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Introduction: Methidathion (MD) is commonly used in agriculture and has
adverse effects on reproduction. Chrysin (CHR) has several advantageous
properties, such as anti-inflammatory, anti-cancer, and antioxidant properties.
The purpose of the current investigation was to assess CHR’s therapeutic
efficacy in reducing ovarian toxicity brought on by MD.

Methods: Twenty-four female rats were divided into four groups of six animals
each. Group 1 served as a control, while group 2 rats received MD (5 mg/kg).
Rats in Group 3 received CHR at a dose of 50 mg/kg. Rats in group 4 received
treatment with CHR after MD intoxication.

Results and Discussion: Our research revealed that MD significantly (p < 0.001)
increased the levels of MDA, caspase-3, FSH, LH, CA-125, and TNF-α but
significantly (p < 0.001) decreased the levels of SOD, GSH, E2, and progesterone
when compared to the control and CHR groups. After receiving CHR therapy,
damage induced by MD was significantly (p < 0.001) repaired.

Conclusion: This study showed that CHR could mitigate the adverse effects
that MD causes to the ovaries by decreasing oxidative stress, inflammation,
and apoptosis; improving antioxidant status; and restoring the correct ratio of
sex hormones.
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1 Introduction

Since organophosphorous pesticides (OPPs) are used for eliminating insects that
harm crops in the field, they fall under the category of insecticides. Nevertheless,
other data indicates that these substances may also be employed as herbicides by
influencing the soil biota population and subsequently changing the biomass of plants,
leading to their deterioration (Ajiboye et al., 2022). OPPs, one of the main chemicals
used to control pests, have been widely utilized in agriculture since the ban on
organochlorine pesticides (Costa, 2018). Acetylcholinesterase (AChE), a vital and essential
enzyme to produce nerve impulses, is inhibited by the chemical organophosphate.
Acetylcholine accumulates as a result of AChE inhibition, permanently depolarizing
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the organism and causing tremors, respiratory arrest, and eventually
death. Owing to the widespread application of these chemicals on
agricultural products, they have infiltrated groundwater through
seepage, entered rivers via agricultural runoff, and appeared on
the surfaces of sprayed plants. Thus, food, inhalation, and skin
adsorption have been the primary routes by which people have been
exposed to lower concentrations of these pesticides (Costa, 2018;
González-Alzaga et al., 2014). There are 220,000 deaths and one
million cases of severe poisoning each year;most of these poisonings
and 99% of the deaths they cause happen in developing countries
(Abdulrahman et al., 2023).

OPPs toxicological effects are classified as mild, moderate,
or high depending on when the person is exposed to them and
what proportion of their enzymes are inhibited afterward. Due
to the rising levels of pesticides in the environment, established
and developing nations that rely heavily on agriculture for
their economies now have virtually no choice but to expose
living things to them (Georgiadis et al., 2018). OPPs have
been demonstrated to trigger biochemical and histological
alterations in various organs, including the kidney, immune
system, pancreas, liver, heart, and vascular walls. The ovary
is one of the organs discussed, and it has a crucial function
by generating oocytes and synthesizing hormones in a normal
reproductive process (Güney et al., 2007). Moreover, additional
studies indicate that oxidative stress can play a major role in
the toxicity mechanism of OPPs. These pesticides can cause
oxidative stress, which can result in the generation of free
radicals and changes to antioxidants or the enzymes that scavenge
reactive oxygen species (ROS) (Sharma et al., 2014), which
coexist in a healthy body and are balanced with antioxidants.
The process that results in an imbalance that generates an excess
of ROS is known as oxidative stress. A woman is affected by

oxidative stress throughout her whole reproductive life, even
after menopause. An imbalance between the body’s ability
to scavenge free radical species and antioxidants results in
oxidative stress. In addition to being crucial signaling molecules
in physiological processes, ROS are involved in pathological
processes that impact the female reproductive system. ROS
influences a wide range of physiological processes, including oocyte
maturation, fertilization, embryo development, and pregnancy.
Both DNA damage to the ovarian epithelium and oxidative base
damage caused by ovulation can be prevented by antioxidants
(Agarwal et al., 2005).

Methidathion[S-(5-methoxy-2-oxo-2,3-dihydro-1,3,4-thiadiazol-
3-yl)methyl O,O-dimethyl phosphorodithioate] (Kim et al., 2011) is
one of theOPPs that ismost frequently employed in public health and
agriculture initiatives (Bhattu et al., 2022).

A flavonoid called chrysin (5, 7-dihydroxyflavone) is taken
from propolis, passion flowers, and honey (Naz et al., 2019).
Chrysin is used to treat liver, nervous system, and reproductive
disorders (Mentese et al., 2022; Souza et al., 2015). Numerous
biological characteristics of chrysin, such as its antioxidant, anti-
apoptotic, anti-inflammatory, and anti-cancer capabilities, have
been demonstrated by previous studies (He et al., 2012; Rashno et al.,
2019). Moreover, the protective benefits of chrysin against oxidative
stress in rats have been determined. According to the study,
chrysin therapy lowers MDA levels and increases antioxidant
enzyme activity (Anand et al., 2012). Additionally, it has been
demonstrated to regulate the level of sexual hormones, protect
ovarian tissues from oxidative stress and tissue damage, and reduce
apoptosis (Mohammadi et al., 2022). Therefore, this study aimed to
investigate the ameliorative effect of chrysin against MD-induced
ovarian damage in female rats by evaluating serum biochemical
antioxidative markers, sex hormones, and inflammatory and
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apoptotic markers, in addition to histopathological examinations of
ovarian tissue.

2 Materials and methods

2.1 Chemicals

Methidathion (CAS No. 950-37-8), Chrysin (CAS No. 480-
40-0), and other reagents were supplied by Sigma-Aldrich (St.
Louis, MO, United States). The selection of MD and CHR
doses was based on previously published studies by Sulak et al.
(2005) and Mantawy et al. (2017) respectively.

2.2 Ethical considerations

The housing accommodations and experimental protocols
followed the EuropeanUnion Council’s (2010/63/EU) guidelines for
the use of laboratory animals.The animal study and all experimental
procedures have been approved by the veterinary medical research
ethics committee, Faculty of Veterinary Medicine, Sohag University,
Sohag, Egypt, with protocol number Soh. un.vet/00066R. Every
precaution was taken to prevent pain and suffering for the animals.

2.3 Animals

Female Wistar albino rats, weighing between 180 and 200 g and
aged 10–12 weeks, were obtained from the animal house at Sohag
University in Sohag, Egypt. The rats were maintained at a constant
temperature of 24°C ± 1°C with a 12-hour light/dark cycle and 45%
± 5% humidity. They were acclimated to their new environment for
1 week before the experiment.Throughout the study, water and food
were provided ad libitum.

2.4 Experimental design

Animals were randomly divided into four groups (6 rats/group)
as follows: Group 1 (vehicle control): healthy rats that received
DMSO orally only, Group 2 (MD): ovarian toxicity was induced
by methidathion (5 mg/kg.b.w), Group 3 (CHR): healthy rats that
received chrysin (50 mg/kg), and Group 4 (MD + CHR): ovarian
toxicity was induced by MD the same as in group 2, then rats
received chrysin at the same dose mentioned in group 3. Treatment
with CHR started 4 weeks after ovarian toxicity induction by gavage
5 days a week and continued for 5 days a week for 4 weeks by gavage
administration.MDandCHRwere dissolved inDMSO, anddoses of
MD and CHR were determined from previous studies of Sulak et al.
(2005), Mentese et al. (2022), Mantawy et al. (2017). At the end of
the treatment, animals were sacrificed and dissected.

2.5 Blood sampling for hormonal and
biochemical analyses

Blood samples were collected and centrifuged for 10 min at
3,000 rpm to obtain a clear serum and stored at −20°C for hormonal

and biochemical analyses. Ovarian tissue samples were dissected
and processed for biochemical analysis, and histopathological
examination.

2.6 Determination of sex hormone

Rats’ serum levels of progesterone, estrogen (E2), follicular
stimulating hormone (FSH), and luteinizing hormone (LH) were
quantitatively assessed by ELISA using kits [PerkinElmer Company,
Hayward, CA 94545 for progesterone (Catalogue Number: 10005),
and BIOS Company, South San Francisco, CA 94080, United
States for LH (Catalogue Number: 1004), FSH (Catalogue Number:
10001), and (E2 (Catalogue Number:1009)]. The experiment was
carried out according to the manufacturer’s guidelines.

2.7 Determination of oxidative stress

All the rats’ ovaries were removed immediately and weighed. In
a glass homogenizer, each rat’s right ovary was homogenized in cold
phosphate-buffered saline (1:4) (pH 7, 0.01 mol/L).The homogenate
that was created was centrifuged at 5,000×g for 5 min, filtered, and
utilized to measure markers of oxidative stress. The experiments
were repeated three times.

2.7.1 Determination of SOD
The body’s antioxidant capacity and oxidative balance can

be determined by measuring the activity of SOD, an enzyme
that scavenges superoxide anion-free liquid (O2 - •) to protect
cells from damage (Liang et al., 2022). The total SOD assay kit
(MyBioSource, China, CatalogueNumber:MBS036924) was used in
this experiment to measure SOD activity (U/mg protein) in ovarian
homogenates of each group, according to the instructions.

2.7.2 Determination of MDA
Through the action of its enzyme system, which can target

polyunsaturated fats in biological membranes, initiate lipid
peroxidation, harm cells, and generate lipid peroxides likeMDA, the
body produces oxygen-free fluid. As a result, the body’s measured
MDA concentration may indicate the level of lipid peroxidation
and, in consequence, indicate the degree of cell damage (Yang et al.,
2022). Using the TBA method MDA detection kit (MyBioSource,
China, Catalogue Number: MBS268427), the researchers measured
the amount of MDA in each group’s ovarian tissue. Following
the instructions provided in the kit, the ovarian tissues were
homogenized and the concentration of MDA per mg protein
(nmol/mg protein) was determined.

2.7.3 Determination of GSH
GSH is an essential enzyme that is extensively distributed

throughout the body and catalyzes the breakdown of H2O2. Its
action may contribute to maintaining the cell membrane’s structural
and functional integrity. Consequently, assessing the GSH activity
in tissues may provide information regarding the body’s oxidative
equilibrium and antioxidant potential (Yang et al., 2022). In this
work, the reduced GSH activity in ovarian homogenates of each
group was measured according to the instructions using a GSH
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test kit (Shanghai BlueGene Biotech Co., Ltd., Shanghai, China,
Catalogue Number: E02G0367).

2.8 Detection of ovarian apoptosis

One important protease in the pathway of mitochondria-
mediated cell death is caspase 3. This factor is released into the
cytoplasm in response to apoptotic stimuli, where it sets off a series
of processes that lead to cell death. Using an ELISA kit (United States
of America, from Elbscience Biotechnology Company, Catalogue
Number: E-EL-R0160), we determined the concentration of
Caspase3 in each group’s serum by the manufacturer’s instructions.

2.9 Detection of tumor marker

A significant percentage of epithelial ovarian tumors exhibit the
high molecular weight glycoprotein known as carcinoembryonic
antigen (CA) 125 (Moss et al., 2005). Serum level was quantitatively
assessed by ELISA using a kit from BIOS Company, South
San Francisco, CA 94080, United States of America, Catalogue
Number: 10,103. The experiment was carried out according to the
manufacturer’s guidelines.

2.10 Detection of cytokine

The oocytes and macrophages of the neonatal rat ovary contain
the multifunctional cytokine known as tumor necrosis factor
α (TNFα). TNFα may play a role in follicle construction or
oocyte atresia, as evidenced by the presence of both the TNFα
and its receptors in the ovary of a newborn rat (Morrison and
Marcinkiewicz, 2002). The serum level was quantitatively assessed
by ELISA using a kit fromR&D Systems inMinneapolis, MS, United
States of America, Catalog Number QK210. The experiment was
carried out by the manufacturer’s guidelines.

2.11 Histopathological examination

Animals were sacrificed after the experimental duration,
and tissue samples from left ovaries were collected, dissected,
and immediately fixed in 10% formalin for 24 h, dehydrated
in a succession of graded alcohols, clarified in xylene, and
encapsulated in paraffin (Suvarna and Layton, 2013). Tissue
sectioning was done at 3–5 μm thickness and stained with
hematoxylin and eosin (H&E) (Bancroft et al., 1996) for histological
evaluation. All sections were inspected and photographed using
an OLYMPUS CX43 microscope and a microscope-adapted
OLYMPUS SC52 camera.

2.12 Morphometric study

Each animal was assigned a score based on histopathological
examination of the tissue samples (Gibson-Corley et al., 2013). The
section samples were scored semi-quantitatively, depending on the

visual field inspection of 10 sections from each group. Photographs
of ovarian tissues were taken, and the cellular alterations were
counted in 10 random areas (each 1 mm2) at a magnification of 20×.
The degree of follicular degeneration, stromal degeneration, and
stromal fibrosis was scored between 0 and 3 according to the severity
of the damage. A value of 0 means no pathological damage, +1 value
is less than 33% of ovarian damage, +2 is damage between 33% and
66%, and +3 is more than 66% (Pala et al., 2014; Kaplan et al., 2021).

2.13 Statistical analysis

TheStatistical Package for the Social Science (S.P.S.S. version 27)
was used to analyze the data. The mean ± SD was used to express
the results. To test differences between groups, statistical analysis
was performed using analysis of one-way variance (ANOVA) and
Tukey’s post-hock multiple comparison test. Each group’s results
were characterized by identical variance and a normal distribution.
A value of p of <0.05 means that differences between all groups are
statistically significant.

3 Results

3.1 Clinical observation

Following MD administration, the rats displayed intense,
uncontrolled behaviors that lasted for nearly 2 hours, after which
they showed signs of exhaustion. In the subsequent days, the severity
of these behaviors persisted but gradually diminished. No mortality
was observed in any group.

3.2 Biochemical findings

3.2.1 Chrysin regulate serum hormonal markers
in methidathion-treated rats

The hormone values of experimental groups are displayed in
(Figure 1). In the current investigation, the FSH and LH hormone
serum levels were considerably higher (p < 0.001) in the MD group
than in the control and CHR groups. There was no significant
difference (p > 0.05) in the serum levels of LH and FSH hormones
between the CHR and control groups. In contrast to the MD group,
the LH and FSH hormone levels were considerably lower in the MD
+ CHR treated group (p < 0.001). (Figures 1A, B).

Comparing the MD group to the control and CHR groups, the
MD group’s serum levels of progesterone hormone and E2 were
significantly lower (p < 0.001). Progesterone hormone and E2 levels
in the MD + CHR group’s blood increased significantly (p < 0.001)
following CHR treatment. There was no discernible difference in
progesterone hormone and E2 serum levels between the CHR and
control groups. (Figures 1C, D).

3.2.2 Chrysin improved ovarian tissue
antioxidants and oxidative stress markers in
methidathion-treated rats

When comparing the MD untreated group to the
control group, (Table 1), the levels of MDA were substantially
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FIGURE 1
Effect of CHR on the serum hormonal markers in experimental groups. (A) LH concentration, (B) FSH concentration, (C) Estradiol concentration, (D)
Progesterone concentration. Data expressed as mean ± SD, ap < 0.001 versus the control group; bp < 0.001 versus MD group, (n = 6).

TABLE 1 Effect of CHR on the ovarian tissue antioxidants and oxidative
stress markers in experimental groups.

Groups MDA nmol/mg GSH pg/g SOD U/mg

Control 0.34 ± 0.05 2.79 ± 0.03 6.19 ± 0.05

MD 5.05 ± 0.08a 0.48 ± 0.03a 2.20 ± 0.16a

CHR 1.14 ± 0.09b 3.55 ± 0.04b 7.38 ± 0.09b

MD + CHR 0.80 ± 0.01b 2.19 ± 0.034b 5.64 ± 0.06b

Values are presented as mean ± SD; n = 6 rats in each group; values with different
superscripts (a, b) among experimental groups are significantly different (p < 0.001).
aVersus the control group.
bVersus MD, group using ANOVA, and post hoc test; SD, standard deviation.

elevated (p < 0.001) along with a significant decline in GSH level
and SOD activity. Surprisingly, the CHR treatments improved
GSH and SOD activity and dramatically downregulated (p <
0.001), MDA levels in the MD + CHR group in comparison
with the MD group. These findings indicated that CHR mitigated
the oxidative stress induced by MD treatment in the rats that
received it.

3.2.3 Effect of chrysin on the serum ovarian
inflammation and tumor markers in
methidathion-treated rats

The levels of TNF-α and CA-125 in the MD rats were greatly
higher (p < 0.001) than those in the control rats. However,
after CHR treatment, the values in the MD + CHR group were
notably lower (p < 0.001). Additionally, there was no significant

TABLE 2 Effect of CHR on the ovarian inflammation and tumor markers
in experimental groups.

Groups CA-125 (U/mL) TNF-α (pg/mL)

Control 22.35 ± 0.68 52.30 ± 0.38

MD 54.32 ± 0.57a 234.79 ± 0.78a

CHR 30.54 ± 0.63b 61.83 ± 0.61b

MD + CHR 27.28 ± 0.33b 49.63 ± 0.51b

Values are presented as mean ± SD; n = 6 rats in each group; values with different
superscripts (a, b) among experimental groups are significantly different (p < 0.001).
aVersus the control group.
bVersus MD, group using ANOVA, and post hoc test; SD, standard deviation.

difference (p > 0.05) in the levels of TNF-α and CA-125 between
the control and CHR groups. These findings suggest a strong
association between the cytokine system and the tumor marker CA-
125. (Table 2). Consequently, it can be concluded that CHR
treatment effectively reduces the inflammation caused by MD
treatment in rats.

3.2.4 Effect of chrysin on the serum caspase 3
(Apoptosis Marker) of methidathion-treated rats

There was a significant increase (p < 0.001) in the serum
Caspase-3 activity level in the MD group compared to the control
group. In contrast, the MD + CHR group receiving CHR therapy
saw a significant drop in the mean value of Caspase-3 activity.
SerumCaspase-3 levels showednonoticeable variations between the
control and CHR groups. (Figure 2).
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FIGURE 2
Effect of CHR on the serum caspase3 (Apoptosis Marker) in
experimental groups. Data expressed as mean ± SD, ap < 0.001 versus
the control group; bp < 0.001 versus MD group, (n = 6).

3.3 Histopathological assessment

The histological examination of ovarian tissue samples revealed
distinctive morphological differences between the treated groups
and the control as shown in (Figure 3). In the control group,
normal ovarian tissue exhibited various stages of ovarian follicles,
including a Graafian (secondary) follicle with a well-defined
follicular antrum housing an eccentrically positioned secondary
oocyte, surrounded by the zona pellucida and corona radiata.
This follicle was enveloped by layers of granulosa and theca cells.
Furthermore, the corpus luteum maintained a typical size and
structure (Figures 3A–C). Contrarily, the MD group displayed
numerous atretic follicles characterized by degenerated follicular
cells and compromised corpora bodies. Aberrant secondary follicles
lacking oocytes were observed alongside the corpus luteum
exhibiting luteal cell vacuolation. Degenerative changes, including
cellular loss of features and vacuolation, were evident in the
corpora, accompanied by an increase in inter-corpora stromal
fibrous connective tissue (Figures 3D–F).

In comparison, the CHR group showed a comparable number
of normal ovarian follicles and corpus luteum structures to the
control (Figures 3G–I). Remarkably, theMD+CHRgroup exhibited
a notable improvement in ovarian structures. Healthy growing
follicles containing intact oocytes surrounded by normal granulosa
cells were observed, alongside more or less normal corpus luteum
structures with polyhedral luteinized cells (Figures 3J–L).

Histomorphometric evaluation of ovarian lesions such as
follicular degeneration, stromal degeneration, and stromal fibrosis
recorded in the examined tissue sections exhibits a significant (p ≤
0.001) increase in the MD group compared with the control group.
Interestingly administration of CHR dramatically decreased those
recorded lesions (p≤0.001) comparedwith theMDuntreated group.
The histological picture in MD + CHR showed non-significant
change compared with the control group (Figure 4).

4 Discussion

The present study investigated the therapeutic potential of CHR
against MD-induced ovarian damage in female rats.

Concerning hormonal balance, the MD group in this study had
considerably higher serum levels of FSH and LH and significantly
lower serum levels of progesterone and E2. Severe toxicity to the
follicular ovarian reserve and function is another explanation for
this effect. The presence of these hormonal alterations is utilized as
a sign of ovarian failure (Afifi and Reyad, 2013). Our findings match
up with a previous study (Güney et al., 2007), which reported that
MD induced ovarian toxicity in female rats. Additionally, compared
to the MD group, the group treated with CHR after intoxication
with MD showed a significant decrease in FSH and LH levels along
with a significant increase in estradiol and progesterone levels.
The beneficial effects of CHR on the reproductive processes of
female rats may have contributed to our findings (Mentese et al.,
2022). Our findings are consistent with those of Mentese et al.
(2022), who displayed that CHR prevention female rats from
ovarian toxicity.

Additionally, our results suggested that administering MD
to normal rats resulted in a substantial drop in GSH and SOD
levels that were comparable to those of normal rats as well
as a significant increase in MDA levels. This may be because
MD poisoning causes a variety of metabolic disturbances
(Kose et al., 2009). Oxidative stress is caused by antioxidant
enzyme deactivation (Mobasher and Valverde, 2014). This
finding is consistent with the results of Wang et al. (2018),
which associated increased MDA levels and decreased GSH
and SOD levels with acrolein’s interference in antioxidant
defense mechanisms. Oxidative stress can lead to ovarian
failure by impairing CYP450 in two ways: disrupting normal
oocyte development and inducing apoptosis. Since oxidative
stress hinders both nuclear and cytoplasmic maturation of
oocytes while promoting cell death, it disturbs the intraovarian
environment by creating an imbalance between ROS production
and elimination. In the present study, elevated ovarian MDA
levels may be linked to increased reactive oxygen species induced
by MD (Güney et al., 2007). These observations support the
hypothesis that MD-induced ovarian damage results from lipid
peroxidation (LPO), a biochemical mechanism. Developing
effective antidotes, particularly those with strong antioxidative
properties, is crucial to counteracting MD toxicity. Chrysin, a
flavonoid with potent antioxidant activity, represents a promising
candidate in this regard (Alsawaf et al., 2022).

According to the author’s knowledge, there is limited
information about the potential benefits of CHR in combating
MD toxicity. Chrysin is a potential naturally occurring flavonoid
that is usually found in propolis and honey. Because of its anti-
inflammatory and antioxidative features, it has a protective effect
(Farkhondeh et al., 2019). Chrysin’s mode of action involves
reducing inflammation, inducing apoptosis in cells, and decreasing
cell proliferation without harming healthy cells or having any
unfavorable side effects (Xue et al., 2016; Kasala et al., 2015;
Samarghandian et al., 2011). In comparison to the MD group,
treating MD rats with CHR resulted in significant increases in
ovarian levels of GSH and SOD and significant decreases in ovarian
MDA levels. These results are consistent with those of Ye et al.
(2022), who discovered that rats receiving CHR therapy showed
a significant return of these parameters to normal. Additionally,
CHR demonstrated improved antioxidant status, a decrease in
oxidative stress, and the prevention of the generation of free radicals
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FIGURE 3
Representative photomicrographs of ovarian tissue samples from treated groups stained by hematoxylin and eosin (H, E) demonstrate the control
group: (A): different stages of ovarian follicles (arrows), and corpus luteum (CL). (B): Graafian (secondary) follicle with a large follicular antrum.
Secondary oocyte located eccentrically and surrounded by the zona pellucida and a layer of several cells known as the corona radiata (arrow),
surrounded by multiple cellular layers of granulosa cells (star), and theca cell layers (arrowheads). (C): normal size and structure of corpus luteum (CL).
MD group (D–F): (D): Number of atretic follicles with degenerated follicular cells (arrows), degenerated corpora bodies (CL). (E): Abnormal secondary
follicles without oocyte (star), Corpus luteum showing deteriorating luteal cells with vacuolation (arrowheads). (F): Corpora showed degenerative
changes marked by loss of cellular features and cellular vacuolation (CL) with increased inter-corpora stromal fibrous connective tissue (arrows). CHR
group (G–I): Number of normal ovarian follicles (arrows), and corpus luteum (CL). MD + CHR group (J-L): the presence of growing healthy follicles
containing an oocyte with an intact zona pellucida and surrounded normal granulosa cells (arrows), more or less corpus luteum containing polyhedral
luteinized cells (CL).

(Temel et al., 2020). It has been found that phytocompounds,
especially flavonoids, can shield biological macromolecules and
membranes against damage caused by free radicals (Karak, 2019).
Consistent with these outcomes, the current research demonstrated
that flavonoid compounds found in CHR may reduce the oxidative
stress that MD causes in MD rats by increasing antioxidant status
and lowering lipid peroxidation levels (Alsawaf et al., 2022).
According to earlier research, the compound’s antioxidant qualities
and ability to eliminate free radicals are assumed to be attributed to
the hydroxyl groups at positions 5 and 7 in the CHR structures
(Eldutar et al., 2017). CHR therapy has been shown by some
other authors (Rehman et al., 2013) to enhance antioxidant enzyme
activity and protect tissues from oxidative damage.

The cytokine TNF-α was first discovered to play a part in
inflammatory processes. This factor activates by attaching itself
to one of its two receptors, a type 1 receptor (TNFR1) and a
type 2 receptor (TNFR2). TNF-α stimulates CA-125 in breast,
endometrial, and ovarian cancers through nuclear factor kappa B
(NF-κB) (Morgado et al., 2016). Moreover, TNF-α plays a role in

controlling physiological processes like corpus luteum function,
steroidogenesis, ovulation, and follicular growth. Additionally,
it has been documented that TNF-α may control granulosa
cell differentiation and death according to the embryonic stage
(Silva et al., 2020). According to certain research, serum TNF-
α receptor 1 binds to CA-125 more frequently than receptor 2
(Rzymski, 2005). TNF has been linked to elevated serum CA 125
levels, according to a prior study.These findings imply that cytokines
and CA-125 might be related (Kosar et al., 2006). Furthermore,
ovarian follicular loss is significantly impacted by the inflammatory
response (Mantawy et al., 2019). An increasing number of research
has shown that abnormal inflammation can change the dynamics
of the ovarian follicles in a way that can lead to infertility (Boots
and Jungheim, 2015; Urieli-Shoval et al., 2013). In rats exposed to
Organophosphate-Pesticide, serum level of TNF-α was increased
(Alam et al., 2019). Our study revealed that CHR administration
significantly reduced the rise in TNF-α levels in MD-treated rats,
suggesting that CHR alleviated the overexpression of inflammatory
markers in their ovaries. Concurring with the results of the present
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FIGURE 4
Histomorphometry graph showing semiquantitative measurements of lesion scores recorded in ovarian tissue sections among the experimental groups
(A): Follicular degeneration, (B): Stromal degeneration, and (C): Stromal fibrosis. Results were analyzed using one-way ANOVA and Tukey’s post hoc
tests. Results are shown in mean ± SD.

∗∗∗, ###p ≤ 0.001 compared to control, and MD groups respectively. ns = p > 0.05 (non-significant vs. Control).

investigation, Ai et al. (2013) discovered possible suppression of the
pro-inflammatory TNF-α pathway by additional flavonoids.

In the current study, feeding rats MD resulted in a considerable
increase inCA-125 levels compared to the control group. CA-125 is a
protein produced by various cell types, including ovarian cancer cells
(Rao et al., 2021). CA-125 is commonly referred to as a tumormarker
or biomarker for ovarian cancer because it provides information
about the history of the disease. Measuring CA-125 is the most
frequently used test to assist in the diagnosis and follow-up of
ovarian cancer (Nossov et al., 2008). According to our findings, the
MD-induced increase in CA-125 may indicate a heightened risk of
ovarian cancer. However, CHR treatment reduced the elevated CA-
125 levels. As per prior reports, oxidative damage and the ROS it
produces are thought to be one of the primary initiators of cell death
(apoptosis) (Matés et al., 2008; Newsholme et al., 2016; Sifuentes-
Franco et al., 2018). The Caspase family of proteases mediates
apoptosis, a type of controlled cell death characterized by particular
structural alterations (Elmore, 2007). MD treatment caused a state
of cell death (Wu et al., 2023). Our findings suggested that marked
activation of caspase-3 induced by MD caused inflammation and
fibrosis of the ovary. In contrast, CHR treatment inhibited the
elevation of caspase-3 level. Thus, the results of the current study
suggested that inhibition of caspase-3 activation by CHR results in
the prevention of ovarian fibrosis with a significant impact on the
production of pro-inflammatory cytokines such as TNF-α and IL-6.

Chemicals that destroy oocytes in primordial follicles might
exhibit a delayed effect on the estrous cycle or prolonged
reproductive dysfunction, persisting until the recruitment of
growing and antral follicles can no longer be sustained (Pocar et al.,
2003). Consequently, an increase in ROS in the ovaries leads to fast
corpus luteum deterioration, granulosa cell mortality, and a loss of
oocyte quality which was present in our histopathological findings
in the presence of atretic follicles with degenerated cells and altered
corpus luteal size and structure (Peters et al., 2020; Khirallah et al.,
2022). Surprisingly, treatment with CHR could restore ovarian
tissue damage.

Our research indicates that chrysin, a polyphenol compound
with a variety of health-promoting properties, particularly
flavonoids, the most prevalent chemical class of phytochemicals, is
a promising compound for use in the prevention of ovarian toxicity
against toxic agents. In nature, flavonoids can be found everywhere.
They can be found in food as well, which makes the connection
between nutrition and illness prevention crucial.

5 Conclusion

Our study provides novel findings, that exposure to MD
in female rats could diminish fertility by inducing oxidative
stress, disrupting hormonal balance during reproduction, causing
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histopathological changes, triggering ovarian inflammation,
altering tumor marker levels, and affecting ovarian cell apoptosis.
Furthermore, our study illustrated that CHR could mitigate the
ovarian damage induced by MD. These findings shed light on the
reproductive health risks associated with MD exposure. Further
research is needed to fully understand the potential benefits of CHR
in preventing MD-induced ovarian damage.
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