Skip to main content

ORIGINAL RESEARCH article

Front. Mol. Biosci.
Sec. Biological Modeling and Simulation
Volume 11 - 2024 | doi: 10.3389/fmolb.2024.1473675

Exploring TAS2R46 Biomechanics through Molecular Dynamics and Network Analysis

Provisionally accepted
  • 1 Polytechnic University of Turin, Turin, Italy
  • 2 7HC s.r.l., Rome, Italy

The final, formatted version of the article will be published soon.

    Understanding the intricate interplay between structural features and signal-processing events is crucial for unravelling the mechanisms of biomolecular systems. G protein-coupled receptors (GPCRs), a pervasive protein family in humans, serve a wide spectrum of vital functions. TAS2Rs, a subfamily of GPCRs, play a primary role in recognizing bitter molecules and triggering events leading to the perception of bitterness, a crucial defence mechanism against spoiled or poisonous food. Beyond taste, TAS2Rs function is associated with many diseases as they are expressed in several extra-oral tissues.Given that the precise functioning mechanisms of TAS2R remain poorly understood, this study employed molecular dynamics simulations combined with network-based analysis to investigate local conformational changes and global structural correlations in different states of the receptor. The focus was on the human TAS2R46 bitter taste receptor, recently resolved experimentally, both in the presence and absence of strychnine, a known bitter agonist. The results showed that the ligand-bound state of the receptor exhibited more correlated dynamics compared to the apo state, and the presence of the agonist mediated the allosteric network between two helices (TM3 and TM6) which mainly convey the signal transferring from the extracellular to the intracellular region. By elucidating the hallmarks of the conformational changes and allosteric network of TAS2R46 under varying conditions, this study has enabled the identification of the unique structural and dynamics features of this receptor, thereby establishing a foundation for a more profound characterisation of this intriguing class of receptors.

    Keywords: Bitter taste receptor, TAS2R46, GPCR, Strychnine, molecular modelling, Network analysis, molecular dynamics

    Received: 31 Jul 2024; Accepted: 18 Nov 2024.

    Copyright: © 2024 Cannariato, Fanunza, Zizzi, Miceli, Di Benedetto, Deriu and Pallante. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Lorenzo Pallante, Polytechnic University of Turin, Turin, Italy

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.