrane
transporters [ATP7A (Vulpe et al., 1993; Chelly et al., 1993;
Mercer et al., 1993), ATP7B (Bull et al., 1993; Petrukhin et al.,
1993; Tanzi et al., 1993), solute carrier family 31 member 1
(SLC31A1) (Dancis et al., 1994)], anti-cancer agents of Cu
complexes [disulfiram (Chen et al., 2006), elesclomol (Nagai et al.,
2012)], action mode between elesclomol-Cu(II) and ferredoxin 1
(FDX1) (Tsvetkov et al., 2019) (Figure 2).

Based on the characteristic changes, cuproptosis is a new
form of Cu-dependent cell death distinct from traditional cell
death including apoptosis, autophagy, ferroptosis, pyroptosis,
necrosis, and Cu homeostasis imbalance will lead to some adverse
health effects, involving genetic, neurodegenerative, cardiovascular,
tumoral diseases (Tsvetkov et al., 2022; Chen et al., 2022). For genetic
diseases:Menkes disease andWilson disease, caused bymutations in
ATP7A/7B gene, generalize severe organ Cu deficiency or overload.
For neurodegenerative diseases: in Alzheimer’s disease, Cu ions
may interplay with the key causative factors like amyloid-β peptides
and tau protein; in amyotrophic lateral sclerosis, Cu deficiency is
reported to promote the aberrant hydrophobicity of pathogenic
mutant SOD1; in Huntington’s disease, Cu overload occurs in
the striatum of patients and mouse models. For cardiovascular
diseases: excess Cu in relation to atherosclerosis while Cu deficiency
in relation to cardiac hypertrophy. For tumoral diseases: Cu is
involved in the malignant progression of cancer by facilitating cell
proliferation, angiogenesis and metastasis. Hence, comprehensive
exploration of potential mechanism of Cu homeostasis in disease
development, and in-depth study of Cu homeostasis-associated
regulatory pathways under different pathological areas have grand
medical value and translational significance.

With the emergency of cuproptosis, scientific communities pay
more attention to Cu-induced cell death owing to its enormous
potential in disease target therapy. Nowadays, a growing body of
studies have revealed the target molecules and metabolic pathways
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FIGURE 2
Tendency of cuproptosis development. The historical events contributing to studying Cu homeostasis and cuproptosis are displayed in the timeline
from 1934 to 2024, involving Cu-mediated diseases (Wilson disease, Menkes disease), membrane transporters (ATP7A/7B, SLC31A1), anti-cancer agents
of Cu complexes (disulfiram, elesclomol), action mode between elesclomol-Cu(II) and FDX1, the discovery of cuproptosis. FDX1, ferredoxin 1; SLC31A1,
solute carrier family 31 member 1.

in response to Cu cell death effects. Meanwhile, inducers and
inhibitors of cuproptosis have been widely applied in scientific and
medical areas. However, the targets and metabolic pathways of Cu-
dependent cell death are not totally explained, which limits the
development and application of cuproptosis inducers and inhibitors.
In this study, we intend to briefly summarize the essential targets and
metabolic pathways of cuproptosis, then categorize commonly used
and newly discovered inducers and inhibitors with the overview of
principle, scientific andmedical application, and discuss their future
development tendency, hoping to increase the understanding of the
inducers and inhibitors in research field and disease target therapy
based on cuproptosis.

2 The key targets in cuproptosis
metabolic pathways

The metabolic homeostasis of metal elements play a key role
in internal environment and normal metabolism. The overload or
deficiency of metal elements will disrupt and impair metabolic
homeostasis, like iron and ferroptosis (Dixon et al., 2012).
Over the past decade, multiple types of ferroptosis inducers
and inhibitors have been employed in practice in terms of the
targets and metabolic pathways involved in Fe-dependent cell

death (Du and Guo, 2022). Similarly, the strategies of cuproptosis
inducers and inhibitors have been continuously improved based
on the key targets in cuproptosis metabolic pathways (Figure 3):
oxidative stress, mitochondrial respiration, ubiquitin-proteasome
system (UPS).

2.1 Oxidative stress: excess Cu ions cause
Fenton reaction to generate ROS

Tsvetkov et al. found that elesclomol elevated tenfold
intracellular Cu ion level to trigger cell death effects 24 h later
(Tsvetkov et al., 2022). Cu is one of the transition metals and
accumulation of Cu ions can generate massive ROS via Fenton
reaction: Cu(I) and H2O2 generate Cu(II), ·OH, OH− and O2;
glutathione (GSH) reduces Cu(II) to enhance Cu(I)/H2O2 reaction,
which causes lipid peroxidation, disrupts cytomembrane integrity,
triggersDNAdamage andmitochondrial dysfunction (Jomova et al.,
2022; Fu et al., 2021; Li et al., 2022). Thus excess intracellular Cu
ions and ROS are one of the biochemical features in Cu-dependent
cell death. How to elevate or reduce the content of intracellular
Cu ions and ROS will be the key targets to induce or inhibit
cuproptosis process.
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FIGURE 3
The targets and metabolic pathways of cuproptosis mechanism. During cuproptosis, excess Cu ions can cause Fenton reaction to generate ROS,
disrupt lipoylated pathway in TCA cycle and Fe-S cluster protein, trigger UPS inhibition, in response to Cu cell death effects. COX, cytochrome c
oxidase; DLAT, dihydrolipoamide S-acetyltransferase; ETC, electron transport chain complexes; FDX1, ferredoxin 1; GSH, glutathione; HSP70, heat
shock protein 70; LIAS, lipoyl synthase; ROS, reactive oxygen species; SLC31A1, solute carrier family 31 member 1; TCA, tricarboxylic acid cycle; Ub,
ubiquitin.

2.2 Mitochondrial respiration: excess Cu
ions induce cell death effects by targeting
lipoylated pathway in TCA cycle and Fe-S
cluster protein

According to the discovery of Tsvetkov et al., 10 genes have been
identified as cuproptosis-related genes. Among them, FDX1 and
lipoylated proteins including lipoic acid pathway lipoacyltransferase
1 (LIPT1), lipoyl synthase (LIAS), dihydroacylamide dehydrogenase
(DLD) and lipoylated targets dihydrolipoamide S-acetyltransferase
(DLAT), pyruvate dehydrogenase E1 subunit α 1 (PDHA1), pyruvate
dehydrogenase E1 subunit β (PDHB) act as positive regulatory
factors, while glutaminase (GLS), cyclin-dependent kinase inhibitor
2A (CDKN2A), metal regulatory transcription factor 1 (MTF1)
generate negative regulatory effects (Tsvetkov et al., 2022). The vital
characteristic and target of cuproptosis is lipoylated pathway, a
conserved post-translational lysinemodification which is important
for the key enzymes like DLAT regulating TCA cycle. DLAT
is an essential component of PDH complex, which catalyzes
the decarboxylation of pyruvate to acetyl-CoA in TCA cycle,
and lipoylation of DLAT is required for its enzymatic function
(Rowland et al., 2018). Excess Cu ions (Cu(I)) bind to the lipoylated
DLAT, then the insoluble oligomerization of DLAT and the loss
of Fe-S cluster protein result in proteotoxic stress and cell death,
accompaniedwithHSP70 elevation. So FDX1 is the key regulator for

cuproptosis development: firstly, FDX1 reduces excess intracellular
Cu(II) toCu(I); secondly, FDX1 and LIAS act as the upstream factors
regulating the lipoylation of DLAT; thirdly, Fe-S cluster protein
functions as the prosthetic groups of many enzymes essential for
mitochondrial metabolism (e.g., LIAS and mitochondrial complex
I/II) and FDX1 regulates its biosynthesis, but reducing excess
Cu(II) disrupts the normal activity of FDX1 (Zulkifli et al., 2023;
Sheftel et al., 2010; Cameron et al., 2011). Thus the discovery
of cuproptosis reveals that the targets and pathways involved in
Cu-dependent cell death are highly correlated with mitochondrial
respiration proteins, showing increasing expect for drug discovery.

2.3 UPS: Cu ions inhibition

UPS is a key protein degradation pathway for regulating cell
proliferation and apoptosis, which selectively connects ubiquitin
to the redundant proteins and signals them for degradation, but
UPS inhibition will trigger cytochrome c release to cytoplasm and
activate the caspase cascade for apoptosis (Sidor-Kaczmarek et al.,
2017). Studies have shown that Cu(II) complexes exhibit
excellent inhibition of UPS via direct binding and redox reaction
(Panebianco et al., 2023; Zhang and Burke, 2023). Interestingly,
the rapid proliferation of tumor cells is more dependent on the
metabolic support of UPS, so they will be more sensitive to
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metal complex-induced proteasome inhibition. Chen et al. found
that disulfiram-Cu(II) complexes induced the apoptosis effects of
breast cancer cells by inhibiting proteasome activity and increasing
ubiquitin-protein interaction, while the study of Skrott et al. showed
that disulfiram-Cu(II) complexes suppressed UPS and led to
the cell death of breast cancer by blocking signaling upstream
(Chen et al., 2006; Skrott et al., 2017). Therefore UPS inhibition
is responsible for the another metabolic pathway involved in Cu-
dependent cell death, which can not be neglected for the design
strategy of cuproptosis inducers and inhibitors.

3 Cuproptosis inducers

The proper cuproptosis inducers should cause intracellular
Cu ions overload and lead to Cu-dependent cell death via
the characteristic targets and metabolic pathways of cuproptosis
mentioned above. With the discovery of cuproptosis, inducers of
Cu-dependent cell death receive increasing concerns and novel
inducers are constantly invented. Since cells can not suffer Cu
overload, it suggests that the accumulation of Cu ions enables to
selectively kill the morbid cells. Therefore cuproptosis inducers
show promising application values both in scientific and medical
areas. And choosing an appropriate inducer to induceCu-dependent
cell death can not divorce from the properties of inducers,
targets, relevant studies and diseases. In this section, based on the
characteristic targets and metabolic pathways of cuproptosis, the
cuproptosis inducers we collect are categorized into small molecule
compounds, transcription factors and non-coding RNAs (ncRNAs)
(Figure 4; Table 1).

3.1 Small molecule compounds to raise
intracellular Cu content by targeting Cu
ionophores, membrane transporters,
reservation and chaperones

3.1.1 Cu ionophores
As lipophilic compounds, Cu ionophores are reversible copper

complexes that deliver Cu(II) into cells. In the study of Tsvetkov
et al., researchers tested 1,448 compounds and screened against 489
cell lines from PRISM Repurposing Secondary dataset to verify
drugs with growth inhibition similar to elesclomol (Tsvetkov et al.,
2022). Hereby, Cu ionophores have received lots of concerns
which enable to effectively raise intracellular Cu content and
obtain favorable therapeutic outcomes through triggering Cu-
dependent cell death. Elesclomol: the formal condensation of
malonic acid carboxy groups and two molar equivalents of
N-methylbenzenecarbothiohydrazide hydrino groups generate
elesclomol; elesclomol-Cu(II) complex binds to the α2/α3 helix
and β5 chain of FDX1, but does not bind to the parologous protein
FDX2; 40 nM elesclomol-Cu(II) resulted in a tenfold increase in
intracellular Cu level in 2 h and triggered ABC1 cell death after 24 h
(Tsvetkov et al., 2022); elesclomol displays dramaticmedical value by
raising intracellular Cu content, such as improving serious cardiac
pathology in cardiac SLC31A1 knockout mice, preventing harmful
neurodegenerative changes inMenkesmurinemodel (Guthrie et al.,
2020) and killing cancer cells (O’Day et al., 2009; Monk et al., 2018).

Disulfiram: DSF is a dithiocarbamate compound that treats alcohol
dependence by targeting aldehyde dehydrogenase (ALDH), while
acid condition reduces DSF to diethyldithiocarbamate (DTC) and
invests the capacity to combine Cu(II) (Viola-Rhenals et al., 2018);
DTC-Cu(II) complex induces lethal effects in ALDH+ and nuclear
protein localization 4 positive (NPL4+) cancer cells combined with
Cu overload (Skrott et al., 2017; Huang et al., 2016). Clioquinol:
it is an oral anti-parasitic agent and recently displays preclinical
efficacy in malignancy through inhibiting proteasome and
directing Cu to proteasome and in Alzheimer through recovering
intracellular Cu content (Schimmer, 2011; Katsuyama et al., 2021;
Adlard et al., 2008). In addition to clioquinol-Cu, many Cu
complexes have been exploited as proteasome inhibitors, e.g., 8-
quinolinol-Cu (Zhai et al., 2010), schiff base-Cu (Kumar et al.,
2024), pyrithione-Cu (Chen et al., 2017) and so on. Other Cu
ionophores including P53mutant reactivator zincmetallochaperone
(Zaman et al., 2019), bis-thiosemicarbazone Cu(II) complexes
Cu(II)ATSM/Cu(II)GTSM (Soon et al., 2011; Andres et al.,
2020; Crouch et al., 2009) and C7-locked N-(quinoline-8-
yl)benzenesulfonamide analogue UM4118 (Moison et al.,
2024) are also undergoing preclinical studies of tumoral and
neurodegenerative diseases.

3.1.2 Cu membrane transporters
SLC31A1 and ATP7A/7B are classic membrane transporters

that mediate Cu(I) endocytosis and expulsion, thus using small
molecule compounds to regulate SLC31A1 and ATP7A/7B may be
a valid strategy to control intracellular Cu content and cuproptosis.
Epigallocatechol gallate, a green tea polyphenol (Chen et al., 2020),
β-elemene, a curcuma wenyujin plant extract (Li et al., 2016), they
can upregulate SLC31A1 expression; CID 2011756, a protein kinase
D inhibitor (Janardhanan et al., 2022), omeprazole, a proton pump
inhibitor (Matsui et al., 2015), 6-hydroxydopamine hydrobromide, a
neurotoxin (Kondo et al., 2021), they can downregulate ATP7A/7B
expression. These compounds are employed for cancer and
Parkinson therapy. Notably, in 2023, Solier S et al. identified CD44
as a novel Cu membrane transporter that endocytosed Cu(II)
into inflammatory macrophages, hereby CD44 would be another
candidate for cuproptosis drug discovery based on Cu membrane
transporter (Solier et al., 2023).

3.1.3 Cu reservation
The intracellular Cu(I) is complexed by GSH and transferred to

metallothionein, in which sulfur makes the binding to Cu(I) and the
redox cycle regulates the binding and release. The cellular oxidants
cause metals release and generation of metallothionein-disulfide,
which can be reduced by GSH (Kang, 2006). Thus inhibition
of GSH and metallothionein function can aggravate the release
of Cu(I) to raise the cellular free Cu(I) in Cu stress, so as to
induce Cu cytotoxicity. Actinomycin D, a DNA repair inhibitor, can
decrease metallothionein expression (Steinebach and Wolterbeek,
1994); PAPA NONOate, a NO donor, can oxidize metallothionein-
sulfur (Liu et al., 2000); DL-Buthionine-(S,R)-sulfoximine serves
as an inhibitor of GSH synthesis (Steinebach and Wolterbeek,
1994). These compounds can be employed to disrupt the Cu
reservation mediated by GSH-metallothionein so that dysfunction
Cu homeostasis.
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FIGURE 4
The small molecule compounds, transcription factors and ncRNAs to induce Cu-dependent cell death. We have collected some small molecule
compounds targeting Cu ionophore①, membrane transporter②, reservation③, chaperone④, mitochondrial respiration and TCA cycle⑤,
transcription factors targeting membrane transporter⑥ and ncRNAs⑦ targeting FDX1 to induce Cu-dependent cell death. ATOX1, antioxidant-1; CCS,
Cu chaperone for superoxide dismutase; ETC, electron transport chain complexes; FDX1, ferredoxin 1; GSH, glutathione; SLC31A1, solute carrier family
31 member 1; TCA, tricarboxylic acid cycle.

3.1.4 Cu chaperones
ATOX1, CCS, COX17 carry intracellular Cu(I) to nucleus,

Golgi apparatus, SOD, mitochondria, respectively and modulate
normal metabolic activities, thereby inhibition of Cu chaperones
will reduce Cu trafficking, another approach to aggravate Cu
accumulation via small molecule compounds (Chen et al., 2022).
Wang et al. reported a small molecule DC_AC50, inhibitor of
ATOX1 and CCS, disrupted intracellular Cu transport and triggered
oxidative stress in cancer cells (Wang et al., 2015). Thus DC_
AC50 is also a potential cuproptosis inducer to mediate Cu-
dependent cell death, but the specificCOX17 inhibitor awaits further
exploration.

3.2 Small molecule compounds to induce
cuproptosis by targeting mitochondrial
respiration and TCA cycle

Tsvetkov P et al. verified that Cu stress was more sensitive to
the cells with active mitochondrial respiration and high levels of

lipoylated TCA enzymes. Further, 10 genes have been identified
as cuproptosis-related genes including positive regulatory factors
FDX1, lipoylated proteins (LIPT1, LIAS, DLD), lipoylated targets
(DLAT, PDHA1, PDHB) and negative regulatory factors GLS,
CDKN2A, MTF1 (Tsvetkov et al., 2022). AT-rich interactive
domain-containing protein 1A is a mutated tumor suppressor gene
in hepatocellular carcinoma, and the data of Xing T et al. found
that loss of this gene shifted the glucose metabolism of tumor
cells from glycolysis to TCA cycle and oxidative phosphorylation
(OXPHOS), which upregulated FDX1 and lipoylated proteins and
exhibited greater sensitivity to Cu stress in tumor cells (Xing et al.,
2023). The small molecule compounds that suppress glycolysis and
favorOXPHOSmay thus be promising tools for killing cells sensitive
to cuproptosis. Phloretin (glucose transporter (GLUT) inhibitor)
(Zhang et al., 2024), PX-478 (hypoxia inducible factor 1α (HIF-1α)
inhibitor) (Li et al., 2024), 2-deoxy-D-glucose (hexokinase inhibitor)
(Yang et al., 2023), galactose (Tsvetkov et al., 2022; Yang et al., 2023),
these glycolysis inhibitors would have been taken into therapeutic
consideration for cancer sensitive to cuproptosis through driving
reprogramming of TCA cycle and OXPHOS.
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TABLE 1 Display of cuproptosis inducers.

Agents Types Targets Medical value Ref.

Small molecule compounds

Elesclomol Cu ionophore FDX1 Cardiopathy, Menkes, cancer Guthrie et al. (2020),
O’Day et al. (2009), Monk et al.
(2018)

Disulfiram Cu ionophore ALDH, NPL4 Alcohol dependence, cancer Skrott et al. (2017),
Viola-Rhenals et al. (2018),
Huang et al. (2016)

Clioquinol Cu ionophore Proteasome Bacteria, cancer, Alzheimer Schimmer (2011),
Katsuyama et al. (2021),
Adlard et al. (2008)

8-Quinolinol Cu ionophore Proteasome Bacteria, cancer Zhai et al. (2010)

Schiff base Cu ionophore Proteasome Microbia, oxidative stress,
inflammation, cancer

Kumar et al. (2024)

Pyrithione Cu ionophore Proteasome Microbia, cancer Chen et al. (2017)

Zinc metallochaperone Cu ionophore P53 mutants Cancer Zaman et al. (2019)

Cu(II)ATSM
Cu(II)GTSM

Cu ionophore SOD, glycogen synthase kinase
3β

Amyotrophic lateral sclerosis,
cancer, Alzheimer

Soon et al. (2011), Andres et al.
(2020), Crouch et al. (2009)

UM4118 Cu ionophore SF3B1 Cancer Moison et al. (2024)

Epigallocatechol gallate Cu membrane transporter SLC31A1 Cancer Chen et al. (2020)

β-elemene Cu membrane transporter SLC31A1 Cancer Li et al. (2016)

CID 2011756 Cu membrane transporter ATP7A/7B Cancer Janardhanan et al. (2022)

Omeprazole Cu membrane transporter ATP7A Cancer Matsui et al. (2015)

6-Hydroxydopamine
hydrobromide

Cu membrane
transporter/chaperone

ATP7A, ATOX1 Parkinson Kondo et al. (2021)

Actinomycin D Cu reservation Metallothionein Cancer Steinebach and Wolterbeek
(1994)

PAPA NONOate Cu reservation Metallothionein Wound healing Liu et al. (2000)

DL-Buthionine-(S,R)-
sulfoximine

Cu reservation GSH Cancer Steinebach and Wolterbeek
(1994)

DC_AC50 Cu chaperone ATOX1, CCS Cancer Wang et al. (2015)

Phloretin Mitochondrial respiration and
TCA cycle

GLUT1 Inflammation, cancer Zhang et al. (2024)

PX-478 Mitochondrial respiration and
TCA cycle

HIF-1α Cancer Li et al. (2024)

2-Deoxy-D-glucose Mitochondrial respiration and
TCA cycle

Hexokinase Cancer Yang et al. (2023)

Galactose Mitochondrial respiration and
TCA cycle

— Cancer Tsvetkov et al. (2022),
Yang et al. (2023)

(Continued on the following page)
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TABLE 1 (Continued) Display of cuproptosis inducers.

Agents Types Targets Medical value Ref.

Transcription factors

ELF3 Transcription factor SLC31A1 Acute kidney injury Qiu et al. (2024)

Sp1 Transcription factor SLC31A1 Cancer, intervertebral disc degeneration Song et al. (2008), Chen et al. (2024)

ATF3/SPI1 Transcription factor SLC31A1 Cardiomyopathy Huo et al. (2023)

NcRNAs

LINC02362/miR-18a-5p LncRNA/miRNA FDX1 Cancer Quan et al. (2023)

ALDH, aldehyde dehydrogenase; ATOX1, antioxidant-1; CCS, Cu chaperone for superoxide dismutase; FDX1, ferredoxin 1; GLUT1, glucose transporter 1; GSH, glutathione; HIF-1α, hypoxia
inducible factor 1α; NPL4, nuclear protein localization 4; SLC31A1, solute carrier family 31 member 1; SOD, superoxide dismutase; TCA, tricarboxylic acid cycle.

3.3 Transcription factors to induce
cuproptosis

Transcription factors regulate the expression of target genes
through the binding to promoters, and the specific transcription
factors in response to manipulating cuproptosis-related genes
have been continuously identified. According to the chromatin
immunoprecipitation and luciferase reporter analysis, ELF3
was found to directly bind to the promoter of SLC31A1 and
promote its expression, which imbalanced Cu homeostasis and
mitochondrial function to exacerbate acute kidney injury during
cisplatin chemotherapy (Qiu et al., 2024). In small cell lung
cancer cells, Sp1 could function as a positive regulator for
SLC31A1 expression and the influence of Sp1 to intracellular Cu
concentration was reliant on its zinc finger motif (Song et al.,
2008). In intervertebral disc degeneration, oxidative stress
promoted the Sp1-mediated SLC31A1 transcription, leading to
increased TCA cycle-related protein aggregation and Cu-induced
cytotoxicity (Chen et al., 2024). In cardiac dysfunction, ATF3
and SPI1 were validated to control the expression of SLC31A1 in
cardiomyocytes, which exhibited features of cuproptosis (Huo et al.,
2023). Thus these transcription factors we collect above are
involved in either pathogenesis or therapeutic strategy based
on regulating Cu membrane transporters. Mechanically, the
investigation of cuproptosis-related transcription factors contributes
to understanding the hallmark of Cu-dependent cell death and
discovering appropriate drugs if they bore the capacity to modulate
cuproptosis-related genes.

3.4 NcRNAs to induce cuproptosis

ncRNAs are a kind of functionl RNA molecules that are not
translated into proteins. Regulatory ncRNAs play critical roles in
post-transcriptional events regulating cuproptosis-related genes,
which have attracted considerable interests and been intensively
studied. LncRNAs, cirRNAs and miRNAs have been reported
to modulate the expression of SLC31A1, ATP7A/7B, FDX1 and
other cuproptosis-related genes, but the studies involved are
mainly subject to reverse drug resistance before the discovery of
cuproptosis and rarely referred to Cu-dependent cell death so

far (Quan et al., 2023; Fu et al., 2022; Feng et al., 2018; Yu et al.,
2020). The data of Quan et al. provided the evidence that the
binding of LINC02362 to miR-18a-5p served as a molecular
sponge to modulate FDX1, which bolstered the sensitivity of
hepatocellular carcinoma to oxaliplatin via cuproptosis (Quan et al.,
2023). Further research is essential to investigate comprehensive
functions of ncRNAs to Cu homeostasis and cuproptosis, but
it remains overwhelming difficulties to deliver ncRNAs to
human body.

4 Cuproptosis inhibitors

The eligible cuproptosis inhibitors should antagonize the
cell death effects of Cu overload and alleviate the cellular
damages induced by cuproptosis including oxidative stress,
mitochondrial respiration dysfunction andUPS inhibition. Tsvetkov
and colleagues verified that the cytotoxicity of Cu ionophore
was eliminated by Cu chelator (tetrathiomolybdate) rather
than other pathway inhibitors including Z-VAD-FMK, Boc-D-
FMK (apoptosis), ferrostatin-1 (ferroptosis) and necrostatin-1
(necroptosis), whereas other metal chelators such as deferoxamine
mesylate [high affinity for Fe(III)] and TPEN [high affinity for
Zn(II)] had no effect on the killing capacity induced by Cu
ionophore (Tsvetkov et al., 2022). Mechanically, the Cu cell
death effects depended on mitochondrial respiration and TCA
cycle, since treatment with mitochondrial antioxidants, fatty
acids, mitochondrial function inhibitors induced distinct effects
on Cu ionophore sensitivity; and furthermore treatment with
electron transport chain complexes (ETC) inhibitors, mitochondrial
pyruvate uptake inhibitors attenuated the cell death; treatment with
mitochondrial uncoupler FCCP had no effect on Cu cytotoxicity
(Tsvetkov et al., 2022). The scientific and medical communities
have continuously developed available drugs for the diseases
in Cu overload, and the discovery of cuproptosis significantly
accelerates the progress of cuproptosis inhibitors. Based on
the targets and metabolic pathways involved, like inducers, the
cuproptosis inhibitors we collect can be similarly categorized into
small molecule compounds, transcription factors and ncRNAs
(Figure 5; Table 2).
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FIGURE 5
The small molecule compounds, transcription factors and ncRNAs to suppress Cu-dependent cell death. We have collected some small molecule
compounds targeting Cu chelator①, reservation②, mitochondrial respiration and TCA cycle③, oxidative stress④, transcription factors targeting
energy metabolism, membrane transporter, reservation⑤ and ncRNA⑥ targeting FDX1 to suppress Cu-dependent cell death. ETC, electron transport
chain complexes; FDX1, ferredoxin 1; GSH, glutathione; HIF-1α, hypoxia inducible factor 1α; MTF1, metal regulatory transcription factor 1; ROS, reactive
oxygen species; SLC31A1, solute carrier family 31 member 1; TCA, tricarboxylic acid cycle.

4.1 Small molecule compounds to reduce
intracellular Cu content by targeting Cu
chelators and reservation

4.1.1 Cu chelators
In contrast to ionophores delivering Cu ions to cells, Cu

chelators are another type of Cu complexes that reduce intracellular
Cu content and perturbate cuproptosis pathways. In the study
of Tsvetkov et al., two Cu chelators tetrathiomolybdate and
bathocuproinedisulfonic acid are used to eliminate the cell death
effects of Cu ions (Tsvetkov et al., 2022). Tetrathiomolybdate is
an anti-Cu agent exerting anti-tumor effects in animal model
and clinical trial (NCT00150995) by reducing tumor growth and
angiogenesis (Ishida et al., 2013; Pass et al., 2008; Henry et al., 2006)
and used forWilson disease therapy in clinical trial (NCT00004339)
by reducing Cu deposition in liver and brain (Kirk et al., 2024;
Brewer et al., 2006). GSH is an endogenous intracellular Cu
chelator for Cu metabolic balance, while various Cu chelators
developed to date have been well-studied in animal model and
clinical trial. Among them, the chelating effect of trientine can
treat Wilson disease as well as inhibit the angiogenesis process
of hepatocellular carcinoma through reducing the angiogenic
factor production (Schilsky et al., 2022; Moriguchi et al., 2002);
penicillamine has been shown to retard glioblastoma progression
by decreasing lysyl oxidase enzymatic activity and angiogenic

effect, apart from cardiovascular and Wilson diseases therapy
(Schilsky et al., 2022; Mammoto et al., 2013; Wang D. et al.,
2023); the synthesized 2,6-Pyridinedicarboxylic acid, 2,6-bis[2-
[(4-carboxyphenyl) methylene] hydrazide] and 3,5-di-tert-
butylsalicylaldehyde rhodamine hydrazone bore the capacity to
counter Cu ions to rescue the deposits of amyloid-beta peptide
in Alzheimer’s disease model of Drosophila (Singh et al., 2013;
Chauhan et al., 2022); captopril, an angiotensin converting enzyme
inhibitor for hypertension, is reported to protect against free
radical by chelation to Cu (Tamba and Torreggiani, 2000); other
Cu chelators include LCC-12, a derivative of metformin with
anti-inflammatory effects and curcumin, a naturally occurring
polyphenol with anti-tumor activity (Solier et al., 2023; Zhang et al.,
2018). Therefore Cu chelators can be employed as the medical
options of Cu homeostasis dysfunction through alleviating Cu
overload and preliminarily applied to identify cuproptosis via
rescuing the Cu cell death effects in Cu homeostasis studies.

4.1.2 Cu reservation
Facilitating cellular metallothionein expression may reduce the

release of Cu ions and prevent the Cu cell death effects. Zinc
acetate is one such notable small molecule compound developed
for the treatment of Wilson disease, which induces the expression
of metallothionein in intestinal cells to block Cu absorption and
reduce Cu deposition in brain and liver, albeit initial gastric
irritation in fewer patients (Munk et al., 2022). However, there
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TABLE 2 Display of cuproptosis inhibitors.

Agents Types Targets Medical value Ref.

Small molecule compounds

GSH Cu chelator Cu ions Oxidative stress Tsvetkov et al. (2022)

Tetrathiomolybdate Cu chelator Cu ions Wilson, cancer Ishida et al. (2013), Pass et al.
(2008), Henry et al. (2006),
Kirk et al. (2024), Brewer et al.
(2006)

Bathocuproinedisulfonic acid Cu chelator Cu ions Cancer Tsvetkov et al. (2022)

Trientine Cu chelator Cu ions Wilson, cancer Ala et al. (2015), Schilsky et al.
(2022), Moriguchi et al. (2002)

Penicillamine Cu chelator Cu ions Cardiovascular, Wilson, cancer Schilsky et al. (2022),
Mammoto et al. (2013),
Wang D. et al. (2023)

2,6-Pyridinedicarboxylic acid,
2,6-bis[2-[(4-carboxyphenyl)
methylene] hydrazide]

Cu chelator Cu ions Alzheimer Singh et al. (2013)

3,5-Di-tert-
butylsalicylaldehyde
rhodamine hydrazone

Cu chelator Cu ions Alzheimer Chauhan et al. (2022)

Captopril Cu chelator Cu ions Hypertension, oxidative stress Tamba and Torreggiani (2000)

LCC-12 Cu chelator Cu ions Inflammation Solier et al. (2023)

Curcumin Cu chelator Cu ions Cancer Zhang et al. (2018)

Zinc acetate Cu reservation Metallothionein Wilson Shimizu et al. (2010),
Munk et al. (2022)

Rotenone Mitochondrial respiration and
TCA cycle

ETC Microbia Tsvetkov et al. (2022),
Kishore Kumar et al. (2017)

Antimycin A Mitochondrial respiration and
TCA cycle

ETC Microbia Tsvetkov et al. (2022),
Lanju et al. (2014)

UK5099 Mitochondrial respiration and
TCA cycle

Mitochondrial pyruvate uptake Cancer Tsvetkov et al. (2022),
Wang et al. (2018)

Coumarin Oxidative stress Fenton reaction Inflammation Filipský et al. (2015)

Deferiprone Oxidative stress Fenton reaction Inflammation Timoshnikov et al. (2019)

Phenolic acids Oxidative stress Fenton reaction Inflammation Castañeda-Arriaga et al.
(2021)

Transcription factors

HIF-1α Transcription factor Hypoxia Cancer Huang et al. (2024)

MTF1 Transcription factor ATP7B, metallothionein Wilson Stalke et al. (2020),
Adams et al. (2015)

NcRNA

MiR-21-5p MiRNA FDX1 Cancer Xie et al. (2022)

ETC, electron transport chain complexes; FDX1, ferredoxin 1; GSH, glutathione; HIF-1α, hypoxia inducible factor 1α; MTF1, metal regulatory transcription factor 1; TCA, tricarboxylic
acid cycle.

Frontiers in Molecular Biosciences 10 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1477971
https://www.targetmol.cn/compound/dl-penicillamine
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Zhang et al. 10.3389/fmolb.2024.1477971

are rare small molecule compounds in response to facilitating
GSH synthesis and metallothionein induction in the field of Cu
reservation and cuproptosis to date, such compounds are awaiting
further exploration.

4.2 Small molecule compounds to inhibit
cuproptosis by targeting mitochondrial
respiration and TCA cycle

According to the outcome of Tsvetkov et al., the cells with
active mitochondrial respiration and high levels of lipoylated TCA
enzymes were more sensitive to the Cu-dependent cell death;
treatment with fatty acids, mitochondrial function inhibitors and
mitochondrial antioxidants showed different degrees of influence
on Cu cytotoxicity; notably ETC inhibitors and mitochondrial
pyruvate uptake inhibitors retarded the cell death effects by Cu-
ionophores (Tsvetkov et al., 2022). Thereby the small molecule
compounds that impair ETC and mitochondrial pyruvate uptake
enable to inhibit cuproptosis by targeting mitochondrial respiration
and TCA cycle. The insecticide rotenone is an ETC I inhibitor that
drives cell apoptosis via the induction of ROS in mitochondria
(Kishore Kumar et al., 2017). The antibiotic complex antimycin
A can block mitochondrial respiration and reduce cellular ATP
level through binding to ETC III, leading to elevated induction
of superoxide and cell apoptosis (Lanju et al., 2014). Wang et al.
demonstrated that the mitochondrial pyruvate carrier inhibitor
UK5099 elevated glycolytic enzymes and promoted glycolysis
and lactate production (Wang et al., 2018). Hence these ETC
and mitochondrial pyruvate uptake inhibitors have the potential
to reprogram the mitochondrial respiration and TCA cycle to
glycolysis, which will induce the dynamic changes of cuproptosis-
related genes and reduce the sensitivity to Cu stress.

4.3 Small molecule compounds to alleviate
cuproptosis by targeting oxidative stress

In the study of Tsvetkov et al., although treatment with the
oxidative stress inhibitor N-acetyl cysteine failed to abrogate the
cell death mediated by elesclomol-Cu(II), excess ROS is one of the
cell death effects generated by Cu Fenton reaction (Tsvetkov et al.,
2022). In addition to chelators reducing intracellular Cu content,
we are looking for some small molecule compounds to alleviate the
cellular damages of cuproptosis by reducing the ROS derived from
Cu Fenton reaction. Coumarin represents a large amount of 1,2-
benzopyrone derivatives and studies have demonstrated that their
antioxidant capacity to Cu Fenton reaction relies on chelation, apart
from direct scavenging of ROS (Filipský et al., 2015). Deferiprone
has high affinity to interact with Cu and is reported to reduce
the production of hydroxyl free radicals in the presence of H2O2
(Timoshnikov et al., 2019). Moreover, Castañeda-Arriaga R et al.
found that the phenolic acids including ferulic, protocatechuic and
gallic acids present in nopal could inhibit the Cu(II) reduction,
prevent hydroxyl free radicals formation by Cu chelation and react
with hydroxyl free radicals, thus inhibiting the damages derived
from Cu Fenton reaction (Castañeda-Arriaga et al., 2021). These

compounds can be considered for the potential treatment to alleviate
Cu overload and toxicity by targeting oxidative stress.

4.4 Transcription factors to inhibit
cuproptosis

Based on the principle and action mode of cuproptosis, the
transcription factors which can reduce the sensitivity to Cu toxicity,
facilitate Cu efflux and reservation have attracted lots of interests,
owing to their potential to inhibit cuproptosis. It has been confirmed
that the glycolytic cells show lower sensitivity to Cu toxicity,
so we may prevent Cu cell death effects by reprogramming the
cellular metabolism to favor glycolysis, and HIF-1α is such a
transcription factor to hamper cuproptosis sensitivity due to its
hypoxic pathways modulating glycolytic enzymes in tumor cells
(Huang et al., 2024). For Cu trafficking, the negative regulatory
factor of cuproptosis MTF1 is capable of binding to the metal-
responsive element of ATP7B promoter, their failed interaction may
contribute to the unusual Cu efflux in Wilson disease (Stalke et al.,
2020); for Cu reservation, MTF1 can bind to the metal-responsive
element in the upstream of metallothionein and the elevation of
metallothionein reduces the intracellular free Cu ions in response
to Cu stress (Adams et al., 2015). These transcription factors herein
are strong candidates in regulating Cu overload and homeostasis
imbalance.

4.5 NcRNAs to inhibit cuproptosis

Similarly, most the ncRNAs we collect to modulate Cu
membrane transporter genes and cuproptosis-related genes are
involved in drug resistance not Cu-dependent cell death, and
some of them are derived from bioinformatics analysis without
experiment verification. We note that Xie M. et al. verified that
FDX1, a cuproptosis master regulator, was downregulated in clear
cell renal cell carcinoma to promotemalignant biological properties;
from interaction assays, FDX1was identified as a target gene ofmiR-
21-5p; miR-21-5p negatively regulated FDX1 expression to suppress
Cu cell death effects for better tumor progress (Xie et al., 2022). So
delivery of miRNA inhibitors reversing the ncRNA target effects on
cuproptosis positive regulator devises novel therapeutic approach to
carcinoma through the induction of cuproptosis, but it remains a big
challenge.

5 Discussion

Cu homeostasis dysfunction and cuproptosis are closely
correlated with the occurrence of some genetic, neurodegenerative,
cardiovascular, tumoral diseases, and the medical options have
been developed into recovering Cu homeostasis or triggering Cu
dysfunction (Chen et al., 2022). For instances, in Wilson disease
and Menkes disease, the pathogenic variants of ATP7A/7B disturb
the intracellular Cu content and homeostasis, the treatment is to
recover normal intracellular Cu content (Wilson, 1934; Danks et al.,
1972); in tumoral diseases, mounting evidences suggest that Cu
dyshomeostasis plays a prominent role in energy metabolism and
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angiogenesis, the treatment targets oxidative stress, mitochondrial
respiration, UPS and angiogenesis using Cu complexes (Ge et al.,
2022). Although the main morphological features of cuproptosis
are similar to apoptosis, including cytomembrane/chromatin
rupture, endoplasmic reticulum damage and mitochondrial
contraction, but its mechanism is varied from other known cell
death pathways (Liao et al., 2019; Zhao et al., 2020). Excess Cu ions
induce cuproptosis by promoting the insoluble oligomerization
of lipoylated proteins in TCA cycle, suppressing Fe-S cluster
protein, causing proteotoxic stress and elevating HSP70, ROS
(Figure 3) (Tsvetkov et al., 2022). Hence, the discovery of
cuproptosis will widen the path for future drug development
targeting Cu homeostasis, intensive research of the potential role of
cuproptosis in diverse diseases and the molecular mechanism will
contribute to exploring novel therapeutic targets and thereby driving
drug innovation. Nowadays, the cuproptosis inducers and inhibitors
have been continuously improved and employed for scientific
studies and medical options, and in this study they are collected
and categorized into small molecule compounds, transcription
factors and ncRNAs, in terms of the key targets in cuproptosis
metabolic pathways.

The discovery of cuproptosis by Tsvetkov P and colleagues
emphasizes the regulatory mechanism of positive regulatory
factors FDX1, lipoylated proteins (LIPT1, LIAS, DLD), lipoylated
targets (DLAT, PDHA1, PDHB), negative regulatory factors GLS,
CDKN2A, MTF1 and mitochondrial metabolism (lipoylated
pathway, TCA cycle) in Cu-induced cell death (Tsvetkov et al.,
2022). The cells using TCA cycle and OXPHOS as their energy
production mode exhibit higher sensitivity to Cu stress than
the cells relied on glycolysis. In this process, FDX1 plays a
critical role in reducing Cu(II) to Cu(I), lipoylating DLAT and
destabilizing Fe-S cluster protein to trigger cuproptosis. We pay
more attention to small molecule compounds which influence
the progress of Cu-induced cell death, rather than transcription
factors, ncRNAs or other types of regulators, since they are more
readily screened and dosed to produce therapeutic outcome than
other types of candidates. For inducers of cuproptosis, to raise
intracellularCu content, we collect some smallmolecule compounds
targeting Cu ionophores: elesclomol, disulfiram, clioquinol,
8-quinolinol, schiff base, pyrithione, zinc metallochaperone,
Cu(II)ATSM/Cu(II)GTSM, UM4118, they are capable of delivering
Cu ions into cells; Cu membrane transporters: epigallocatechol
gallate, β-elemene, CID 2011756, omeprazole, 6-hydroxydopamine
hydrobromide, they can upregulate SLC31A1 expression or
downregulate ATP7A/7B expression to drive Cu deposition; Cu
reservation: 6-hydroxydopamine hydrobromide, actinomycin D,
PAPA NONOate, DL-buthionine-(S,R)-sulfoximine, they enable
to aggravate the release of intracellular Cu ions; Cu chaperones:
DC_AC50, it has the ability to reduce Cu trafficking by inhibiting
ATOX1 and CCS. To enhance mitochondrial respiration and TCA
cycle, the small molecule compounds phloretin, PX-478, 2-deoxy-
D-glucose and galactose can be employed as glycolysis inhibitors
to shift the energy metabolism to TCA cycle and OXPHOS.
The transcription factors ELF3, Sp1, ATF3/SPI1, facilitating the
expression of SLC31A1 and the ncRNAs LINC02362/miR-18a-5p,
facilitating the expression of FDX1 are accompanied to enhance the
sensitivity to Cu stress beyond smallmolecule compounds (Figure 4;
Table 1). For inhibitors of cuproptosis, to reduce intracellular Cu

content, we collect some small molecule compounds targeting
Cu chelators: GSH, tetrathiomolybdate, bathocuproinedisulfonic
acid, trientine, penicillamine, 2,6-Pyridinedicarboxylic acid, 2,6-
bis[2-[(4-carboxyphenyl) methylene] hydrazide], 3,5-di-tert-
butylsalicylaldehyde rhodamine hydrazone, captopril, LCC-12,
curcumin, they are capable of chelating intracellular Cu ions; Cu
reservation: Zinc acetate, it can elevate metallothionein level in
intestinal cells. To retard mitochondrial respiration and TCA cycle,
the small molecule compounds rotenone, antimycin A, UK5099
can be employed as mitochondrial respiration inhibitors to shift the
energy metabolism to glycolysis. To recover oxidative homeostasis,
the small molecule compounds coumarin, deferiprone, phenolic
acids are helpful to eliminate the ROS derived from Cu Fenton
reaction. The transcription factors HIF-1α, facilitating hypoxia,
MTF1, facilitating ATP7B and metallothionein expression and the
ncRNA miR-21-5p, decreasing FDX1 expression are accompanied
to reduce the sensitivity to Cu stress beyond small molecule
compounds (Figure 5; Table 2). The strategies to collect cuproptosis
inducers originate from raising the intracellular Cu content and
the intensity of mitochondrial respiration and TCA cycle, while the
strategies to collect cuproptosis inhibitors originate from reducing
intracellular Cu content, the intensity of mitochondrial respiration,
TCA cycle, oxidative stress and UPS inhibition. Importantly, the
medical values of cuproptosis inducers and inhibitors are mainly
concentrated in the treatment of genetic, neurodegenerative,
cardiovascular and tumoral diseases, achieving by recovering
normal Cu homeostasis, inducing Cu overload or deficiency. But
to date, we have not collected applicable small molecule compounds
for the cuproptosis inhibitors that target Cumembrane transporters,
Cu chaperones or UPS inhibition during Cu stress and they require
further exploration.

It can be concluded from the studies that cuproptosis
inducers and inhibitors have the potential to modulate Cu cell
death effects relying on their composition and property, but
the action mode may vary from distinct drug candidates and
cell types. Some compounds we collect have been applied for
the clinical trials of Wilson disease such as tetrathiomolybdate
(NCT00004339) (Brewer et al., 2006), trientine (NCT01472874)
(Ala et al., 2015), penicillamine (Schilsky et al., 2022), Zinc
acetate (NCT00212355) (Shimizu et al., 2010) and reduced
Cu accumulation in liver and brain through complex and
metallothionein chelation, respectively. Cu overload and deficiency
constitute an exploitable dependency in cancer therapy, and some
Cu ionophores we collected have been pursued in cancer clinical
trials and produced considerable therapeutic outcome such as
elesclomol (NCT00084214, NCT00888615) (O’Day et al., 2009;
Monk et al., 2018) and disulfiram (NCT01907165) (Huang et al.,
2016). Hence, cuproptosis has attracted dramatic interests in
providing a new avenue for medical options, and promising
compounds that can modulate Cu-induced cell death in preclinical
studies have been also collected and displayed in our study. We
should dedicate to improve the combination strategies so that the
cuproptosis inducers and inhibitors we collect can provide better
therapeutic approaches. Firstly, Cu ionophore plus chemotherapy.
Clinical trails had revealed encouraging efficacy for elesclomol
plus paclitaxel in metastatic melanoma versus paclitaxel alone, and
elesclomol had stronger anti-tumor activity in patients with lower
LDH level, indicating that elesclomol was more sensitive to the
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cells harboring intensive mitochondrial respiration and lipoylated
TCA enzymes (O’Day et al., 2009; O’Day et al., 2013). Secondly,
Cu ionophore plus ferroptosis inducer. The data of Wang W et al.
provided the evidence that ferroptosis inducers sorafenib and
erastin reduced FDX1 degradation and GSH synthesis to enhance
elesclomol-Cu-induced cell death in liver cancer cells, suggesting a
link between cuproptosis and ferroptosis in the therapy depending
on metal element dysfunction (Wang W. et al., 2023). Thirdly, Cu
complexes have great potential use for disease treatment, however,
it is important to note that long-term use of Cu complexes can
disrupt the base metal homeostasis and cause serious side effects
in patients undergoing treatment. This field is in its early stage
of development and lack of specificity is a major challenge. The
scientific communities have developed innovative nanomedicine
delivery vectors to improve the specificity of Cu complexes to
morbid cells and obtain more accurate therapeutic outcome. Cui
L and colleagues formulated a mitochondria-targeted Cu depleting
nanoparticle consisting of Cu chelator, semiconducting polymers
and phospholipid-polyethylene glycol, the positive surface charge
favored its accumulation inmitochondria and herein reduced theCu
content, which dampened OXPHOS activity and drived oxidative
stress to inhibit triple-negative breast cancer cells with minimal
side effects (Cui et al., 2021). Therefore, nanocarriers selectively
delivering cuproptosis inducers and inhibitors to the lesions can
elevate precise therapeutic outcome and reduce toxicity for medical
applications based on Cu cell death effects, but the composition,
property, cell type of these delivery system, and further clinical
trials still necessitate in-depth exploration.

In addition to the small molecule compounds, transcription
factors and ncRNAs we collect in this study, we note that other
types of cuproptosis-related molecules can also modulate Cu cell
death effects. Proteases are such a kind of potential drug target.
For instances, the phosphodiesterase 3B has been confirmed to
increase the sensitivity of Cu ionophore to bladder cancer cells
(Feng et al., 2024); the methyltransferase METTL16 is reported to
promote FDX1 mRNA stability via m6A modification and FDX1
accumulation to enhance the sensitivity of elesclomol treatment
in gastric cancer (Sun et al., 2023). Transcription factors, ncRNAs
and proteases have been taken into therapeutic consideration for
cuproptosis, however, it remains a big challenge to successfully
deliver gene expression vectors or ncRNAs in human body. Chiefly,
small molecule compounds are strong candidates in regulating Cu-
induced cell death owing to the suitable screen and administration
routes. The candidate compounds can be excavated from rounds
of verification: bioinformatic analysis, molecular simulation and
docking, interaction analysis. In this study, we have collected
kinds of cuproptosis inducers and inhibitors based on the key
targets and metabolic pathways of Cu-induced cell death, but
the combination strategy and drug carrier remain incompletely
documented, which may thus be promising tools for curing
patients with Cu homeostasis dysfunction. Moreover, in view of the
significance of cuproptosis and ferroptosis, the collapse and recovery
of other metal ion homeostasis also have definite research value
for the exploration of cell death identification, disease mechanisms
and therapeutic targets. Jiang JK et al. found that excess manganese
ions downregulated the expression of sirtuin1 to induce apoptosis
of nerve cells, suggesting that blocking manganese ions-mediated
cell death might have a certain prospect in developing therapeutics

of neurodegenerative diseases (Zhao et al., 2019). Xu H et al.
reported a lysosomal calcium/zinc channel-mediated and zinc-
dependent cell death in metastatic melanoma so that targeting zinc
dysfunction showed potential value formelanoma therapy (Du et al.,
2021). Another metal element calcium signaling activates specific
proteins to regulate many physiological processes, and its abnormal
transduction is expected to provide a new approach for tumor
treatment (Bai et al., 2022). Herein, we will keep our eye on Cu-
and other metal elements-mediated cell death, particularly in the
field of inducers and inhibitors, which are valuable for identifying
cell death pathways, exploring disease mechanisms and therapeutic
targets based on metal element dysfunction.

6 Conclusion

In summary, cuproptosis is a newly discovered pathway of
Cu-induced cell death which provides an innovative avenue for
medical options. We mainly collect the small molecule compounds
that induce or inhibit cuproptosis based on the key targets and
metabolic pathways of Cu stress in this study, accompanied by
relevant transcription factors and ncRNAs.They have the promising
potential to be employed as inducers or inhibitors in the scientific
studies and medical options of Cu homeostasis dysfunction.
However, the action mode of Cu-induced cell death still requires in-
depth investigation to understand the hallmark of drug targets and
metabolic pathways. Meanwhile the drug species, combination and
delivery strategies of cuproptosis inducers or inhibitors also await
further exploration.
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