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Semantic segmentation-based
detection algorithm for
challenging cryo-electron
microscopy RNP samples
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Macromolecular Structure, National Centre for Biotechnology, Madrid, Spain

In this study, we present a novel and robust methodology for the automatic
detection of influenza A virus ribonucleoproteins (RNPs) in single-particle cryo-
electron microscopy (cryo-EM) images. Utilizing a U-net architecture—a type
of convolutional neural network renowned for its efficiency in biomedical
image segmentation—our approach is based on a pretraining phase with a
dataset annotated through visual inspection. This dataset facilitates the precise
identification of filamentous RNPs, including the localization of the filaments
and their terminal coordinates. A key feature of our method is the application
of semantic segmentation techniques, enabling the automated categorization
of micrograph pixels into distinct classifications of particle and background.
This deep learning strategy allows to robustly detect these intricate particles, a
crucial step in achieving high-resolution reconstructions in cryo-EM studies. To
encourage collaborative advancements in the field, we have made our routines,
the pretrained U-net model, and the training dataset publicly accessible. The
reproducibility and accessibility of these resources aim to facilitate further
research and validation in the realm of cryo-EM image analysis.

KEYWORDS

cryo-electron microcopy, semantic segmantation, particle picking, influenza a virus,
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Highlights

• Robust methodology for the automatic detection of challenging influenza A virus
ribonucleoproteins.

• Outperforms other state-of-the-art cryo-EM particle pickers with practically zero false
positives in RNP localization.

• Provides results with near-human accuracy in challenging particle selection tasks.
• Once trained it does not require prior 2D averages or particle data needed and eliminates
considerable manual picking workload.

1 Introduction

Cryogenic electron microcopy (cryo-EM) single particle analysis is a powerful
technique for obtaining high-resolution three-dimensional (3D) reconstructions of
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macromolecular complexes in a near-to-native state (Merk et al.,
2016; Zivanov et al., 2018; Danev et al., 2019). The structural
insights obtained from cryo-EM provide a direct way to unravel the
mechanisms of the biological reactions driven by these complexes.
In the last decade, cryo-EM has undergone a revolution that
has pushed it to reach atomic resolution in the determination
of structures (Nakane et al., 2020; Yip et al., 2020). This milestone
is based on two fundamental pillars: improvements in hardware,
mainly in direct electron detectors, and the rapid development
of image processing software (Kuhlbrandt, 2014). Now, deep
learning algorithms are being integrated into cryo-EM image
processing protocols to enhance the capabilities of this technique
in structural biology, improving results and simplifying tasks for
non-expert users.

High-resolution cryo-EM reconstructions depend on selecting
numerous high-quality particles from the micrographs for
subsequent image processing. While manual particle picking in
micrographs is accurate, it is unfeasible for today’s large datasets due
to its time-consuming nature. Consequently, various automatic
and semiautomatic methods have been developed. These can
be categorized into two types: template-based methods, which
rely on reference images for particle selection, and template-free
methods that operate without prior information about the particles.
Template-free particle picking methods, such as those using
Gaussian-generated templates of user-defined size approximating
particle dimensions, are noteworthy. Some examples include
Relion’s methods (Scheres, 2012), CryoSPARC template picker
(Punjani et al., 2017), EMAN2 boxer auto (Tang et al., 2007) or
DoG Picker (Voss et al., 2009). These methods facilitate particle
selection with minimal prior knowledge and effort. However,
they often lack precision in accurately locating particles and may
select large amounts of false positives, leading to a preference for
template-based methods in high-resolution cryo-EM projects.
Template-based methods typically involve manually picking
hundreds of particles to obtain 2D reference classes (Tang et al.,
2007; Scheres, 2015; Moriya et al., 2017; Punjani et al., 2017;
Grant et al., 2018), which are used as patterns for particle selection.
Nowadays there is a growing shift towards machine learning/deep
learning methods for particle picking, exemplified by tools like
XMIPP (Abrishami et al., 2013), SPHIRE-crYOLO (Wagner et al.,
2019), EMAN2 (Bell et al., 2018), Topaz (Bepler et al., 2019),
APPLE picker (Heimowitz et al., 2018), WARP (Tegunov and
Cramer, 2019) or CASSPER (George et al., 2021), among others.
These newer methods start with an intensive training phase
usually using diverse datasets. This foundational step is designed
to train classifiers to recognize cryo-EM particles’ intrinsic
features, aiming to enhance accuracy and versatility across
different datasets.

The automatic or semiautomatic methods mentioned above
have been widely used for boxing both globular macromolecules
and mostly straight filament particles. For globular structures,
the process involves locating and boxing particle projections
to extract them as square subimages, with each containing a
full centered macromolecule. Filamentous particles, despite their
complex structure, are similarly processed, although the extracted
subimages represent only portions of these line-like filaments.
However, automatic detection of these particles poses additional
challenges compared to globular macromolecules. This is due

to their tendency to overlap and intersect, in some cases be
curved, and have terminal ends that, from a pattern recognition
perspective, differ significantly from the core areas of the filament.
It is noteworthy that the study of this type of complexes is
crucial as many biologically and medically important proteins
are filamentous, making the development of effective automated
detection techniques a key focus in structural biology. Prominent
examples encompass cytoskeletal proteins such as microtubules and
actin, pivotal for various cellular functionalities, including muscle
contraction and intracellular cargo transport (Pospich and Raunser,
2018). Moreover, significant instances involve amyloid and tau
fibrils, implicated in neurodegenerative pathologies, which have
recently garnered heightened attention in structural investigations
(Fitzpatrick et al., 2017; Pospich and Raunser, 2017; Scheres et al.,
2023). Given the intrinsic difficulty in crystallizing filaments, cryo-
EM emerges as the foremost methodology for elucidating their
structural attributes.

In previous research efforts, distinct methodologies have
been proposed with a primary focus on the identification of
linear, filamentous particles (He and Scheres, 2017; Huber et al.,
2018; Wagner et al., 2020; Thurber et al., 2021). These approaches
leverage the typical inherent characteristics of fibrils, namely their
approximate linearity and specific width ranges. To achieve this,
various rectangular filters are employed to detect and/or trace
filaments, or 2D templates are generated based on previously
extracted particles.Thesemethodologies have demonstrated efficacy
in the identification and reconstruction of filamentous particles,
including but not limited to type 4 filaments (T4F) (Anger et al.,
2023), single protofilaments of infectious mouse RML prions
(Manka et al., 2022), and structures of tau filaments (Shi et al., 2021).
Nevertheless, it is important to note that not all filamentous particles
exhibit the characteristic linear conformation. An exemplary case
is found in the ribonucleoproteins (RNPs) of the influenza A virus,
serving as the epitome of filamentous macromolecular complexes
characterized by exceptional flexibility. These RNPs, due to their
flexibility and structural diversity, challenge automatic filament
pickers and high-resolution reconstruction efforts, with current
resolution limitation at ∼7 Å (Coloma et al., 2020). Note that in
the 3D reconstructions of these complexes performed to date
by our group, the selection of hundreds of thousands of images
used was done manually (Arranz et al., 2012; Coloma et al., 2020)
as particle picking programs seem not work correctly for this
sample. The structural analysis of RNPs and the RNA polymerase
in influenza A virus is crucial for understanding the virus infection
and proliferationmechanisms.TheRNPs of influenza A are complex
structures that involve a double helical conformation, playing a
key role in mRNA synthesis and genome replication (Arranz et al.,
2012). The flexibility and structural heterogeneity of these RNPs,
particularly in the context of transcription and replication processes,
make them challenging to study but crucial for understanding
how the virus replicates and propagates. This understanding can
lead to the development of targeted therapies or interventions to
manage or prevent influenza epidemics. Importantly, according to
the Centers for Disease Control and Prevention in the United
States, it is estimated that between 4,900 – 52,000 people died
annually due influenza, including influenza A between 2010
and 2022 in the United States with between 100,000 – 710,000
hospitalizations. Thus, understanding the structure and dynamics
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of RNPs and its RNA polymerase is crucial for comprehending
how the influenza virus replicates and transcribes its genetic
material, which is a key aspect of its infection mechanism.
Nonetheless, the complex details of these processes and the
complete understanding of influenza virus infection mechanisms,
including all its molecular intricacies, is still not fully understood
(Coloma et al., 2020).

In our study, we utilize Semantic Segmentation, a method
based on deep learning, to automate the detection of complex
Ribonucleoproteins (RNPs) in cryo-electron microscopy images.
This includes identifying the locations of RNP filaments and their
terminal ends. Importantly, the RNA polymerase, which is crucial
for understanding the virus replication, is situated at one end of
the RNPs. Therefore, accurately determining its position is vital to
determine its structure and thus fully understand the mechanism of
virus proliferation. Consequently, our research focused on detecting
RNP filaments and their ends. We use a supervised learning
approach with a U-net architecture, trained on a small set of
manually labeled micrographs. In this process, we label micrograph
pixels as either “RNP” or “Background” for RNP filament detection,
and “RNP-E” or “Non RNP-E” for RNP ends. Post-training,
we have two deep learning models: one for segmenting entire
Ribonucleoproteins (Full-RNP model) and another for identifying
the ends of the RNPs (RNP-E model). These models enable us to
determine the coordinates of both RNPs and their ends. Our results
show that this method effectively identifies complex filamentous
samples, including RNP filaments and their ends, outperforming
other commonly used particle pickers and providing results with
near-human accuracy.

2 Methods

In this work, we propose two methods to automatically obtain
the coordinates of challenging RNP filaments and RNP ends. This
section details the raw data used in training and evaluation, along
with information on implementation, training specifics, and our
processing pipeline.

2.1 Biological samples preparation and raw
data collection

Our neural networks have been trained and evaluated using as
input cryo-EMmicrographs of RNPs of the influenza A virus. In the
following, we provide details about how this data was produced.

2.1.1 Virus production and RNP purification
The RNPs of the influenza A virus used in this work

were produced in the CNB-CSIC from native virions. Virions
were purified from cultures of Madin-Darby canine kidney
(MDCK) epithelial cells. Cells were infected with Influenza A
virus (A/WSN/1933(H1N1)) with a multiplicity of infection
of 10−3–10–5pfu/cell and incubated for 40 h at 37°C. The
supernatant was collected when the cytopathic effect reaches
50%. The viruses were isolated using sucrose gradients and
centrifugation and lysed to extract the RNPs as described in
(Coloma et al. 2009; Coloma et al. 2020).

2.1.2 Sample preparation for electron microscopy
After isolation, RNPs were applied to glow-discharged carbon

electron microscopy grids and vitrified by plunge-freezing using
liquid ethane. Vitrification is a stain-free, ultrahigh-speed freezing
procedure at −180°C that preserves the native structure of the
sample and allows the stabilization of unstable complexes or low-life
conformers (Arranz et al. 2012; Coloma et al. 2020).

2.1.3 Electron microscopy
The cryo-EM grids were imaged at the ESFR – The European

Synchrotron Radiation Facility – in Grenoble, France using a Titan
Krios cryo-EM microscope equipped with a K3 direct detector
recording 29,493 movies of size 5,760 × 4,092 px with a sampling
rate of 0.84 Å/px. Each movie comprising 42 frames and with a
defocus ranging from 0.7 to 3 microns. These movies were aligned
using MotionCor2 software (Zheng et al. 2017) to correct the drift
produce by the electron beamon the sample and the contrast transfer
function (CTF) was calculated using GCTF software (Zhang 2016).

2.1.4 Data preparation for the neural network
The aligned micrographs were contrast inverted and

downsampled 9 times to produce images of size 640 × 448 px
with sampling rate 7.56 Å/px and Fourier Band Pass filtered
from 3 to 30 pixels to improve the signal to noise ratio using
ImageJ software (Schneider et al. 2012), while other software
packages as Relion, Xmipp or EMAN for example could be
used as well. These images have enough contrast to visualize the
RNP filaments and their ends easily. In the case of the complete
RNP filament detection, we manually label 150 of these filtered
micrographs, while for the RNP ends detection, we label 500
micrographs.

2.2 Neural network architecture and
training

For segmenting RNP filaments and RNP filament ends, we
implemented a 2D U-net-like convolutional neural network,
adapted from Ronneberger et al. (2015). Our neural network
architecture comprises three downsampling and three upsampling
blocks, each connected with skip connections for feature
preservation. Every block includes two convolutional layers
activated by RELU functions. The convolutional layers in these
blocks use filters of sizes 128, 256, and 512, respectively, each with
a kernel size of 7 × 7 to enhance noise robustness. Downsampling
in our network is achieved through strided convolutions, while
upsampling utilizes transposed convolutions. The final output layer
classifies each pixel into two categories, employing a generalized
Dice loss function to counteract class imbalance issues. Our network
processes images of size 640 × 448 pixels. An essential aspect of our
method is the normalization of the input images, where we calculate
and apply the 98th and 2nd quantiles for contrast adjustment,
clipping values outside the 0–1 range.We divided the labeled dataset
into training and validation sets with an 80:20 split. To enhance
model robustness, we included random translation transformations
(within [−10, 10] pixels range) in the training phase.The model was
trained using the Adam optimizer, with batch sizes of 30 images
over 50 epochs.
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2.3 Semantic segmentation processing
pipeline

After training the Full-RNP and RNP-E networks, they are
applied to segment RNP filaments and their ends across all
micrographs.These segmented images are then analyzed to pinpoint
their coordinates. Our pipeline for this analysis is as follows:

1. Preprocessing: Each input micrograph is first Fourier band
pass filtered, downsampled, contrast inverted and normalized
as previously described.

2. Model Application: The processed image is fed into either
the Full-RNP or RNP-E model to produce a binary
segmented image.

3. Post-processing: A closing operation is applied to the binary
image to eliminate small gaps. Then, the distinct RNP regions
are identified and assigned unique integer labels, based on the
connectivity of pixels to their neighbors.

4. Region Filtering: Regions that are too small or too large are
automatically excluded.

For processing RNP ends, the centroid coordinates of each
labeled region are determined and adjusted by the previously applied
downsampling factor. On the other hand, for the processing of RNP
filaments, after step 4 the next steps are followed:

5. Skeletonization: For the RNP filaments, the identified regions
are skeletonized or thinned using the homotopic thinning
algorithm. (Lee et al., 1994), transforming the filament’s
thickness into a 1D curve that represents its skeletal structure.

6. Coordinate Calculation: The coordinates of each of these
labelled skeletal structures are calculated and adjusted by the
downsampling factor previously applied to accurately locate
the RNP filament regions.

This pipeline ensures precise and efficient localization of both
RNP filaments and their ends in the micrographs.

3 Results

In the following, we use the proposed approaches to localize
RNP filaments and filament ends in our dataset. We show that our
proposed approaches can provide near-human accuracy results and
that typical automatic particle pickers do not provide good results in
this challenging dataset.

3.1 The proposed methods can provide
near-human accurate result

In our study,we trained the Full-RNPmodel utilizing a dataset of
150 micrographs, each meticulously annotated by a human expert.
The evaluation of the model’s semantic segmentation predictions,
when benchmarked against the ground truth data, provided the
outcomes presented in Table 1. To further scrutinize the reliability
of manual annotations, a subset of 50micrographs from the training
set underwent dual rounds of manual labeling by the same person,
facilitating a comparative analysis of human annotation consistency
using identical evaluate metrics. These results, aimed at appraising

the precision of human annotations, are shown in Table 1 (a) at row
“H-H” and in Table 1 (c).

Table 1 (a) employs a suite of conventional metrics for
assessing semantic segmentation, encompassing global accuracy,
mean accuracy, mean intersection over union (IoU), weighted IoU,
and the boundary F1 (BF) score. Global accuracy (GAccuracy)
quantifies the overall proportion of pixels correctly classified across
all categories. This metric provides a rapid and computationally
efficient assessment of the fraction of pixels correctly classified.
Mean accuracy (MAccuracy) calculates the average rate of accurately
identified pixels for each category across the dataset.The IoUmetric,
or Jaccard similarity coefficient, gauges the overlap between the
predicted and actual pixels for each class, with MeanIoU averaging
this score across all categories. WeightedIoU adjusts the IoU score
for each class based on its pixel prevalence, mitigating the influence
of minor class discrepancies on the collective metric. The BF score
assesses the alignment of predicted class boundarieswith their actual
counterparts, with MeanBFScore averaging this alignment for each
class across all images.

Additionally, Table 1 sections (b) and (c) shows normalized
confusion matrices for the background and RNP categories,
contrasting the network’s segmentation predictions with the ground
truth obtained from the validations set (Table 1 (b)) and juxtaposing
the two sets of manual annotations by the same expert (Table 1
(c)). The consistency between the model’s performance on both
validation and training sets underscores its robust generalization
capability. Finally, Table 1 (d) and (e) shows the intersection over
union (IoU) for each class and the average of the BFScore for
each class across all images in the validation set and for the subset
of 50 micrographs labelled twice for the same person. As can be
seen from these results, the congruence of the model’s metrics with
those derived from human annotations underscores the model’s
potential to achieve near human-level accuracy in RNP semantic
segmentation tasks.

In Figure 1A, we show examples of preprocessed micrographs
(Fourier band pass filtered, downsampled, contrast inverted and
normalized), obtained ground-truth labels (labelled) and the
predictions made by the RNP-FULL network (predicted). As
can be seen from this figure, there is a good visual agreement
between the ground truth and the predictions made by the Full-
RNPmodel. In Figure 1B, we show three examples of the processing
pipeline followed by our proposed approach. First the preprocessed
micrograph is automatically labelled by the trained Full-RNPmodel,
and the segmented images are cleaned, labelled, and thinned. Then,
the coordinates of each of these labelled skeletal structures are
extracted.

For the training of the RNP-E model, we used 500 manually
labelled preprocessed micrographs. In Table 2, we use the same
metrics used in Table 1 for assessing semantic segmentation done
by the network. In Table 2 (a) row H-H and Table 2 (c) and (e),
we show again as reference the results obtained by assessing the
accuracy of human annotations for the manual labelling of full
RNPs. According to these results, we can concur again the good
performance of the RNP-E model and the good similarity between
the model metrics and the ones obtained by the same person when
labelling the full RNPs showing again the model’s potential to
achieve near human-level accuracy in RNP semantic segmentation
tasks. In Figure 2, we show examples of preprocessed micrographs

Frontiers in Molecular Biosciences 04 frontiersin.org

https://doi.org/10.3389/fmolb.2024.1473609
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org


Vargas et al. 10.3389/fmolb.2024.1473609

TABLE 1 Evaluation of the model’s RNP-FULL semantic segmentation predictions using conventional metrics for assessing semantic segmentation.

(a) GAccuracy MAccuracy MeanIoU WeightedIoU BFSScore

Validation 0.88 0.84 0.70 0.81 0.69

Training 0.88 0.84 0.72 0.80 0.71

H-H 0.86 0.85 0.68 0.78 0.67

(b)
(Validation)

Background RNP (c)
(H-H)

Background RNP

Background 0.91 0.089 Background 0.87 0.13

RNP 0.24 0.76 RNP 0.18 0.82

(d)
(Validation)

IoU BFSScore (e)
(H-H)

IoU BFSScore

Background 0.86 0.76 Background 0.84 0.74

RNP 0.58 0.66 RNP 0.51 0.60

(a) Global accuracy (GAccuracy), mean accuracy (MAccuracy), mean intersection over union (MeanIoU), weighted IoU, and the boundary F1 score (BFSScore) metrics calculated for images
in the validation and training sets and a subset of 50 micrographs from the training set that underwent dual rounds of manual RNP labeling by the same person (row H-H). (b) Normalized
confusion matrix calculated from the validation set. (c) Normalized confusion matrix calculated from the 50 micrographs that underwent dual rounds of manual RNP labeling by the same
person. (d) Average per class IoU and BFSScore scores along all images in the validation set. (e) Average per class IoU and BFSScore scores along all images in the image set that underwent
dual rounds of manual RNP labeling by the same person.

(micrographs) and corresponding micrographs with superimposed
labelled RNP ends segmented manually (labelled) and predicted
by the RNP-E network (predicted). As can be seen from this
figure, there is a good agreement between the ground-truth and the
automatically segmented RNP ends. Finally, in Figure 3 we show the
workflow followed by the proposed method to localize RNP ends.
The preprocessed micrographs are segmented automatically by the
RNP-E network. Then these images are labelled with unique integer
labels based on the connectivity of pixels to their neighbors and
too small and too big regions are filtered out. For the remaining
regions their centroids are computed localizing or picking the ends
of the RNPs.

3.2 Enhanced performance compared to
alternative particle pickers

To compare with our deep learning-based picker, we tested the
performance of other particle selectors on the same RNP data set.
We choose four of the most used pickers: the template matching
picker Gautomatch (https://sbgrid.org/software/titles/gautomatch)
and the picker included in the Relion software suite (Kimanius et al.,
2021) (https://github.com/3dem/relion), Topaz (Bepler et al., 2020)
(https://github.com/tbepler/topaz) and CrYOLO (Wagner et al.,
2019) (https://pypi.org/project/cryolo/).

The template matching algorithm implemented in Gautomatch
software requires as main input one or more 2D averages of the
particles to be selected, an estimated size of the box that will contain
the entire particle, and an estimate of the averageminimumdistance
between two particles in the image. Additionally, there is a tunable
threshold value, ranging from 0 to 1, which indicates the level
of cross-correlation between the templates and a feature in the

micrograph to be considered a positive match. Figure 4 shows the
results of Gautomatch picking using 2D averages of the central part
of the molecule as templates. The two averages used (inset in panel
4a) were obtained by manually picking and aligning approximately
2000 particles from a random selection of 100micrographs from the
total set of 29,493 images. The panels display the results obtained at
different thresholds.Higher values indicate amore restrictive search,
where the selected particles are more similar to the 2D averages
used as templates. When the threshold is low (0.15), the number
of regions selected as positives is very large, including the actual
particles and a substantial number of false positives, distributed in
the background, in the contaminants, and along the carbon edges
of the support. As the threshold value increases (0.2), the RNPs are
marked correctly, and the number of false positives selected in the
background decreases drastically, although those corresponding to
contaminants and carbon edges (red arrows) persist. If the threshold
value is increased further in an attempt to reduce the latter false
positives (0.3), it is observed that unexpectedly the number of
correctly selected particles decreases (blue arrows), while the false
positives found in areas of higher contrast remain (red arrows). In
summary, there is an optimal threshold (0.2) at which most of the
particles are correctly selected, however some contaminations and
the edge of the carbon support are also marked as false positives.

The ability of Gautomatch to pick the ends of the particles
was also tested and the results are shown in Figure 5. Similar to
the previous case, the ends of RNPs from 100 micrographs were
manually selected and aligned to produce 2D averages, which were
used as templates for Gautomatch (inset in Figure 5A). The field
covered by the templates in this case was deliberately chosen to be
larger than in the previous case to ensure that the image clearly
showed the end of the particle, preventing misidentification as an
intermediate part of the helix. In this context, multiple tests were
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FIGURE 1
Visual examples showing the performance of the RNP-FULL network with micrographs of the validation set. (A) Examples of preprocessed micrographs
(micrograph), obtained ground-truth labels by manual labelling (labelled) and predictions made by the RNP-FULL network (predicted). (B) In the first,
second and third columns, we show respectively preprocessed micrographs, segmented, and filtered images provided by the RNP-FULL network,
where the coordinates obtained from the thinning process are shown in red, and the location of the picked particles to be extracted.
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TABLE 2 Evaluation of the model’s RNP-E semantic segmentation predictions using conventional metrics for assessing semantic segmentation.

(a) GAccuracy MAccuracy MeanIoU WeightedIoU BFSScore

Validation 0.93 0.82 0.69 0.90 0.73

Training 0.93 0.83 0.69 0.89 0.74

H-H 0.86 0.85 0.68 0.78 0.67

(b)
(Validation)

Background RNP (c)
(H-H)

Background RNP

Background 0.95 0.05 Background 0.87 0.13

RNP 0.30 0.70 RNP 0.18 0.82

(d)
(Validation)

IoU BFSScore (e)
(H-H)

IoU BFSScore

Background 0.93 0.79 Background 0.84 0.74

RNP 0.44 0.68 RNP 0.51 0.60

(a) Global accuracy (GAccuracy), mean accuracy (MAccuracy), mean intersection over union (MeanIoU), weighted IoU, and the boundary F1 score (BFSScore) metrics calculated for images
in the validation and training sets and a subset of 50 micrographs from the training set that underwent dual rounds of manual RNP labeling by the same person (row H-H). (b) Normalized
confusion matrix calculated from the validation set. (c) Normalized confusion matrix calculated from the 50 micrographs that underwent dual rounds of manual RNP labeling by the same
person. (d) Average per class IoU and BFSScore scores along all images in the validation set. (e) Average per class IoU and BFSScore scores along all images in the image set that underwent
dual rounds of manual RNP labeling by the same person.

performed with different template sizes, and the ones shown here
produced the best results. In this case, and very similar to the
previous test, using a low threshold (0.2) caused the program to
select a large number of matches, including real particles along
their entire length (not just the ends) and many false positives. This
result is almost indistinguishable from when the 2D averages of the
central part of the molecule were used as a template. Increasing
the threshold value to 0.4 caused most of the false positives in
the background to disappear, and the number of correct positives
increased proportionally to the total number of labeled particles
(green arrows), although some real ends were no longer selected
(blue arrows). However, the number of false positives in the center
of the particles and in high-contrast regions (carbon edges and
contaminants) remained high (red arrows). Finally, increasing the
threshold to 0.6 resulted in the loss of correct positives, with the
program selecting only false positives in the high-contrast regions.

We also compared with our particle selector the picking
algorithm implemented in Relion (Kimanius et al., 2021). Similar
to the previous case, the software requires as main input data
the 2D averages to be used as templates, the minimum distance
between particles, and two parameters called “minimum mean
noise” and “maximum standard deviation noise” designed to prevent
the picker from selecting regions of high contrast. The values of
these parameters should be determined empirically. Moreover, in
Relion there is an adjustable threshold that indicates the level of
similarity between the template and the selected feature in the
micrograph. Figure 6 shows the results obtained using the same 2D
averages from the Gautomatch tests (insets in Figures 4A, 5A) as
templates. After empirically optimizing the “minimummean noise”
and “maximum standard deviation noise” parameters to minimize
as much as possible the picking of incorrect high-contrast regions,
several tests were performed at different thresholds. In the case of

the central regions selection (Figure 6A), the results are shown at
two thresholds around the optimal value. Using these thresholds,
the software correctly identifiedmost of the particles (green arrows),
and the edges of the supporting carbon were not marked as
positive matches. However, contaminations corresponding to ice
crystals were mistakenly selected as particles (red arrows). As
with Gautomatch, an increase in the particle selection threshold
value resulted in fewer real particles being selected, but the false
positives produced by ice crystals remained. Finally, in the particle
end-picking test performed using the 2D averages of the insets
of Figure 5A as templates, the results were very similar to those
obtained using the centers as templates (Figure 6B). Additionally, the
selection of regions containing contaminants as false positives (red
arrows) also occurred, and increasing the threshold value did not
resolve the issue.

In summary, the template-matching-based particle selectors
analyzed here produce very similar results whether the central
or terminal regions are used as templates, indicating that they
can barely discern between these two regions in the images.
Although particle selection results are slightly better when using
the 2D averages of the central region, the programs tend to
select high-contrast regions as positives to some extent, which
cannot be resolved by varying the particle selection threshold.
However, the results obtained with our software satisfactorily solve
these problems and give results similar to those produced by a
human expert.

We also compared the performance of our particle picker
against other neural network-based software, specifically Topaz and
CrYOLO.The results of these comparisons are presented in Figure 7.
To maintain consistency in the evaluation, we used the same set
of micrographs and coordinates for training as we did with our
own program.
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FIGURE 2
Visual examples showing the performance of the RNP-E network with micrographs of the validation set. Examples of preprocessed micrographs
(micrographs), obtained ground-truth labels by manual labelling (labelled) superimposed in red over the corresponding micrograph and predictions
made by the RNP-FULL network (predicted) superimposed in red over the corresponding micrograph.

Topaz employs a convolutional neural network based on
positive unlabeled learning (Bepler et al., 2020), with multiple
adjustable parameters in its learning protocol, including the
particle size in its longest dimension. However, for the dataset we
used, which includes filamentary and highly flexible structures
that often bend, determining an appropriate value for this
parameter proved challenging. After extensive trial and error,
we found that the renet8 model architecture yielded the best

results. Figure 7A shows the particle selection from the central
regions of the RNPs at the threshold that produced the optimal
outcome. While the particle detection was accurate, with
no false positives, the selected coordinates were positioned
near the boundary between the particle and the background,
rather than at the center of the filaments. This led to the
appearance of a “zig-zag” pattern in the coordinates. Figure 7B
illustrates the particle selection by Topaz when the network
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FIGURE 3
Workflow followed by the proposed method to localize RNP ends. Preprocessed micrographs are segmented automatically by the RNP-E network.
These images are labelled with unique integer labels and filtered removing too small and too big regions. For the remaining regions their centroids are
computed localizing or picking the ends of the RNPs.
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FIGURE 4
Particle picking of the central region of RNPs using Gautomatch software. (A) Typical micrograph showing RNP particles, some ice crystal
contamination (black arrows), and the edge of the carbon support layer (black line). The inset shows the 2D averages used as templates for particle
selection. (B) Particles selected using a threshold of 0.15. At this threshold, there is a large number of false positives distributed throughout the image.
(C) Particles selected using a threshold of 0.2. Most of the RNP molecules have been correctly picked (green arrows), but ice contaminations and the
carbon support edge have also been marked as particles (red arrows). (D) Increasing the threshold to 0.3 causes some RNPs to be left undetected by
the software (blue arrows), while ice and carbon edge contaminations are still detected as positives.

was trained using the ends of the RNPs at two different
thresholds. The results were similarly accurate, although
there was a slightly higher tendency to select false positives,
particularly in areas with ice contamination or sharp bends
in the RNPs.

CrYOLO employs a convolutional neural network based
on supervised learning, requiring labeled data for training
(Wagner et al., 2019). It offers multiple adjustable parameters, such
as particle diameter, box size, and detection threshold, to adapt
to different datasets. Figures 7C, D display the results of particle
picking using CrYOLO, trained on the central regions and the
ends of the RNPs, respectively, at the threshold that yielded the
best results. Surprisingly, the results are quite similar in both cases,
showing little difference between training on centers versus ends.
Moreover, when trained on the ends, there was a greater tendency
to select false positives.

In summary, neural network-based particle pickers, such as
Topaz and CrYOLO, outperform traditional template-matching
methods in terms of detection accuracy. However, fine-tuning
their parameters is essential and often labor-intensive. Without
careful optimization, this can lead to the selection of false
positives.

3.3 Semantic segmentation picking
provides good quality 2D averages

The particle-picking system presented in this study offers not
only accurate detection of regions of interest through semantic
segmentation, but also introduces a novel method for generating
coordinates used for particle extraction. In the case of localizing
RNP filaments and unlike other software, which typically calculates
the centroid of the detected region to determine coordinate
placement, our approach utilizes a skeletonization process. This
process identifies the geometric center of the filament, enabling the
program to determine the position of the helical axis of the particle,
regardless of its curvature. As a result, our software generates a line
of coordinates that facilitates the extraction of a continuous series of
images along the entire axis of the particle.

This coordinate generation method for the case of localizing
RNP filaments has two significant advantages. First, the extracted
images are centered on or near the particle axis, minimizing the
shifts required for image alignment. This leads to a reduction in the
computational resources needed for image processing. Second, this
approach increases the total number of images to be processed in an
efficient manner, extending the concept of equispaced and uniform
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FIGURE 5
Particle picking of the ends of RNPs using Gautomatch. (A) Typical micrograph showing RNP particles. The inset shows the 2D averages used as
templates for particle selection. (B) Particles selected using a threshold of 0.2. At this threshold, there is a large number of false positives distributed
throughout the image, and the picking is very similar to that obtained when the centers of the molecules were used as templates (Figure 4B). (C)
Particles selected using a threshold of 0.4. Some of the RNP ends have been correctly picked (green arrows), but others have not been detected (blue
arrows). Ice contaminations and the carbon support edge have also been marked as positive ends (red arrows). (D) Increasing the threshold to 0.6
results in RNPs being undetected, while ice and carbon edge contaminations are still detected as positives.

extraction—commonly applied to straight helical particles—tomore
flexible, curved filaments. Figure 8 shows 2D averages computed
with CryoSPARC software (Punjani et al., 2017) of RNP filaments
(RNP helical central regions) obtained from particles picked using
the software presented in this work, where it is recognizable
secondary structure.

4 Discussion

As demonstrated by our results, our proposed method performs
well and surpasses traditional template-matching pickers. In the
localization of complete RNPs, our method has the distinct
advantage of having practically zero false positives, whereas
template-matching pickers are prone to mistakenly selecting ice
contaminations and carbon edges. Surprisingly, increasing the
cross-correlation threshold in template matching-based pickers,
which theoretically should make the selected particles more closely
resemble the templates, tends to result in the selection of incorrect
higher-contrast features, picking up false positives representing
contaminations and the edges of holes in the carbon. It is important
to note that selecting false positives can greatly complicate all

subsequent classification and image processing tasks aimed at
determining the underlying structure. Compared to other neural
network-based pickers, our approach also demonstrates good
performance. Neural network-based particle pickers, such as Topaz
and CrYOLO, surpass traditional template-matching methods in
detection accuracy for localizing RNP filaments and ends. However,
these methods require parameter fine-tuning, which can be labor-
intensive. Without careful optimization, there is a higher risk
of selecting false positives. Our approach seeks to address these
challenges, potentially offering improvements in accuracy and
efficiency. It is important to highlight that, although the CASSPER
method is similarly based on semantic segmentation, it is not well-
suited for selecting filamentous particles and their ends. CASSPER
is specifically designed for picking globular proteins, as it focuses on
estimating the centroids of automatically segmented protein regions.

Furthermore, our method substantially outperforms others in
selecting the RNP ends. As previously discussed, the ends of RNPs
contain the unique structure of the polymerase, and their study is
of great importance, making it crucial to distinguish the ends from
other regions of the RNP filaments (RNP helical central regions).
In attempts to pick the RNP ends using traditional template-
matching pickers, we used 2D averages of images of the RNP ends
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FIGURE 6
Particle picking using Relion. (A) Picking the central region of the RNPs using the 2D averages shown in Figure 4A as templates. After manual
optimization of all picking parameters, the most suitable threshold was found to be approximately 0.05. At this threshold, most of the RNPs are
correctly selected (green arrows). However, the software also marks areas corresponding to contaminations as positive (red arrows). Increasing the
threshold to higher values (Th 0.30) to eliminate these false positives results in the loss of RNPs that were previously correctly marked (blue arrows),
while contaminations are still marked as positives (red arrows). (B) Picking the ends of the RNPs using the 2D averages shown in Figure 5A as templates.
In this case, the detection of the ends was less efficient than for the central regions. Although the software correctly selected a few cases (green
arrows), most of the marked positives were actually central regions of the RNPs (orange arrows), leaving many ends unmarked (blue arrows).
Contaminations were also marked as positives (red arrows). As in the previous case, increasing the threshold (Th 1.1) caused correctly labeled particles
to be lost (blue arrows) while contaminations continued to be detected as positives (red arrows).

previously obtained through extensive manual picking followed by
2D particle classification and averaging. Although the templates
clearly depicted RNP ends, the results from traditional picker
methods were practically the same as those obtained using the
central region of the helix as template. Moreover, increasing the
threshold to select particles that most resembled the used template
led to the same outcome as before, where mainly higher contrast
regions were selected that did not correspond to filament ends, thus
representing false positives. However, our method correctly selects
the filament ends without selecting other filament regions or other
false positives (contaminations, carbon edges, etc.), with nearly the
same precision asmanual picking by a human expert as shown in the
result tables.These results suggest that traditional pickers are unable
to distinguish between RNP ends and central filament regions,
regardless of the template used. This likely occurs because the
matching process reliesmore on the primary structure present in the
image (the filament) rather than on the surrounding context, which
truly differentiates between central and end regions. In contrast,
our method performs exceptionally well in this respect. It is also

important to note that our method is capable of selecting features
or particles that are sparsely populated in the image (RNP ends),
despite their strong resemblance to themajority feature (RNP center
filament), withminimal error.This capability is important because it
suggests that our picking system could be used to search forminority
projections of molecular complexes, which is particularly valuable
in structural studies facing the common problem in cryoEM of
preferential views in sample preparations.

Our approach has other important advantages. This method
does not require as input any prior 2D averages, nor knowledge
of any particle data (neither estimated diameter nor minimum
distance between particles, etc.). The need for prior knowledge of
these parameters complicates the use of other pickers and makes
them much more prone to errors if any of those estimates are
not precise. Our approach only requires manual segmentation of a
limited number of micrographs, overriding the need for parameter
knowledge/estimation. Moreover, the typical most reliable way
to obtain 2D averages for template matching pickers consist of
manual picking on the input micrographs, extract the particles, and
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FIGURE 7
Particle picking using Topaz and CrYOLO software. (A) Left: CryoEM image of RNP particles with ice contamination indicated by black arrows and the
edge of the carbon support layer marked by a black line. Right: Particles selected by Topaz after training using the central regions of the RNPs with a
threshold value of 1. The particles are accurately detected without false positives. However, the coordinate selection occurs near the boundary
between the RNP and the background, resulting in a “zigzag” pattern of selected regions (marked with ∗∗ ). (B) Particles selected by Topaz after training
on the end of the RNPs at two different thresholds. Left: At threshold 1, most of the ends are selected (green arrows). However, there are a small
number of false positives due to selection of ice contamination and regions where the RNPs have a sharp bend (red arrows). Right: Increasing the
threshold to 2 causes some correct positives that were previously marked to be lost (blue arrows), while some false positives remain (red arrows). (C)
Particles selected by CrYOLO after training using the central regions of the RNPs. Most of the particles are selected (e.g. green arrow), nevertheless a
number of false positives associated to the carbon support are also marked (red arrow). Increasing the threshold does not solve this problem, as
correctly picked particles are lost while some false positives remain. (D) Particles selected by Cryolo after training using the termini regions of the RNPs.
The results obtained are very similar to those shown in (C) since the entire particle is selected, rather than just the ends. The number of false positives is
higher than in (C) (e.g. red arrows).

align them with existing software. This workflow corresponds to
a considerable amount of work. Additionally, alignment software
may perform suboptimally when provided with few particles

coming from manual picking, leading to poor templates and
worse results. All these limitations highlighted before can be
overcome when analyzing particles that can be considered “easy
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FIGURE 8
Two-dimensional averages of particles picked using the software presented in this work. All averages are obtained from 800 to 1,000 particles,
secondary structure is visible in the nucleoprotein monomer. The scale bar represents 100 Å.

to pick”, such as ribosomes, with work and prior experience.
However, in challenging cases, these issues can become practically
insurmountable, potentially leading to project failure due to poor
picking quality. Therefore, although the proposed method has been
specifically designed for the localization of the centers and ends
of RNPs, we believe that this method holds potential beyond its
initial scope. It could be highly beneficial in addressing other
complex cases where traditional methods may fall short. Such cases
include the picking of very flexible filamentous samples, the selective
picking of specific regions within macromolecules, or, as mentioned
previously, the picking of minority views that are challenging to
identify with conventional techniques. This broader applicability
suggests that our method could serve as a valuable tool in a
variety of challenging scenarios in the field of image processing and
analysis. We believe that in such difficult projects, our approach can
significantly facilitate the particle selection task, thereby increasing
the probability of success.
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